
Modelling and Programming

Embedded Controllers with

Timed Automata and

Synchronous Languages
T. Bourke

Ph.D.

2009

ii

iii

I hereby declare that this submission is my own work and to

the best of my knowledge it contains no materials previously

published or written by another person, or substantial pro-

portions of material which have been accepted for the award

of any other degree or diploma at UNSW or any other edu-

cational institution, except where due acknowledgement is

made in the thesis. Any contribution made to the research

by others, with whom I have worked at UNSW or elsewhere, is

explicitly acknowledged in the thesis. I also declare that the

intellectual content of this thesis is the product of my own

work, except to the extent that assistance from others in the

project’s design and conception or in style, presentation, and

linguistic expression is acknowledged.

Signed .

Date .

iv

Abstract

Embedded controllers coordinate the behaviours of specialised hardware components

to satisfy broader application requirements. They are difficult to model and to pro-

gram. One of the greatest challenges is to express intricate timing behaviours—which

arise from the physical characteristics of components—while not precluding efficient

implementations on resource-constrained platforms. Aspects of this challenge are ad-

dressed by this thesis through four distinct applications of timed automata and the

synchronous languages Argos and Esterel.

A novel framework for simulating controllers written in an imperative synchronous

language is described. It includes a transformation of synchronous models into timed

automata that accounts for timing properties which are important in constrained im-

plementations but ignored by the usual assumption of synchrony. The transformation

provides an interface between the discrete time of synchronous programs and a contin-

uous model of time. This interface is extended to provide a way for simulating Argos

programs within the widely-used Simulink software.

Timed automata are well-suited for semantic descriptions, like the aforementioned

transformation, and for modelling abstract algorithms and protocols. This thesis also

includes a different type of case study. The timing diagram of a small-scale embedded

component is modelled in more detail than usual with the aim of studying timing

properties in this type of system. Multiple models are constructed, including one of

an assembly language controller. Their interrelations are verified in Uppaal using a

construction for timed trace inclusion testing.

Existing constructions for testing timed trace inclusion do not directly address re-

cent features of the Uppaal modelling language. Novel solutions for the problems pre-

sented by selection bindings, quantifiers, and channel arrays in Uppaal are presented

in this thesis. The first known implementation of a tool for automatically generating a

timed trace inclusion construction is described.

The timed automata case study demonstrates one way of implementing application

timing behaviours while respecting implementation constraints. A more challenging,

but less detailed, example is proposed to evaluate the adequacy of Esterel for such

tasks. Since none of the standard techniques are completely adequate, a novel alterna-

tive for expressing delays in physical time is proposed. Programs in standard Esterel

are recovered through syntactic transformations that account for platform constraints.

vi

Acknowledgements

My supervisor A. Sowmya has been unwavering in her support, encouragement, and

enthusiasm throughout my time at UNSW. I owe much to her persistence and faith. My

co-supervisor Rob van Glabbeek has always been generous with his time and patient

in explaining his insights. His lectures on process algebra and semantics were a high

point of my study at UNSW.

I have enjoyed the company of many good people at both CSE and NICTA. Espe-

cially Leonid Ryzhyk and Peter Gammie, who consistently took an interest in my work,

listened to my ideas, shared their ideas, gave feedback, and reviewed drafts.

Gerwin Klein’s understanding while I finished this manuscript was invaluable.

NICTA support me financially, but more importantly, it drew many talented staff

and visitors to Australia which enriched my time as a graduate student immeasurably.1

I am grateful to the reviewers, Reinhard von Hanxleden, Florence Maraninchi, and

S. Ramesh, for their detailed and thoughtful comments.

Mirjam endured another long preoccupation, and helped to maintain my health,

sanity, and spirits.

Background. The material on transition systems in §2.1 follows R.J. van Glabbeek’s

notes on the topic. The descriptions of equivalence relations and preorders in Ap-

pendix C and of process algebra in Appendix A are, besides the references given, in-

formed by his COMP9152 course at UNSW in 2005.

An infrared sensor and Validating timed trace inclusion in Uppaal. Several itera-

tions of the timed automaton model of §4.3 were presented at regular ‘timed automata

teas’ where Ansgar Fehnker, Peter Gammie, and Rob van Glabbeek asked insightful

questions and made helpful suggestions.

During a pleasant afternoon at Radboud University in 2006, Frits Vaandrager sug-

gested the testing construction in Figure 4.21, and the timed trace inclusion testing

technique, which is applied in Chapter 4 and extended in Chapter 5. Ansgar Fehnker

and Rob van Glabbeek provided support and insight during the development of the

extensions. Kim Larsen suggested the railway example.

Delays in Esterel. S. Ramesh of GM Research Labs in Bangalore, India gave useful

feedback on an early draft. The ideas were discussed with, and reviewed by Peter Gam-

mie and Leonid Ryzhyk, both of who had valuable insights. The anonymous reviewers

for EMSOFT 2007 offered accurate, encouraging, and insightful comments.

1NICTA is funded by the Australian Government as represented by the Department of Broadband, Com-
munications and the Digital Economy and the Australian Research Council through the ICT Centre of
Excellence program.

viii

Related publications

[BS05] T. Bourke and A. Sowmya. Formal models in industry standard tools: An Argos

block within Simulink. In F. E. Tay, ed., International Journal of Software

Engineering and Knowledge Engineering: Selected Papers from the 2005

International Conference on on Embedded and Hybrid Systems, vol. 15, pp.

389–395. World Scientific, Singapore, Apr. 2005.

This paper describes an early version of the concepts and software described

in Chapter 3. It forms the basis of the text and diagrams in §3.3.2 and the

example in §3.4.1.

[BS06] —. A timing model for synchronous language implementations in Simulink. In

S. L. Min and Y. Wang, eds., Proceedings of 6th ACM International Conference

on Embedded Software (EMSOFT’06), pp. 93–101. ACM Press, Seoul, South

Korea, Oct. 2006. ISBN 1-59593-542-8.

The formal model of Chapter 3 (§§3.2 and 3.3.1) is taken directly from this

paper with some minor corrections, as is the comparison with related work

of §3.5.

[BS08] —. Automatically transforming and relating Uppaal models of embedded

systems. In Proceedings of 8th ACM International Conference on Embedded

Software (EMSOFT’08), pp. 59–68. ACM Press, Atlanta, Georgia USA, Oct. 2008.

Chapter 5 improves upon this paper in several ways:

• The illustrative example is presented in more detail (§§5.1.1 and 5.5).

• An alternative ‘partitioning’ technique is described (§5.3.2.1).

• The example in Figure 5.12 has been improved.

• The implementation is discussed in more detail (§5.4).

[BS10] —. Delays in Esterel. In A. Benveniste, S. A. Edwards, E. Lee, K. Schneider, and

R. von Hanxleden, eds., SYNCHRON 2009, no. 09481 in Dagstuhl Seminar

Proceedings, pp. 55–84. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,

Germany, Dagstuhl, Germany, 2010.

The ideas in Chapter 6 were presented at the 2009 Synchron workshop at

Dagstuhl. An abridged version of the chapter appears in the proceedings.

Related software

1. An Argos compiler and Simulink block (refer Chapter 3).

2. Software for manipulating Uppaal models (refer Chapter 5).

3. A backhoe loader simulation (refer §2.4.3.1).

x RELATED PUBLICATIONS

Contents

1 Introduction 1

1.1 Aim . 2

1.2 Scope and general approach . 2

1.2.1 Programs in physical time . 2

1.2.2 Real embedded controllers . 3

1.2.3 Verification of timed models . 4

1.2.4 Implementations . 4

1.3 Contributions and significance . 4

1.4 Outline . 5

2 Background 7

2.1 Transition Systems . 7

2.2 Timed Models . 10

2.2.1 Why model timing detail? . 10

2.2.2 Timed Transition Systems . 11

2.2.3 Timed Automata . 17

2.3 Uppaal . 25

2.3.1 Variables . 25

2.3.2 Communication and priority . 26

2.3.3 Semantics . 27

2.3.4 Model Checking . 28

2.4 Synchronous Languages . 29

2.4.1 Core concepts . 29

2.4.2 Argos . 35

2.4.3 Esterel . 43

2.5 Concluding remarks . 54

3 Simulating synchronous execution 55

3.1 Simulink and Stateflow . 56

3.1.1 Simulink . 56

3.1.2 Stateflow . 61

3.1.3 Executing Stateflow within Simulink . 64

3.2 Modelling synchronous execution . 65

3.2.1 Execution parameters . 66

3.2.2 Timed Automaton Model . 68

3.3 Implementation of an Argos block . 72

3.3.1 Embedding within Simulink . 72

3.3.2 Practicalities . 74

3.4 Experience . 76

3.4.1 Sensor failure detection . 76

3.4.2 Bang-bang temperature controller . 81

3.5 Comparisons with related work . 86

3.5.1 Synchronous execution machines . 86

3.5.2 Simulink to Lustre . 87

3.5.3 TAXYS framework . 87

3.5.4 AASAP Semantics . 87

3.6 Reflections and conclusions . 88

xii CONTENTS

4 An infrared sensor 91

4.1 Introduction . 91

4.2 The Sharp GP2D02 range sensor . 92

4.2.1 Overview . 92

4.2.2 Timing Diagram . 93

4.3 Timing diagram model . 95

4.3.1 Rationale and guiding philosophy . 95

4.3.2 Choosing an alphabet . 96

4.3.3 An explanation of the model . 97

4.3.4 Liveness and progress . 102

4.3.5 Limitations . 103

4.4 Driver/sensor split model . 103

4.4.1 Action direction and synchronization 104

4.4.2 The split models . 104

4.4.3 Verifying implementation . 108

4.4.4 Verifying transmission correctness . 114

4.5 Assembly language implementation . 116

4.5.1 MCS51 Program . 118

4.5.2 Program model . 119

4.5.3 Verifying the program model . 121

4.5.4 Discussion . 123

4.6 Discussion and future work . 124

4.6.1 Summary and contributions . 124

4.6.2 Possible extensions and improvements 125

5 Validating timed trace inclusion in Uppaal 127

5.1 Introduction . 127

5.1.1 A flexible railway controller . 128

5.2 Uppaal . 133

5.2.1 Variables, expressions, and valuations 134

5.2.2 Channels and actions . 134

5.2.3 Processes . 135

5.2.4 Automata . 136

5.2.5 Validation automata . 136

5.3 Transforming Uppaal models . 137

5.3.1 Elementary channels . 138

5.3.2 Channel arrays . 143

5.3.3 Inverting invariants . 149

5.3.4 Urgent Channels and shared variables 149

5.4 Implementation . 150

5.4.1 Experience and implementation language 152

5.4.2 Ensuring determinism . 154

5.5 Validation automaton for the railway controller 154

5.6 Discussion . 156

6 Delays in Esterel 159

6.1 Introduction . 159

6.2 Motivating example: a microprinter controller 160

6.3 Expressing delays in Esterel . 164

6.3.1 Pause statements . 164

6.3.2 Timing inputs . 165

6.3.3 External timers . 167

6.3.4 External intervals . 169

6.3.5 Non-deterministic pause . 170

6.3.6 Quantitative watchdogs . 171

6.3.7 Other techniques . 171

6.4 An alternative . 172

6.4.1 Desired characteristics . 173

6.4.2 Esterel+delay . 173

CONTENTS xiii

6.4.3 Comparison to related work . 181

6.5 Loose ends and further possibilities . 183

6.5.1 Relating specifications and implementations 183

6.5.2 Strictly event-driven programs . 184

6.5.3 Suspension . 186

6.5.4 Indeterminate delays . 187

6.6 Summary . 188

7 Conclusion 189

7.1 Summary, contributions, and significance . 189

7.1.1 Programs in physical time . 189

7.1.2 Real embedded controllers . 191

7.1.3 Verification of timed models . 192

7.1.4 Implementations . 194

7.2 Limitations and future work . 194

7.3 Final remarks . 196

A Process Algebra 199

A.1 Mathematical syntax . 199

A.2 Unobservable actions . 200

A.3 Interleaved concurrency . 202

A.4 Synchronized/handshake communication . 203

A.5 Determinism . 205

A.6 Semantic models . 206

B Input/Output Automata and related approaches 209

B.1 Input-enabling and composition . 209

B.2 Modelling and specification . 211

B.3 Fair executions and analysis . 213

B.4 Related techniques . 215

B.5 Timed I/O Automata . 217

C Preorders 219

C.1 Motivation . 219

C.1.1 Semantic theory . 219

C.1.2 Design and development . 219

C.1.3 Verification . 220

C.2 Technical Background . 220

C.3 Traces . 223

C.4 Simulations . 225

C.5 Remarks on Process Algebra and IOA . 232

C.6 Omissions . 233

D Textual Argos 235

D.1 Explanation . 235

D.2 Lexical details . 235

D.3 Grammar . 235

E Argos Case Studies 237

E.1 Sensor failure detection . 237

E.2 Bang-bang temperature controller . 239

F Formal Timing Diagram Model 241

xiv CONTENTS

List of Figures

2.1 Categorisations in different timed sequence models 13

2.2 Dyadic clock regions for equalities . 19

2.3 Dyadic clock regions for constant comparison 19

2.4 Dyadic clock regions for clock differences 19

2.5 Mixed dyadic clock regions . 19

2.6 Example timed automaton to demonstrate clock regions 20

2.7 An example of the time successor relation 21

2.8 Urgent location macro . 22

2.9 Three types of urgency . 23

2.10 Interpretation of self-loops in Argos: no loops 37

2.11 Interpretation of self-loops in Argos: with loops 37

2.12 Encapsulation in Argos giving a non-deterministic result 40

2.13 Expressing strong abortion with inhibition and refinement 41

2.14 Inter-level outgoing transitions . 41

2.15 Expansion of the temporized state macro 42

2.16 Backhoe loader example: input and output signals 45

2.17 Main backhoe loader controller module . 45

2.18 Variations of the abort statement . 48

2.19 Conceptual sketch of parallel synchronization in Esterel 49

3.1 Example Simulink model . 57

3.2 Simulink Block . 57

3.3 Basic steps of a Simulink simulation . 60

3.4 Algebraic loops in Simulink . 61

3.5 Standalone Stateflow Flow Diagram . 62

3.6 Conceptual sketch of internal and external synchrony 66

3.7 External timing parameters . 67

3.8 Translation of ABRO to a sample-driven system 69

3.9 Urgent inputs . 71

3.10 Simulation components . 73

3.11 Tool chain for Argos block . 75

3.12 Mapping Simulink signals to logical signals 75

3.13 Fault-tolerant Fuel Controller . 77

3.14 Fuel control subsystem in Argos . 79

3.15 Bang-bang temperature controller . 82

3.16 Bang-bang temperature controller in Argos 84

3.17 Argos simulation results . 85

4.1 Physical appearance of sensor . 93

4.2 Using the sensor . 93

4.3 Sensor timing diagram . 94

4.4 Sensor test signal . 95

4.5 Non-instantaneous signal changes . 96

4.7 Models of two events: composite and interleaved 97

4.6 Timing diagram model . 98

4.8 Model of two events: causal . 99

4.9 Model of two events: instantaneous causal 99

xvi LIST OF FIGURES

4.10 Model of two events: bounded causal . 99

4.11 Start sequence from sensor timing diagram 99

4.12 Countdown of bits in sensor timing diagram 99

4.13 Sampling detail . 100

4.14 Modelling data transmission: change event 101

4.15 Modelling data transmission: non-deterministic choice 101

4.16 Split models . 105

4.17 Alternative driver model with τ-transitions 107

4.18 Deviation from the usual verification of timed trace inclusion 110

4.19 Trace inclusion testing in the paired synchronization model 111

4.20 Trace inclusion testing in the broadcast model 112

4.21 Validating transmission . 115

4.22 Assembly language driver implementation 117

4.23 DRIVERtest: timed trace inclusion tester for DRIVERevt 122

5.1 Basic railway crossing . 128

5.2 Simple railway control system . 129

5.3 Original and modified controllers . 130

5.4 Flexible railway controller . 131

5.5 Status array for the flexible railway controller 132

5.6 No selection bindings or quantifiers . 140

5.7 Construction for ∀s11, . . . , s1n1
, . . . , sm1, . . . , smnm .neg(g1∨· · ·∨gm) . 141

5.8 Selection bindings but no quantifiers . 141

5.9 Selection bindings/negated guard clash . 141

5.10 Construction for ∀s11, . . . , smnm .∃a11, . . . , amn′m .neg(g1∨ . . .∨gm) . . . 143

5.11 Channel selections without bindings (partitioned) 145

5.12 Channel selections without bindings (generalised) 148

5.13 Channel selections with selection bindings 150

5.14 Channel selections with differing ranges . 151

5.15 Validating an array of urgent channels . 152

5.16 High-level structure of Urpal . 152

5.17 Validation automaton for Railway controller 155

6.1 Physical structure of the microprinter example 161

6.2 Typical microprinter motor control signals 162

6.3 Stepper motor controller in Esterel . 163

6.4 Granularity of timing inputs . 166

6.5 POLIS seatbelt alarm controller . 168

6.6 Effect of suspend on delays . 169

6.7 Delaying with feedback from a clock variable 172

6.8 Concrete syntax of platform statements . 175

6.9 Phase relationships in an Esterel+delay program 180

6.10 Esterel+delay: artifacts and relations . 183

A.1 Three process expressions and a corresponding process graph 200

A.2 Example for discussing the effect of τ transitions 201

A.3 CCS expressions and corresponding LTSs 202

A.4 CCS expressions with process graphs for synchronization and restriction 204

A.5 Sketch of relations between process algebras, models, and actual pro-

cesses . 206

A.6 Example failure sets . 207

B.1 ‘Pasting’ together Input/Output Automata (IOA) traces 211

B.2 Example: Pathfinder model . 212

C.1 Relative granularity of equivalence classes 222

C.2 Simplification of the linear time–branching time spectrum 223

C.3 Simulations between two processes . 226

C.4 Failure to find a ready simulation . 228

LIST OF FIGURES xvii

C.5 Ready simulations between two processes 228

C.6 Failure to find a bisimulation between two processes 229

C.7 Trace equivalence via forward and backward simulation. 231

F.1 Different ways of formalizing a timing diagram 241

F.2 RTSTD version of timing diagram . 243

xviii LIST OF FIGURES

Acronyms

AASAP Almost As Soon As Possible

ACP Algebra of Communicating Processes

API Application Programming Interface

BDD Binary Decision Diagram

BMM Boolean Mealy Machine

CCS Calculus of Communicating Systems

COTS Commercial Off The Shelf

CRP Communicating Reactive Processes

CSP Communicating Sequential Processes

DBM Difference Bound Matrices

DFA Deterministic Finite Automata

DNF Disjunctive Normal Form

EA Enable All (processor bit flag)

EGO Exhaust Gas Oxygen

FIFO First-in-First-Out

FIN Finite Internal Nondeterminism

FPGA Field Programmable Gate Array

FTS Fair Transition System

IE Interrupt Enable (processor bit flag)

IO Input/Output

IOA Input/Output Automata

LED Light Emitting Diode

LOTOS Language Of Temporal Ordering Specification

LTS Labelled Transition System

LSB least significant bit

MAP Manifold Absolute Pressure

MSB most significant bit

NASA (U.S.) National Aeronautical and Space Administration

NFA Non-deterministic Finite Automata

xx LIST OF FIGURES

ODE Ordinary Differential Equation

OS Operating System

POSIX Portable Operating System Interface

PSPACE Polynomial Space

RTOS Real Time Operating System

RTCCS Real Time Calculus of Communicating Systems

RTSTD Real Time Symbolic Timing Diagrams

SCCS Synchronous Calculus of Communicating Systems

SML Standard Meta Language

SOS Structural Operational Semantics

SSM Safe State Machines

STD Symbolic Timing Diagram

TD Timing Diagram

TIOA Timed Input/Output Automata

TLA+ Temporal Logic of Actions

TLRCS Temporal Logic of Reactive and Concurrent Systems

TPTL Timed Propositional Temporal Logic

TTA Time Triggered Architecture

TTS Timed Transition System

VHDL VHSIC Hardware Description Language

VHDL/S VHSIC Hardware Description Language/Statecharts

WCET Worst Case Execution Time

XML Extensible Markup Language

Chapter 1

Introduction

Embedded systems are ubiquitous and important. There are computers ticking away

inside cars, industrial plants, medical equipment, power stations, aeroplanes, rockets,

and satellites. All of this equipment is programmed in one way or another, whether

the programs are executed on a microprocessor or encoded in electronic circuits. Most

such programs are reactive: they continually respond to events received from sensors

by sending signals that are translated into physical actions. Design faults in a program,

that may only be revealed after seemingly unlikely sequences of events, may have

catastrophic consequences including damage to property and loss of life. Techniques

that detect design faults or reduce their likelihood are thus of real importance.

Designing and programming embedded systems is difficult. One of the greatest

challenges is the inescapable influence of physical time. In many other computer sys-

tems, time can be ignored or reduced to abstract properties like termination, progress,

fairness, or liveness. Its quantitative aspects may be of little importance; total or par-

tial event orderings may be adequate models. But time cannot be ignored in embedded

systems that interact closely with the physical world, where two facts are undeniable:

1. Timing behaviour is integral to specification and interaction. The meaning or effect

of an event often depends on its time of occurrence.

2. Behaviours in time are physically constrained. They are realised by devices that

are subject to physical laws.

Systems with strict timing requirements and restrictions involve masses of interrelated

and intricate details that encumber specification, design, analysis, implementation,

and trouble-shooting. Engineers come to understand and tackle these complications

through abstraction and modelling.

Rigorously defined models can facilitate and improve designs. Models may exist

in the mind alone, or as sketches on paper, but there are many benefits to expressing

them in a rigorous notation; that is, a notation with a formal meaning and mathematical

properties, one that can be analyzed, simulated, compiled, or otherwise manipulated

precisely and algorithmically. A good notation provides precision—it has is a single,

unambiguous meaning; clarity—it focuses on the essentials and strives for simplicity;

and rigour—it is amenable to verifiable arguments and analysis by cases.

Choosing a suitable level of abstraction, however, is not easy. Models that are

too abstract simply shift problems and risks from designs to implementations. Conclu-

sions drawn from analyzing or simulating such models may not hold of the systems

they purport to represent. Implementations derived from such models may be im-

practicable. Conversely, models that are too concrete may not clarify anything. Such

models may not make the original problem any more understandable or any easier to

solve. It may not be possible to analyse or to simulate them effectively. While it may

be easier to derive efficient implementations from more concrete models, the models

themselves are usually specific to a certain platform; abstract requirements and imple-

mentation specifics are likely to be interwoven and it may be difficult or even infeasible

to adapt a design to changes in the underlying platform or to account for changes in

requirements.

2 CHAPTER 1. INTRODUCTION

Systems with complex timing requirements exacerbate these problems. Not only

must models represent numerical details at suitable levels of abstraction, but they

must also manage the tension between application timing requirements and imple-

mentation timing constraints. Simulation and analysis become more challenging, and

it becomes more difficult to derive faithful and efficient implementations.

1.1 Aim

The aim of the work described in this thesis is to study and improve the application

of synchronous language and timed automata models, in combination and alone, to

the design and implementation of embedded controllers with intricate timing require-

ments on platforms with strict timing constraints.

1.2 Scope and general approach

Of the many approaches to designing and implementing embedded controllers with

complex timing constraints, two are chosen as the focus of this thesis: timed automata

and synchronous languages.

Timed automata are a formalism for modelling sequential systems in continuous

time. They are often, when certain restrictions are respected, analyzable automati-

cally by tools like the Uppaal model checker. Multiple timed automata models may be

necessary to describe a single system at various levels of abstraction, or from various

perspectives. The relations between them can sometimes be verified automatically.

Imperative synchronous languages, like Argos and Esterel, are for programming

sequential systems. They are supported by rigorous mathematical models and effi-

cient compilation techniques. In contrast to timed automata, time in the synchronous

languages is discrete and qualitative. Synchronous languages are distinguished by an

assumption on the behaviour of implementation platforms: that they are much faster

than their environments.

There are perhaps two extreme approaches in embedded systems design. At one ex-

treme is systems engineering which is concerned with specific techniques for efficient

and robust implementation, for example the details of scheduling algorithms or cache

utilisation. At the other extreme is theoretical computer science, where applications

are often considered at the high level of abstraction necessary to tease out general

principles and fundamental rules. Both viewpoints are important but they are hard to

reconcile. The models and techniques developed in this thesis are a compromise. They

attempt to incorporate some of the low level details of importance to engineers but of

less interest to theoreticians without becoming lost in the minutiae of specific systems

and their optimisation.

Four broad themes cut across and unite the specific applications of timed automata

and synchronous languages to embedded systems design in this thesis. They are pre-

sented in turn over the following subsections:

§1.2.1 Programs in physical time

§1.2.2 Real embedded controllers

§1.2.3 Verification of timed models

§1.2.4 Implementations

1.2.1 Programs in physical time

Embedded controller programs act in physical time, subject to the two types of con-

straints mentioned in the opening: application requirements and implementation char-

acteristics. This theme is pursued through three developments: models and tools for

simulating synchronous language programs in Simulink, an assembly language driver

for a small sensor component, and an extension to Esterel for expressing reactive be-

haviours in physical time. Implementation timing details are resolved, in each of the

developments, by transformations between models.

1.2. SCOPE AND GENERAL APPROACH 3

Backhoe loader (Original example) §2.4.3

Sensor failure detection (Mathworks demonstration) §3.4.1

Bang-bang temperature controller (Mathworks demonstration) §3.4.2

Infrared sensor (Real application) Chapter 4

Extended railway controller (Extension of standard example) §§5.1.1 and 5.5

Microprinter controller (Real application) §6.2

Table 1.1: Motivating and demonstrative examples

Simulink is a widely-used tool for modelling and simulating embedded systems,

an add-on, called Stateflow, allows the inclusion of discrete control logic. Stateflow is

rich in features but also more complicated and less rigorously defined than the syn-

chronous language Argos, which is a similar but more austere alternative. A technique

for simulating Argos programs in Simulink is proposed. The embedding of the dis-

crete timing model of synchronous programs into the continuous one of Simulink is

defined by a transformation of Mealy machines into timed automata. The transfor-

mation provides a precise specification of a Simulink block for Argos and addresses

implementation timing issues that are usually ignored in the synchronous approach. It

effectively combines application requirements, expressed as a synchronous program,

with implementation restrictions, characterised by two idealised parameters.

Timed automata are employed more directly in a case study of a small sensor com-

ponent. A timing diagram describes the behaviour of the sensor in physical time. This

timing diagram is modelled as a timed automaton, which, after various other devel-

opments, becomes the specification for an assembly language driver. In contrast to

the abstract approach of the synchronous languages, where program execution time is

assumed away, the assembler driver meets its timing requirements by exploiting plat-

form execution characteristics. A timed automaton model of the driver is generated by

transforming the assembler program into timed automata. The transformation incor-

porates the timing details of individual instructions. This model is verified against the

specification in the Uppaal model checker.

A more challenging case study is proposed to evaluate the suitability of Esterel for

expressing and implementing controller behaviours in terms of physical time. Solu-

tions using various standard techniques are attempted, but each requires information

about an eventual implementation platform. An alternative that allows such decisions

to be delayed and made more portably is proposed. It is is based on syntactic transfor-

mations of delays expressed in physical time. The transformations again account for

implementation parameters.

1.2.2 Real embedded controllers

Various examples of embedded controllers are presented throughout this thesis. They

are summarised in Table 1.1. Admittedly, the backhoe controller, sensor failure detec-

tion, temperature controller, and railway controller examples are more abstract than

the systems usually faced by engineers. The sensor and microprinter are, however,

completely realistic. They are studied as they are, not as they could or should be.

The sensor makes and communicates range readings. Its interface is described

by a deceptively simple-looking timing diagram. Working solely from this diagram,

as would most embedded systems engineers, the specification is modelled as a sin-

gle timed automaton. Utmost care is taken to render it faithfully and in detail. Two

variations of a second model that clarifies the distinct roles of driver and sensor are

developed. The relation of each variation to the original model is validated in Uppaal

using a construction for testing timed trace inclusion. One of the variations is taken as

a specification for the assembly language driver described in the previous subsection.

The study of delays in Esterel is motivated from the challenges of controlling a

microprinter. These components are commonly found in cash registers and printing

calculators. The timing constraints of the microprinter are more challenging than those

of the sensor, though they are not presented in as much detail. Esterel is almost ideal

4 CHAPTER 1. INTRODUCTION

for programming the required controller, except that it turns out to be surprisingly

difficult to express the real-time requirements in a portable way.

1.2.3 Verification of timed models

Verification is important for embedded controllers because faults are difficult to avoid

and, if they do occur, may cause damage or injury. Automatic verification techniques

like model checking are especially relevant because embedded control software is typi-

cally finite—dynamic data structures and recursive functions are usually avoided—and

some faults may only occur after long and intricate sequences of events. Verification

is even more necessary when continuous timing features are present, because numer-

ical details aggravate the challenge of expressing and understanding the behaviour of

systems. Uppaal is a model checker for timed automata. It is applied repeatedly in

the sensor case study, and becomes the focus of extensions to a technique for testing

timed trace inclusion in a subsequent chapter.

The models in the sensor case study are created in Uppaal. Properties are verified

of the models themselves, namely transmission correctness of the sensor and driver,

and absence of deadlock and liveness in the assembly driver model. But the focus is

otherwise on the relationships between the various models. A construction for testing

timed trace inclusion is used to validate that some models faithfully implement others.

It turns out that the standard construction for testing timed trace inclusion cannot

address certain recent features of the Uppaal language directly. The construction is

thus extended to handle selection bindings, quantifiers, and channel arrays. Several

new techniques are necessary, and it is shown that the construction is not always

possible.

1.2.4 Implementations

The work described in this thesis is supported by two software implementations. A

tool chain for compiling Argos programs and simulating them in Simulink, and an

implementation of the construction for testing timed trace inclusion. Besides provid-

ing useful tools, the development of these programs clarified concepts and revealed

subtleties which may have otherwise been overlooked.

The Argos tool chain comprises three main programs: a compiler of (textual) Argos

programs to dataflow equations, a compiler of dataflow equations to C, and a Simulink

s-function. An s-function is essentially a custom Simulink block. It must export a

series of functions that are called by the simulation algorithm. Special conventions

are used to exchange information and implement memory. Debugging s-functions is

challenging; when they crash so does Simulink. The implementation is demonstrated

and evaluated by reimplementing two standard Stateflow examples.

The tool for constructing testing automata for validating timed trace inclusion au-

tomates a task that is tedious and error-prone to perform manually. An automatic tool

is especially advantageous because timed trace inclusion testing often involves several

iterations: testing finds flaws, models are adjusted, new testing automata are created,

and the process is repeated. The tool is written in Standard Meta Language (SML), and

includes a parser and algebraic data types for Uppaal models. The legibility of output

models is improved by formatting them with Graphviz. Besides the construction for

testing timed trace inclusion, the tool provides other basic manipulations on timed au-

tomata, and rudimentary support for modelling MCS51 assembly language programs.

1.3 Contributions and significance

Several specific contributions are made by this thesis:

1. An improved approach for expressing delays in Esterel based on syntactic trans-

formations that account for abstract platform characteristics is motivated and

described. The limitations of this approach are discussed and directions for fu-

ture research are proposed.

1.4. OUTLINE 5

Chapter 3 Chapter 4 Chapter 5 Chapter 6

(Simulink) (Sensor) (Timed traces) (Esterel+delay)

Timed models §2.2 ∗ ∗ ∗ ∗
Uppaal §2.3 ∗ ∗

Synchronous languages §2.4 ∗ ∗

Table 1.2: Explicit relationships between background sections and technical chapters

2. A standard approach for testing timed trace inclusion is extended to account for

recent features of Uppaal, namely selection bindings, quantifiers, and channel ar-

rays. The various constructions and techniques developed to treat these features

may be applicable in other similar transformations.

3. The existing and extended timed trace inclusion testing techniques have been

implemented in a functional programming language. No other similar software

is known to exist. The software and source code are available for download.

Routines and algebraic data types were developed to parse and represent Uppaal

models. They are suitable for reuse in other applications that manipulate Uppaal

models.

4. A detailed case study of a small-scale but realistic embedded component, whose

timing diagram is modelled in full detail with timed automata. The case study

differs from others in its focus on an embedded hardware component, rather than

on algorithms or protocols, and in its level of detail. Two different techniques for

modelling protocols in Uppaal are compared; one of which highlights a limitation

in current restrictions on broadcast channels.

5. A transformation of synchronous language models into timed automata that ac-

counts for the execution mode and two idealised implementation parameters.

The transformation formalises and clarifies details that are usually ignored or

taken for granted.

6. The design and implementation of a Simulink block for simulating Argos pro-

grams according to the details of the aforementioned transformation. Simulink

is a de facto standard in industry for modelling and simulation.

7. A new microprinter controller case study is proposed to illustrate the challenges

of expressing the timing behaviours of a certain class of embedded application.

8. The various approaches for expressing delays in Esterel, including a new pro-

posal, are surveyed.

9. A novel backhoe loader example for introducing the basics of Esterel. A graphical

simulator for the example is available for download.

10. A detailed summary of the Argos synchronous language including careful treat-

ments of implicit self-loop transitions and the macro for temporized states.

More generally, this thesis contributes to the larger problem of applying formal

modelling and programming techniques to the detailed timing requirements and con-

straints that engineers encounter in practice; especially applications of the Uppaal

modelling language and the synchronous languages Argos and Esterel.

1.4 Outline

The body of this thesis comprises a background chapter and four distinct technical

chapters.

Chapter 2: Background The background chapter begins with a unifying overview of

various transition system models. It otherwise contains three main sections. The first

6 CHAPTER 1. INTRODUCTION

two address modelling timed systems. The fundamentals are presented in §2.2; partic-

ular attention is given to the definition and fundamentals of timed (safety) automata.

The specifics of modelling with timed automata in Uppaal are described in §2.3. The

last section addresses synchronous languages. It contains an overview of the core

concepts in §2.4.1, a comprehensive description of Argos in §2.4.2, and a tutorial in-

troduction to Esterel in §2.4.3. The dependencies between the four main sections and

the four technical chapters are summarised in Table 1.2.

Chapter 3: Simulating synchronous execution In this first technical chapter timed

automata and synchronous languages are applied together to the simulation of em-

bedded controllers in Simulink. The chapter begins with an overview of Simulink and

the Stateflow extension in §3.1. An idealised model that accounts for imperfections in

implementations of synchronous programs is presented in §3.2. It forms a specifica-

tion for a Simulink block for simulating Argos programs, which is described in §3.3

and evaluated in §3.4 against two examples from the Stateflow software package. The

chapter ends with comparisons to related work in §3.5 and an evaluation in §3.6.

Chapter 4: An infrared sensor The second technical chapter focuses on modelling

an infrared sensor component with timed automata. It begins with an informal descrip-

tion of the sensor and its timing diagram in §4.2. Three types of models are described:

a single timed automaton in §4.3, networks of timed automata in §4.4, and a model of

an assembly language controller in §4.5. Refinement relations between the models are

verified in Uppaal using a construction for testing timed trace inclusion. A summary

of the work and possible improvements are presented in §4.6.

Chapter 5: Validating timed trace inclusion in Uppaal The construction for testing

timed trace inclusion is extended, in the third technical chapter, to include more re-

cent features of the Uppaal modelling language. The chapter begins with an extension

of the well-known railway controller example that demonstrates the newer features.

Then follows in §5.2, a formalisation of Uppaal that is sufficient to develop the trans-

formation described in §5.3. The transformation is introduced in stages, beginning

with basic elementary channels, then introducing selection bindings, then quantifiers,

and finally addressing arrays of channels. The implementation of the transformation

in software is discussed in §5.4. The result of applying the software to the railway

controller example is presented in §5.5.

Chapter 6: Delays in Esterel The last technical chapter returns to the central theme

of specifying embedded controllers with complex timing requirements. A motivating

example is presented in §6.2, and used throughout §6.3 to demonstrate the different

ways of expressing timing delays in Esterel. In §6.4, an alternative that addresses

some of the inadequacies of existing techniques is proposed. The limitations of this

approach and directions for future work are summarised in §6.5.

Chapter 7: Conclusion Finally, the thesis contents are recounted and evaluated

in terms of the four main themes, and several specific ideas for future research are

proposed.

Chapter 2

Background

The forthcoming technical chapters build on several well-developed topics. The details

and context necessary to understand and appreciate them are provided in this chapter,

whose sections can be divided into two categories: §§2.1–2.3 focus on modelling using

transition systems with an emphasis on continuous time, and §2.4 is about program-

ming using synchronous languages. Both categories are relevant to the design and

analysis of embedded controllers.

Transition systems and their traces are fundamental models of discrete behaviour.

Some basic definitions, terminology, and important variations are outlined in §2.1.

A special type of transition system, called a Timed Transition System (TTS), is used

to model discrete behaviour in continuous time. The passage of time is represented

by delay transitions. Timed automata are another formalism with the same purpose,

but abstract clock variables, rather than explicit delay transitions, are used to express

timing constraints. TTSs and timed automata are presented in §2.2.

Uppaal is a system for modelling and verifying real-time systems using timed au-

tomata extended with features for concurrency, communication, data variables, and

priority. Uppaal is described in §2.3.

The focus changes in §2.4 from modelling to programming when the synchronous

languages Argos and Esterel are introduced. The distinction is only minor, though,

since both languages are characterised by their direct connection to transition system

models. The synchronous languages were expressly developed for programming em-

bedded controllers.

2.1 Transition Systems

Transition systems model the essential characteristics of discrete systems.

Definition 2.1.1

Given sets A, of actions, and P of predicates, a Labelled Transition System (LTS) over A
and P is a tuple (S, S0,−→,⊨), where

• S is a set (of states),

• S0 ⊆ S is a non-empty set (of initial states),

• −→ is a set of relations
a−→ ⊆ S × S, for each a ∈ A, (the transitions) and,

• ⊨ ⊆ S × P , assigns to each state a set of predicates.

When presenting an LTS, the sets A and P , and the predicate component ⊨ will only be

written explicitly when required. The notation s
a−→ abbreviates ∃s′. s a−→ s′, and s

a
/−→

abbreviates 6 ∃s′. s a−→ s′. When an a-transition relates state s to state s′, s a−→ s′, the

latter is termed an a-derivative, or just derivative, of the former.

Definition 2.1.2

A Kripke structure over P is an LTS over singleton A, and P where the transition rela-

tion, written −→, is total: ∀s ∈ S.∃s′ ∈ S. s −→ s′.

8 CHAPTER 2. BACKGROUND

Kripke structures are an appropriate model when the properties of states and potential

future states are of primary interest. In graphical depictions, the states are normally

drawn as open circles with applicable predicates written inside or alongside each. The

transition relation expresses the structure of future possibilities from any state. Prop-

erties of Kripke structures are usually expressed in temporal logic, and, when S is

finite, can, in principle, be verified by model checking [CJGP00, §2.1].

Definition 2.1.3

A process graph over A is an LTS over A and P = {√} where S0 = {s0}.

Process graphs are an appropriate model when the branching structure of action pos-

sibilities is of primary importance. The sole predicate of Definition 2.1.3 indicates the

possibility of successful termination. Other predicates are sometimes also needed. In

depictions of process graphs, the states are often drawn as dots, sometimes with an ex-

tra ring when the termination predicate holds. Transitions represent the instants when

an action occurs. Process graphs are the usual semantic model for process algebras.

A distinction is sometimes made between LTSs and process graphs, whereby an

LTS expresses the domain of potential processes, of which process graphs are ele-

ments [Mil89]. The distinction is not important in this thesis.

The set of LTSs may be partitioned in two based on whether the transition relation

can be considered a function or not.

Definition 2.1.4

Given an LTS (S, S0,−→,⊨) over A, a state s ∈ S is deterministic iff, for all a ∈ A, s
a−→ s′

and s
a−→ s′′ implies that s′ = s′′. An LTS is deterministic iff every s ∈ S is deterministic

and S0 contains one state.

For a non-deterministic state and an action there may be a choice of successor

states. Non-determinism is an abstraction; it is either unknown, uncertain, unimpor-

tant, or intentionally unspecified how the choice is actually resolved in the system

being modelled. Determinism is often desired of implementations.

Definition 2.1.5

An automaton over a set A is an LTS over A and P = {⊙} where S0 = {s0}. Both S and A
must be finite.

Note that an automaton is technically the same as a finite process graph, however it is

interpreted as a compact representation of a language, which is a set of words. A word

is a sequence of symbols (actions). The predicate ⊙ marks acceptance states. Different

interpretations of acceptance states give different types of automata.

Non-deterministic Finite Automata (NFA) define languages containing words of fi-

nite length. To determine if a word belongs to the language defined by an NFA, the

current state of the automaton is tracked, beginning at s0. Symbols of the word are

considered one-by-one in sequence against the current state. A word is accepted if,

for each current state and symbol, there exists a transition labelled with the symbol,

the destination becomes the new current state, and, after considering all symbols, the

current state is accepting. The theory of NFAs is well developed [HMU01].

Anω-automaton defines a language containing words of infinite length. The various

acceptance conditions are described in §2.2.3.4 in the context of timed automata.

The language theoretic perspective, particular complexity theory, is important in

the compilation and analysis of reactive systems. NFAs delimit the possibilities of fi-

nite state systems and underlie regular expressions. Augmenting NFAs with pushdown

stacks defines the class of context-free languages which find application in the parsing

of computer programs. Augmenting NFAs with infinite storage, to give Turing ma-

chines, defines the limit of what is computable, that is what can and cannot be done

by a computer program.

The Moore machines [Moo56] and Mealy machines [Mea55] that underlie the theory

of sequential circuit design are essentially automata where P = ∅ and the set of actions

is partitioned into inputs I and outputs O. In a Moore machine, outputs are a function

of state alone, that is for each o ∈ O there is a function fo(s). Moore outputs are, in

effect, sustained. In a Mealy machine, outputs are a function of both state and inputs,

2.1. TRANSITION SYSTEMS 9

that is for each o ∈ O there is a function fo(s, i). Mealy outputs are, in effect, instan-

taneous. Mealy and Moore machines are the foundation for implementations of many

types of reactive systems, including systems described with synchronous languages.

Moore and Mealy machines, and LTSs in general, are static structures that model

dynamic processes. Executions and traces are one way of recovering the intended

dynamic behaviours. Other, less linear, possibilities are described in Appendix C.

The potential of a system is transmuted in concert with its environment into a linear

record of state changes and events, which is formalised as an execution.1

Definition 2.1.6

An execution α of an LTS over A (S, S0,−→) is an alternating sequence, either finite

s0, a0, s1, a1, . . . , an−1, sn, or infinite s0, a0, s1, a1, . . ., of elements of S and A, satisfying:

• s0 ∈ S0 (initiality), and,

• si ai−→ si+1 (consecution) for all i ≥ 0, and where for finite α, i < n.

Definition 2.1.7

An infinite execution is an execution of the form s0, a0, s1, a1,

The set of all possible executions of an LTS T will be written execs(T). Note that an

execution must begin, and if finite, end, with a state. Sets of executions are prefix-

closed.

While it can be argued that real systems do not have infinite executions, they are a

useful abstraction nonetheless, permitting descriptions of ideally unending executions,

or at least those of indeterminate length.

The subsequence of states in an execution exposes the internal details of a transi-

tion system, which is not always feasible or desirable. In models with structured states

it is possible to partially obscure the internal structure. In labelled transition systems,

and typically for process graphs, all internal information is concealed by considering

traces rather than executions.

Definition 2.1.8

The strong (finite) trace of a finite execution α = s0, a0, s1, a1, . . . , an, sn of an LTS

over A is the restriction of that sequence to elements in A: a0, a1, . . . , an

Definition 2.1.9

Given an LTS over A and a distinguished subset of (internal or local) actions L ⊆ A, a

(weak finite) trace is a strong trace of the LTS restricted to actions in A \ L.

The trace corresponding to a finite execution α will be denoted trace(α). The set of

traces of an LTS T is written traces(T) = {trace(α) | finite(α)∧α ∈ execs(T)}. Trace

sets are prefix-closed. The empty trace is denoted ǫ.

Definition 2.1.10

If σ is a weak trace of an execution between two states s, s′ of an LTS, then s′ is termed

a descendant of s; the relation is written s
σ=⇒ s′.

Traces represent externally observable behaviour, representing in some way the

what rather than how of a system. The system is treated as a ‘black box’. Two transition

systems may give rise to identical trace sets despite differences in internal structure.

Related equivalence and refinement relations are discussed in Appendix C.

Proposition 1

For each trace of a deterministic LTS there is exactly one corresponding execution.

The practical importance of this property should not be overlooked. Deterministic

systems are easier to test and debug than non-deterministic ones; repeating the same

sequence of actions gives the same results [Ber00a, §2.3].

1The concept is fundamental but not the terminology. This presentation is a mix [LT87, §2.1][MP92].

10 CHAPTER 2. BACKGROUND

2.2 Timed Models

The quantitative aspects of time are usually ignored in transition system models. In

languages whose semantics are defined as transition systems, either no assumptions

are made of the relative execution speeds of concurrent processes, or at best, only

the minimum expressible through either progress, that is some non-zero execution

speed, or fairness, that is some non-infinite relative execution speed. Observations of

transition system behaviours, like executions and traces, cannot distinguish fast pro-

cesses from slow ones. Quantitative timing features can, in fact, be modelled directly

in LTSs, but there are several subtleties. Furthermore, specialised data structures and

algorithms are required to encode and analyze them. The motivations for modelling

quantitative timing details are discussed in §2.2.1.

Much has been written in the last two decades on modelling the timing details of

systems. The focus of this section is on fundamental semantic models rather than on

the various proposals for expressing timing behaviours, or on issues of computational

complexity and the related subclasses and extensions of basic models. The review

focuses on transition system models, namely TTSs, in §2.2.2, and timed automata,

in §2.2.3, and their timed executions and traces.

2.2.1 Why model timing detail?

Ignoring quantitative timing details yields many advantages. Untimed models are

simpler to represent, manipulate, and reason about. Systems designed, and possi-

bly verified, without assumptions on timing are resilient to variations in implemen-

tation details like scheduling, component temperatures, and component interconnec-

tions [Dij68, §§1 and 2]. Implementors have greater flexibility in realising untimed

designs. Where timing requirements are necessary, it may still be possible to treat

them independently from other design aspects, including logical correctness [Hoa85,

§1.1]. For instance, one way to do this is to introduce compilation directives, so called

‘pragmas’, which are ignored for all purposes but implementation [Hoa85, §7.2.6]. Ul-

timately, untimed system models are to be preferred when adequate.

While it is appropriate to ignore timing details in many types of systems and algo-

rithms, or to treat them separately as performance requirements, there are situations

where precise timing is either significant or integral to design and description. For

instance:

• The meaning of signals and the effect of actions may depend on precisely when

they occur, as in embedded controllers, and other systems that also interact with

physical processes.

• The passage of time can yield additional information, for instance on signal ab-

sence and process failures, as in the design and realisation of distributed algo-

rithms and systems [Lyn96, Chapters 23–25][Tel00, Chapters 12 and 15].

• Timing assumptions can be essential to correctness. For example, in Fischer’s

mutual-exclusion algorithm [AL94] certain erroneous execution paths are ruled

out by a careful choice of two timing parameters. Equivalent untimed algorithms

may not exist, or they may lack desired properties.

• Time multiplexing can increase resource efficiency, as in time-sharing operating

systems, or minimise hardware, as in shared buses and other interconnection

paths.

• Time-triggered systems [KB03, Kop97, Pon01] trade dynamic efficiency for sim-

plicity and predictability. Time can also be used to reduce or eliminate control

dependencies between processes [KB03, BCLG+02].

Modelling languages that can express timing details are necessary to accurately de-

scribe and analyze such time-dependent features.

2.2. TIMED MODELS 11

Models with time can be used to calculate quantitative properties of systems, for in-

stance in some approaches to Worst Case Execution Time (WCET) estimation [WEE+08,

§2.3.4], and to estimate or optimise system parameters.

Both timed and untimed models may be used to describe aspects of a single design.

Any refinement relation between timed and untimed models is necessarily asymmetric.

Timing information is either added or removed.

Timing information is added when an untimed specification is refined into a timed

one. Development may, for instance, begin with an assumption that a system re-

sponds quickly enough, while later refinements toward an implementation provide

detailed justifications [SGSAL94]. Alternatively, a timed model may implement an un-

timed specification. For instance, the correctness of Fischer’s algorithm rests on its

timed behaviour, but its purpose is to maintain an untimed mutual exclusion prop-

erty [SGSAL94].

Timing information is also sometimes removed from a model to form an untimed

abstraction. For instance, even though an untimed model may be sufficient or de-

sired for particular analyses or design steps, a timed model may be needed for others.

Or, the simplest way of formalising a system or specification may be to transcribe it

directly into a timed model. The abstraction of timing details can then be justified sep-

arately from the issue of model fidelity. Such abstractions may anyway depend upon

the specific properties to be analyzed.

Other properties lie between the extremes of untimed and continuous-time models.

There are models with distinguished timeout transitions, which typically differ in pri-

ority from other transitions. There are also discrete-time models, which are suitable

for many purposes, including the provision of sound abstractions for certain proper-

ties and models in continuous time [HMP92]. Discrete-time models are, if only by virtue

of their relative closeness to LTSs, easier to reason about and to analyze. They often

give suitable expressions of computer systems and programs which are, in their very

nature, discrete.

Continuous time is a useful abstraction even if physical time is not truly continuous,

or if modelling a discrete system. There is no need to specify a smallest granularity;

even if individual systems are bound to clocks of minimum period, their relative offset

may not be. Assumptions of minimum granularity could introduce hidden synchro-

nizations between components.

2.2.2 Timed Transition Systems

Timed behaviour can be modelled by an LTS. In the usual approach, transitions are

partitioned into two categories: discrete transitions, that occur instantaneously, and

delay transitions, that represent the passage of time. The structure of delay transi-

tions between states is restricted so as to model expectations of physical time. The

subclass of LTSs with structured, real-number delay transitions is called Timed Tran-

sition Systems (TTSs).

Definition 2.2.1

A TTS is an LTS (S, S0,−→) over A where R>0 ⊆ A and the subset of the transition

relation { d−→ | d ∈ R>0} satisfies:

• s d+d
′

−→ s′ =⇒ ∃s′′. (s d−→ s′′ and s′′ d
′

−→ s′) (time interpolation), and,

• ∃s′′. (s d−→ s′′ and s′′ d
′

−→ s′) =⇒ s
d+d′−→ s′ (time additivity).

Time interpolation and additivity are minimum expectations on the progression of

time: the duration of a delay is significant, not the number of transitions that ex-

press it. They exclude many types of unrealistic behaviour; but not so called Zeno

traces, which will be addressed separately. The two properties combined are termed

‘time continuity’ [Wan90, Lemma 2.3]. When TTSs serve as the model for a higher-

level language, time interpolation and additivity are usually shown as properties of the

language and its semantic mapping [Wan90, §3.2][BM02, §§2.1.2 and 4.1.2].

12 CHAPTER 2. BACKGROUND

In some approaches [Wan90, NSY93, HR95, BM02] delay transitions are determinis-

tic, that is,

∀d ∈ R>0. p
d−→p′ and p

d−→p′′ =⇒ p′ = p′′.
It has been argued, however, that time non-determinism generalises naturally to hybrid

systems and the expression of features like clock drift [LV96, §A.1]. Time determin-

ism may be a property of a given timed language, but it need not be imposed on the

definition of TTSs.

The time domain of Definition 2.2.1 is fixed as the set of strictly positive real num-

bers R>0. In other approaches [LV96, §A.2][NSY93, §2.1][Wan90] it is parameterised

over a (dense) time domain with a zero constant and an addition operator.

Traces were proposed, in §2.1, as a linear expression of the dynamics of an LTS.

While the same definitions apply to TTSs, they are less adequate. The issues are de-

scribed in §2.2.2.1. Two alternatives, timed sequence pairs and continuous traces, are

discussed in §§2.2.2.2 and 2.2.2.3, respectively. The three approaches offer different

perspectives on the behaviours expressible in timed models. Their comparison yields

insights into some of the subtle aspects of modelling with continuous time.

2.2.2.1 Timed traces

Since TTSs are a subclass of LTSs, the standard definitions of traces, Definitions 2.1.8

and 2.1.9, apply directly. These traces are an interleaving of finite or infinite sequences

of discrete actions and delay actions. The appeal of (ordinary) traces is their generality

and familiarity. A familiarity that is, perhaps, not completely justified: comparing

traces and hiding internal actions requires care, and certain intuitions are strained.

Distinct traces of discrete LTSs represent distinct behaviours. More care is required,

however, when comparing traces of a TTS. For instance, for a single execution where

an a-action is performed after waiting for one unit of time there are, due to time

interpolation and additivity, an infinite number of traces, for example:

1, a,1,1, . . . ,1, . . .
0.5,0.3,0.2, a,1,1, . . .
1, a,2,2, . . . ,2, . . .

...

Such irrelevant differences between traces can be overcome by defining equivalence

classes represented by a canonical form that has at most one delay action initially and

between any two discrete actions, and that ends in a single delay action if closed, or

an infinite sequence of 1-actions if admissible [LV96, §2.3.1]. Zeno traces with a finite

discrete subsequence must either be excluded or represented by extra notation. These

compensations are, in any case, additional complications.

Care is also required when defining weak traces [LV96]. Consider a system that

waits for one unit of time, performs a τ-action, and then waits indefinitely [LV96].

Initially it can only take actions d, for 0 < d ≤ 1; any larger delay action would exceed

the time when the internal step must occur. Such discontinuities violate the supposed

non-detectability of internal steps. Hiding them is again an additional complication.

Traces and other timed sequences can be partitioned into three categories [LV96,

KLSV06] based on the sum of their delay transitions and whether they are finitely or

infinitely long. The sum of delay transitions is called the limit time.

Definition 2.2.2

The limit time of a trace α, ltime(α), is defined:

ltime(α) =
{
∞ if α ⌈R>0 diverges∑
α ⌈R>0 otherwise,

where α ⌈R>0 is the subsequence of delay actions in the trace.

A trace α is admissible if ltime(α) = ∞, closed2 if the subsequence of delay actions

is finite, and otherwise Zeno. The three categories are shown in Figure 2.1a, which is

2Sometimes termed ‘finite’ [LV96].

2.2. TIMED MODELS 13

finite discrete

subsequence

infinite discrete

subsequence

lt
im

e
=
∞ ltime = ∞ implies

an infinite number

of delay actions

ltime <∞ implies

either a finite number

of delay actions or an

infinite number whose

sum is finite

lt
im

e
<
∞

infinite delay-suffix

admissible

Zeno

closed

fini
te

de
la
y-

su
ffi

x

in
fini

te
de

la
y-

su
ffi

x

(a) Ordinary traces

finite sequence infinite sequence

lt
=
∞

lt
<
∞

admissible

(timed words)

Zenoclosed

(b) Timed sequence pairs (αt , lt)

finite sequence infinite sequence

lt
im

e
=
∞

lt
im

e
<
∞

admissible

dom(τn) = [0,∞)

Zeno

closed

do
m
(τ
n
)
= [

0,
l]

do
m
(τ
n
)
= [

0,
l)

(c) (A,V)-sequences

Figure 2.1: Categorisations in different timed sequence models

14 CHAPTER 2. BACKGROUND

split into four quadrants, one for each combination of infinite or finite ltime with finite

or infinite subsequences of discrete actions. The quadrant for finite ltime with finite

discrete actions, at bottom left, is further divided based on whether there are finitely

or infinitely many delay actions. The bottom right quadrant, finite ltime with infinitely

many discrete actions, could be similarly subdivided but the categorisation would be

unchanged. It is clear from the figure that the Zeno traces are those where either an

infinite number of discrete actions occur in a finite amount of time, like:

1, a, a, . . . , a, . . .

or : 1, a, 1
2 , a,

1
4 , a,

1
8 , . . .

Or those with an infinitely long suffix of delay actions whose sum converges, like:

a,a,a, 1
2 ,

1
4 ,

1
8 , . . .

Note that the magnitudes of delay actions in an admissible trace can decrease with-

out bound, as for example in a,1, a, 1
2 , a,

1
3 , a,

1
4 , a,

1
5 , a, . . ., provided their sum does

not converge to a finite limit.

2.2.2.2 Timed sequence pairs

There are at least two objections to the model of delay transitions. First, it is question-

able whether periods of delay are observable in the same way that discrete actions are.

Second, delay transitions violate the idea that time passes in states and that transitions

between states are instantaneous. It might be more natural to envisage an observer

equipped with a stopwatch, of infinitely fine precision, which is started simultaneously

with the system and stopped, if at all, at some point. Each discrete action could then

be recorded along with the absolute time of its occurrence. This leads to the idea of a

timed sequence [LV96, §2.3.1].

Definition 2.2.3

A timed sequence over AD, where AD ∩R≥0 =∅, is a finite or infinite sequence of pairs

(a0, t0), (a1, t1), . . . , (ai, ti), . . . where, for all i, ai ∈ AD, ti ∈ R≥0, and for consecutive

pairs (ai, ti) and (ai+1, ti+1), ti ≤ ti+1.

A finite timed sequence may represent either a finite observation or an infinitely long

observation where no more actions occur after some point. This limitation is overcome

by pairing the sequence with the length of observation [LV96, §2.3.1], giving a timed

sequence pair.

Definition 2.2.4

A timed sequence pair is a pair (αt, lt) where αt = (a0, t0), . . . , (ai, ti), . . . is a timed

sequence and lt ∈ (R≥0 ∪̇∞), such that if αt is infinite lt = limit(t0, . . . , ti, . . .), and

otherwise lt ≥ ti for all i.

Timed sequence pairs can also be categorised by length and limit time. A timed se-

quence pair is admissible if lt = ∞, closed if lt < ∞ and αt is finite, and Zeno oth-

erwise. The three categories are shown in Figure 2.1b. As there are no subsequences

of delay transitions to consider, it is not possible to distinguish an observation where

the final time would be reached in finitely many delay transitions and one where it

would only be approached by an infinite sequence of delay transitions. The difference

is unimportant if such Zeno executions are excluded from the outset [LV96, §2.3.2].

Timed sequence pairs overcome the problems of timed traces. Initial delays, delays

between discrete actions, and final delays are represented uniquely, even if, for the

last, some representational power is lost. Actions can be hidden by simply omitting

pairs. Furthermore, the passage of time is not represented by instantaneous transitions

but by more intuitive clock readings. Translations between timed sequence pairs and

timed traces are readily defined [LV96, §2.3.1].

The timed words of the language-theoretic approach [AD94] are, in the present ter-

minology, admissible, infinite timed sequence pairs where the time components in-

crease strictly; though strictness is not essential [AD94].

2.2. TIMED MODELS 15

2.2.2.3 Trajectories and continuous traces

In a timed trace, delays between actions are represented as sequences of discrete delay

transitions. In a timed sequence pair, the length of delays are recorded explicitly.

A third alternative is to represent delays as continuous intervals called trajectories.

Trajectories form the basis of a unified representation of continuous executions and

traces which generalises naturally to hybrid systems. The unified representation also

avoids a technical issue that arises in the absence of time determinism. The modern

approach to Timed Input/Output Automata (TIOA) [KLSV06] is based on trajectories.

This subsection repeats its core definitions.

TTSs describe the structure of transitions between states; they abstract from the

representation of the states themselves. Trajectories are best described, however, in

terms of the continuous evolution of variable values. For the following definitions, a

state should be understood as a valuation of an implicit, finite set of variables. In any

case, the variables are ultimately discarded in the definition of continuous traces.

Definition 2.2.5

A closed V -trajectory τ of limit time 0 ≤ t < ∞ is a function from the interval [0, t] to

a valuation of variables in V .3

Definition 2.2.6

An open V -trajectory τ of limit time 0 < t ≤ ∞ is a function from the interval [0, t) to

a valuation of variables in V .

Definition 2.2.7

A V -trajectory τ , also termed a trajectory if the value of V is clear or unimportant, is

either a closed V -trajectory or an open V -trajectory.

The notation ltime(τ) stands for the limit time of τ . The notation τt(x) stands for

the value of variable x ∈ V at time t in trajectory τ . For closed trajectories only, the

shorthand τ ltime is used instead of τ ltime(τ). The domain of a trajectory dom(τ) is the

interval [0, ltime(τ)] if τ is closed or the interval [0, ltime(τ)) if τ is open. Trajectories

with domain [0,0] are called point trajectories.

Trajectories are functions from anchored intervals of positive reals to values of vari-

ables. They model variable changes over continuous intervals of time. Different types

of variables are characterised by restrictions on how their values may change during an

interval. Discrete variables must, for instance, be constant within a trajectory. Clock

variables must change linearly, and often at a single common rate. Various subclasses

of hybrid variables are defined by restrictions on their continuity and derivatives.

Definitions of a prefix ordering and a concatenation operator on trajectories are

necessary for later descriptions.

Definition 2.2.8

Given V -trajectories τ and υ, τ is a prefix of υ, written τ ≤ υ, if ltime(τ) ≤ ltime(υ)

and τt(v) = υt(v), for all v ∈ V and all t ∈ dom(τ).

Definition 2.2.9

The concatenation of V -trajectories τ and τ′, with τ closed, written τ a τ′, is defined

on [0, ltime(τ)+ ltime(τ′)] if τ′ is closed, and on [0, ltime(τ)+ ltime(τ′)) otherwise:

(τ a τ′)(t) =
{
τ(t) if t ≤ ltime(τ)

τ′(t − ltime(τ)) if t > ltime(τ)

When two trajectories τ and τ′ are concatenated, a single valuation must be chosen

at their juncture. In Definition 2.2.9 [KLSV06, §3.3.3] the last valuation of τ is chosen,

but sometimes the first valuation of τ′ is preferred [Pnu94]. The concatenation of an

infinite sequence of trajectories is well-defined [KLSV06, §3.3.3].

Continuous executions and traces are both defined in terms of an alternating se-

quence of trajectories and discrete actions.

3Although trajectories and the silent action are both written with the symbol ‘τ ’, there is no ambiguity
because the two are used in distinct formalisms.

16 CHAPTER 2. BACKGROUND

Definition 2.2.10

Given a set A of discrete actions and a finite set V of variables, a finite (A,V)-sequence

is an alternating sequence of V -trajectories and elements of A, where the first and

last elements are trajectories: α = τ0, a0, τ1, a1, τ2, . . . , τn. All trajectories but the last

must be closed.

Definition 2.2.11

Given a set A of discrete actions and a finite set V of variables, an infinite (A,V)-
sequence is an alternating sequence of closed V -trajectories and elements of A, where

the first element is a trajectory: α = τ0, a0, τ1, a1, τ2, . . .

Definition 2.2.12

An (A,V)-sequence is either a finite (A,V)-sequence or an infinite (A,V)-sequence.

Definition 2.2.13

The limit time of an (A,V)-sequence α = τ0, a0, τ1, a1, τ2, . . ., written ltime(α), is equal

to the limit of
∑

ltime(τi).

The strict alternation between trajectories and actions in an (A,V)-sequence is a con-

venient simplification. It is not limiting since point trajectories can be inserted between

actions that occur with no intervening delay. In contrast to concatenation, when two

trajectories abut at an action there is no need to choose between the last valuation

of one and the first valuation of the other. A choice may yet be required, however, if

actions are removed from a sequence.

(A,V)-sequences can be classified similarly to traces and timed sequence pairs.

They are admissible when ltime = ∞, closed when finite in length and ending in a

closed trajectory, and Zeno otherwise. See Figure 2.1c.

The continuous executions of a model can be represented by (A,V)-sequences. They

differ fundamentally from their discrete counterparts [MP93]. While continuous exe-

cutions have no gaps, discrete models involve countably many samplings. Two factors

require consideration when reasoning about continuous executions through sets of

samplings. First, sampling instants must be chosen somehow to capture all important

events [MP93], which is less of an issue for timed models with explicit events than

for hybrid models where actions are represented solely by changes in state variables.

Second, it is possible to define a TTS where, despite the fact that every sampling for

an interval is defined, no continuous mapping from the interval exists [LV96, §A]. The

time additivity clause of Definition 2.2.1 can be strengthened to forbid such anomalies

by insisting that delay transitions have corresponding trajectories [LV96, §2.1].

The continuous traces of a model can be represented by (A,∅)-sequences, that is

(A,V)-sequences where the set of variables is empty. In a continuous trace, the trajec-

tories map from an interval to an empty valuation: the only information present is the

time between successive actions. A restriction operation on (A,V)-sequences [KLSV06,

§3.4.4] serves to map continuous executions into continuous traces, and, more gener-

ally, to localize variables and actions.

Definition 2.2.14

The restriction of an (A,V)-sequence α to actions in A′ and variables in V ′, α ⌈(A′, V ′),
is the sequence defined inductively by

(τ,a, τ′, α) ⌈(A′, V ′) =
{
τ,a, ((τ′α) ⌈(A′, V ′)) if a ∈ A′
(τ a τ′α) ⌈(A′, V ′) if a 6∈ A′

with the domains of trajectories in the result restricted to V ∩ V ′.

When discrete actions are removed by restriction, the adjacent trajectories are con-

catenated, ensuring that the result is an (A,V)-sequence and solving the problems

that occur when hiding internal actions in timed traces.

TIOA are defined directly in terms of trajectories and (A,V)-sequences. Appendix B

contains a brief description.

2.2. TIMED MODELS 17

2.2.3 Timed Automata

TTSs are a fundamental model for discrete transition systems in continuous time. But

directly expressing timing behaviour in terms of delay transitions can be difficult. Any

model that expresses non-trivial timing behaviours will have infinitely many states,

with each having either zero outgoing delay transitions or infinitely many. Moreover,

having delay transitions blurs the intuition that time passes in states and that transi-

tions represent instantaneous actions.

The most common alternative is to represent time using state variables [Haa81,

AL94, AH97] called clocks. Using clocks makes it easier to distinguish the discrete

control structure of a model from its timed characteristics. In particular, a set of

states can be clustered into locations that each give the same valuation to the subset

of discrete variables. It can then be said that time passes in locations.

Timing behaviour and requirements are expressed as constraints and operations on

clocks. Clocks are not, however, like ordinary program variables: they are inextricably

bound to the flow of time. Their approximation in physical systems is not a simple

issue. It is certainly more involved, for example, than the usual, if not always justified,

approximation of natural numbers by machine words. Care must be taken when mod-

elling systems for implementation to ensure that operations and constraints on clocks

in the model can be realised in practice. Furthermore, models with clocks still have

infinitely many states and decision procedures only exist for certain subclasses where

operations and constraints on the clocks are restricted in one way or another.

Timed automata are the archetypal clock-based formalism. They are defined by

adding clocks to finite automata (Definition 2.1.5) [AD94, HNSY94]. Although there

are similar formalisms that permit an unbounded number of control states [AL94,

KLSV06], the restriction to a finite number of states facilitates automated analysis,

which is particularly important for timed models where checking properties involves

considering both concurrent interleavings and intricate numerical detail.

Timed automata are defined in §2.2.3.1. The definition includes restrictions on ex-

pressions involving clock variables that make possible the structured representation of

sets of clock values described in §2.2.3.2. Techniques for delaying actions or forcing

them to occur within a definite period are presented in §2.2.3.3. More abstract consid-

erations, and some of the problems that can occur when modelling in continuous time,

are presented in §2.2.3.4.

2.2.3.1 Definition and semantics

Some restrictions on expressions involving clocks are required before the definition

of timed automata. Two classes of expressions will be defined: clock expressions and

invariant clock expressions. The latter are characteristic of a specific class of timed

automata.

Definition 2.2.15

The clock expressions over K, written EK , where K is a set of clocks, is the smallest set

that satisfies:

k ∈ K c ∈ Q≥0

kR c ∈ EK
k1, k2 ∈ K c ∈ Q≥0

k1 − k2 R c ∈ EK
p,q ∈ EK
p∧q ∈ EK

where R ∈ {<,≤,=,≥, >} and Q≥0 is the set of positive rational numbers and zero.

The form of clock expressions varies [AD94, Definition 3.6][HNSY94, Definition 3.1]. In

this definition [BW04, §2.1], negation and disjunction are not permitted directly, but,

for clock expressions used as transition guards in timed automata, they can be treated

as a shorthand for conversion to Disjunctive Normal Form (DNF): relations in terms are

changed to effect negation, and a separate transition is introduced for each disjunctive

clause. Invariant clock expressions are less flexible.

Definition 2.2.16

The invariant clock expressions over K, written IK , are the subset of the clock expres-

sions over K where R ∈ {<,≤}.

18 CHAPTER 2. BACKGROUND

Invariant clock expressions are used to state location invariants in timed safety au-

tomata [HNSY94], which are otherwise essentially timed transition tables [AD94, Def-

inition 3.7] with a single initial state. Timed safety automata have proved especially

suitable for modelling and model-checking real-time systems. Timed transition tables

can also be extended in other ways to yield different formalisms. In particular, abstract

variants, namely timed Büchi automata and timed Muller automata [AD94, §§3.5–3.7],

are fundamental to timed-language theory and to the semantics of timed logics. The

term ‘timed automata’ will henceforth refer specifically to timed safety automata as

typically defined for the Uppaal model checker [BW04].

Definition 2.2.17

A timed automaton A = (L, l0, K, invK , T) on A, a set of discrete actions, comprises

finite sets of locations L and clocks K, an initial location l0, a function invK from L
to IK , and a set of transitions T ⊆ L× EK ×A× 2K × L. A transition (l, g,a,R, l′) ∈ T is

written l
g R−−→
a T l

′.

A transition between locations has three labels: a guard clock expression g which

determines when the transition may occur, a discrete action a, and a set of clocks R
that are reset to zero if the transition occurs. The meaning of these labels, the set of

clocks K and the location invariants invK , are made precise by a semantic mapping to

TTSs [BW04, Definition 2].

Definition 2.2.18

The semantic model of a timed automaton A = (L, l0, K, invK , T) over A and with n
distinct clocks K = {k1, . . . , kn}, is the TTS JAK = (S, S0,−→):
• S = L× (R≥0)n,

• S0 = {(l0, (0, . . . ,0))}
• −→ is the smallest relation such that

l
g R

−−→
a T l

′ JgK~v
(l, ~v)

a−→(l′, resetR(~v))
action

d ∈ R>0 JinvK(l)K~v+d
(l, ~v)

d−→(l, ~v + d)
delay

where ~v = (vk1 , . . . , vkn) is a tuple of values, one for each element of K, JψK~v is the

value of the predicate ψ when atoms in K are interpreted as corresponding values

in ~v , resetR(~v) sets element i to 0 if ki ∈ R and otherwise leaves it unchanged, and

(vk1 , . . . , vkn) + d = (vk1 + d, . . . , vkn + d). The mapping is undefined for timed au-

tomata where JinvK(l0)K(0,...,0) does not hold, or, where, for any reachable state (l, ~v),
JinvK(l)K~v does not hold.

Each state of the semantic model comprises a discrete control location and a value

for each clock from the non-negative real numbers. All clocks are set to zero initially.

There are two rules for transitions. An action transition at a location can only occur

for those clock valuations where the guard expression is satisfied. When an action

transition occurs the discrete location may change and a subset of the clocks are reset

to zero. The values of the other clocks are not changed and thus discrete actions

are instantaneous.4 Delay transitions can occur provided that they do not violate the

relevant location invariant. When a delay transition occurs, all clocks are incremented

by the same amount and the discrete location is unchanged. The limited form of

invariant clock expressions ensures that time interpolation and additivity hold. More

liberal invariants necessitate the stronger antecedent ∀ǫ ≤ d. JinvK(l)K~v+ǫ, that is, the

invariant must be satisfied for the whole interval [BST97, Definition 2].

The semantic mapping of Definition 2.2.18 is only defined for timed automata

where the location invariant at a state is never violated by an incoming action tran-

sition. This is the approach taken in the Uppaal model checker and in some se-

mantic accounts of it [BV08]; a model where discrete actions violate an invariant is

4This decision is fundamental to a few programming languages, see §2.4 on the synchronous languages,
and almost all timed modelling languages [Wan90, NS94, HNSY94, AL94, BM02, Lam02, BW04, KLSV06].

2.2. TIMED MODELS 19

k2 = d

k2 = d+ 1k
1
=
c

k
1
=
c
+

1

fr
ac
(k

1
)
= fr

ac
(k

2
)

fr
ac
(k

1
)

<
fr
ac
(k

2
)

fr
ac
(k

1
)

>
fr
ac
(k

2
)

k1 = c
∧k2 = d

k1

k2

Figure 2.2: Dyadic clock regions for equalities

0

1

2

3

4

0 1 2 3 4 k1

k2

(a) k1 > 1 ∧ k1 ≤ 2

0

1

2

3

4

0 1 2 3 4 k1

k2

(b) k2 ≥ 1

0

1

2

3

4

0 1 2 3 4 k1

k2

(c) k1 > 1 ∧ k1 ≤ 2 ∧ k2 ≥ 1

Figure 2.3: Dyadic clock regions for constant comparison

0

1

2

3

4

0 1 2 3 4 k1

k2

(a) k1 − k2 ≥ 0

0

1

2

3

4

0 1 2 3 4 k1

k2

(b) k1 − k2 ≤ 3

0

1

2

3

4

0 1 2 3 4 k1

k2

(c) k1 − k2 ≥ 0 ∧ k1 − k2 ≤ 3

Figure 2.4: Dyadic clock regions for clock differences

0

1

2

3

4

0 1 2 3 4 k1

k2

(a) k1 > 1 ∧ k1 ≤ 2 ∧
k1 − k2 ≥ 0

0

1

2

3

4

0 1 2 3 4 k1

k2

(b) k2 ≥ 1 ∧ k1 − k2 ≤ 3

0

1

2

3

4

0 1 2 3 4 k1

k2

(c) k1 > 1 ∧ k1 ≤ 2 ∧ k2 ≥
1 ∧ k1 − k2 ≥ 0 ∧
k1 − k2 ≤ 3

Figure 2.5: Mixed dyadic clock regions

20 CHAPTER 2. BACKGROUND

considered invalid. A different approach is taken by other definitions [HNSY94, Def-

initions 3.3 and 3.7] and semantic accounts of Uppaal [BW04, Definition 2] where a

discrete transition cannot occur if it would violate the location invariant of the desti-

nation state. Definition 2.2.18 can be altered to express this idea by adding another

premise JinvK(l
′)KresetR(~v) to the action rule, and by omitting the second part of the last

clause that describes when the mapping is undefined.

The semantics of other timed formalisms can also be given in terms of TTSs, but

timed automata themselves are often used instead [NSY93, JMO93].

2.2.3.2 Clock regions

The restricted form of clock expressions and invariant clock expressions allows a

structured representation of sets of clock values as clock regions [AD94, §4.2]. For

systems of two clocks, that is K = {k1, k2}, clock regions are readily visualized as two-

dimensional graphs. Some examples are presented in Figures 2.2–2.5 where the values

of k1 and k2 are plotted on the horizontal and vertical axes, respectively. No generality

is lost in assuming that the constants, c and d in the figures, have integer values: for

the set of rational constants in a given timed automaton, a smallest granularity can

always be chosen [AD94, §4.1].

Constraints with equality are drawn as points and straight lines. In Figure 2.2,

the dot at bottom-left represents the clock region where k1 = c and k2 = d. The

horizontal and vertical lines represent clock regions where only one of the clocks is

constrained. The diagonal line represents the clock region where both clocks have the

same fractional part. And the triangular regions above and below the diagonal line are

the clock regions where the fractional part of k1 is, respectively, strictly less than or

strictly greater than the fractional part of k2.

Inequalities are drawn as convex polygons. Some examples of constraints built by

comparing single clocks with constants are shown in Figure 2.3. The clock region that

corresponds to the conjunction of two constraints is the intersection of the individual

clock regions. Clock regions are always contiguous because disjunction is forbidden.

Some examples of constraints built by comparing clock differences with constants are

shown in Figure 2.4. The slope of the diagonal lines in clock regions is always equal

to one because multiplication is not allowed in clock expressions. Some examples of

conjunctions of single clock and clock difference inequalities are shown in Figure 2.5.

l0
a
k1 = 0

a k2 = 0

l1 k1 ≤ 2

a
k2 = 0

l2 k1 ≤ 2
k1 > 1∧ k1 ≤ 2 a k2 ≥ 2 a

a

(a) (c)

Figure 2.6: Example timed automaton to demonstrate clock regions

By way of example, consider the timed automaton with two clocks and three loca-

tions in Figure 2.6. The initial location, l0, is marked by an inner circle. All of the tran-

sitions are labelled with the discrete action a. There are two self-loops at location l0,

one resets clock k1, the other resets clock k2. The absolute and relative values of the

clocks are thus unconstrained. The transition to l1 can only be taken when 1 < k1 ≤ 2

and k1 cannot exceed 2 at l1 due to the location invariant. The set of possible clock

values at l1 is described by the clock region of Figure 2.3a. Clock k2 can be reset at l1,

but clock k1 cannot. The transition to l2 may only occur when k2 ≥ 2, and the set

of possible clock values at l2 is described by the clock region of Figure 2.3c. This is

a simple example. Locations need not always be paired with the same set of possible

clock values.

For any given timed automaton there are a finite number of clock regions [AD94,

Lemma 4.5], that is, for a given number of clocks and the (scaled) value of the largest

constant occurring in guards or invariants, only so many lines, points, and polygons

can be formed. It is thus possible to construct finite abstractions, called region au-

tomata, that are sound and complete for deciding language emptiness [AD94, §4.3].

2.2. TIMED MODELS 21

0

1

2

3

4

0 1 2 3 4 k1

k2

(a) k1 ≥ 1 ∧ k1 ≤ 2 ∧ k2 ≤ 2

0

1

2

3

4

0 1 2 3 4 k1

k2

(b) Time successors of
k1 ≥ 1 ∧ k1 ≤ 2 ∧ k2 ≤ 2

Figure 2.7: An example of the time successor relation

This theoretical result underpins the possibility of finite model-checking of timed au-

tomata, which otherwise have an infinite state space. In practice, sets of clock values

are usually encoded as Difference Bound Matrices (DBM) rather than represented ex-

plicitly as clock regions [BW04].

Computations that involve sets of clock values, like the construction of a region

automaton, where discrete locations are paired with convex clock regions, are not de-

fined in terms of delay transitions, but rather through a time successor relation [AD94].

The time successors of a dyadic clock region are readily visualized as the clock region

encompassed by diagonal lines of unit slope extending up and to the right from each

corner of the original region. An example is given in Figure 2.7. The diagonals are of

unit slope because all clocks increase at the same constant rate.

2.2.3.3 Guards, invariants, and urgency

In addition to expressing sequences of actions, timed automata enable occurrences

of actions to be placed precisely in time. That is, they can convey when actions may

occur and when they must occur. In timed automata, the ‘may’ is expressed in transi-

tion guard expressions and the ‘must’ in location invariants. But there are alternative

approaches and for the purpose of comparison the expression of actions in time is

usefully divided into three types of mechanism: those for delay, those for timeout, and

those for urgency. Each is now considered in turn, with particular attention devoted to

urgency and its treatment in two extensions of timed automata.

Delays before an action may occur are modelled in timed automata with >/≥/=
conjuncts on transition guards. They are relative to the instants when the clocks in

the guard were last reset, or, for clocks that have never been reset, to the system start

time. Constraints can thus be defined over paths through a model. Other formalisms,

notably timed process algebras [Wan91, NSY93, LL97, BM02], introduce special nota-

tions for expressing delays.5 For instance [Wan90], ǫ(3).a.0 may indicate a process

that waits for 3 units of time before it is willing to engage in an a action. In this case

and others, and in contrast to timed automata, the delay is relative to the instant of

entry into a state. Constraints over paths can be recovered using parallel composition

and synchronisation provided such operators are available.

Timeouts are limits on when actions may occur. Different formalisms interpret the

expiry of a time limit on an action in different ways, but two basic approaches are

discernable: either the possibility of the action elapses, or the action (or another) must

occur without further delay. Timed automata take the former approach: the possibility

of performing a transition whose guard contains </≤/= conjuncts expires when the

guard is no longer satisfied. The elimination of possible actions by the progression of

time is sometimes termed ‘timeout’ [NSY93] or ‘weak choice’ [BM02, p. 33]. A delay

transition that crosses an upper bound on an action effectively moves from a state

where there is a transition labelled with that action to a state where there is not.

A different approach to timeouts is taken in RTCCS [Wan90, Wan91], a timed exten-

sion of the process algebra CCS. In RTCCS, action possibilities may only be removed

5That some of these are based on discrete-time does not invalidate the comparison.

22 CHAPTER 2. BACKGROUND

Il
...

g1 a1 R1

gm
am

Rm

g′′1 a′′1 R′′1...
g′′l a′′l R′′l

...

g′1 a′1 R
′
1

g ′n a ′n R ′
n

(a) Macro notation

Il ∧ xu ≤ 0
...

g1 a1 R1 ∪ {xu}

gm am Rm ∪ {xu}

g′′1 a′′1 R′′1...
g′′l a′′l R′′l

...

g′1 a′1 R′1

g′n a′n R′n

(b) Expanded form (xu is a new clock)

Figure 2.8: Urgent location macro

by the occurrence of a τ-transition (refer §A.2). This is a consequence of a maxi-

mal progress assumption which mandates that τ-transitions occur with priority over

delay transitions. Upper bounds on actions are modelled as the choice between the

action and a delay-prefixed τ-action.6 Besides allowing the expression of timeouts,

an assumption of maximal progress reduces non-determinism in processes and forces

synchronisations between processes and other hidden actions to occur as soon as pos-

sible. Such an assumption may not always be necessarily wanted or warranted.

Urgency is a more general way to assert the priority of (certain) discrete actions over

delay actions, and, under the assumption that time cannot be stalled indefinitely, of

specifying that an action must occur immediately. In timed automata, urgency can be

expressed through location invariants, including the particular case of urgent locations,

or one of two extensions for marking individual transitions.

A location invariant states when the enabled actions at a location must occur with-

out any delay. Time may only pass—equivalently, delay transitions may only occur—at

a location while the corresponding location invariant is satisfied. For closed location

invariants, like k ≤ 3, time effectively stops at the upper bound. For open location

invariants, like k < 3, time may not pass beyond the given limit. The expectation that

physical time cannot really be stopped is expressed in models by rejecting executions

and traces where it does, that is, only admissible traces or sequences are usually con-

sidered. There are therefore two possibilities in a model when a location invariant

impedes the flow of time. If discrete transitions are enabled from that location then

they become urgent: one of them must occur immediately. Otherwise the model must

be rejected as infeasible.

Location invariants allow the specification of so called urgent locations where time

may not pass at all. These locations are useful enough that a macro notation has

been introduced to represent them [BW04]: the letter ‘u’ is drawn inside a location to

mark it as urgent, see Figure 2.8a. A timed automaton with urgent locations can be

transformed into a standard timed automaton by both introducing a new clock xu,

which is reset on entry to an urgent location,7 and adding the clause xu ≤ 0 to the

invariants of all locations marked urgent, see Figure 2.8b.

While location invariants are more discriminating than a universal assumption of

maximal progress, they cannot readily express the same type of urgency: that a transi-

tion should be urgent only whenever it is enabled. This deficiency can be remedied by

extending timed automata with either deadlines [BST97] or urgent actions [BW04].

Transitions in timed automata with deadlines are labelled, in addition to the stan-

dard guard g, action a, and reset elements R, with a deadline expression d. At a lo-

cation, the negated disjunction of the deadline expressions of all outgoing transitions,

¬(d1∨ . . .∨dn), is effectively treated as a location invariant. A timed automaton with

deadlines is only considered valid if this implicit location invariant is right closed, and

also if for each transition, d =⇒ g. Under these conventions, time can only progress

at a location while none of the deadline expressions on outgoing transitions are satis-

fied. In other words, a transition is urgent whenever its deadline expression is satis-

fied. The restriction on the implicit invariant expression prevents the possibility of a

6For example, an upper bound of 3 on an action a could be expressed: a.NIL+ ǫ(3).τ.NIL.
7It is immaterial whether or not the clock is reset by self-loop transitions.

2.2. TIMED MODELS 23

lazy d = false

delayable d = g↓
(
sometimes eager

)

eager d = g

action has priority over delay
action is possible

Figure 2.9: Categories of urgency for timed automata with deadlines [BST97, Figure 1]

deadline being approached but never reached. The restriction on individual deadline

expressions ensures that if a transition is urgent then it is also enabled. The effects of

deadline transitions could also be achieved, albeit in a less structured way, by relaxing

the restrictions on location invariants.

Three different categories of urgency have been proposed for timed automata with

deadlines. They are shown on time lines in Figure 2.9. The gray intervals represent

periods when an action is possible because its guard g is satisfied. The black intervals

represent periods when an action is urgent because its deadline d is satisfied. Lazy

transitions are those where d = false. They are never urgent. Delayable transitions are

those where d = g ↓, where g ↓ is the falling-edge of a right-closed guard; for instance

if g ≤ 7 then g ↓= 7. Eager transitions are those where d = g. They are urgent

whenever enabled and hence behave as if under an assumption of maximal progress.

It is also possible to express transitions that are only urgent at particular times; that is

transitions that are sometimes eager.

Only the lazy and delayable modes can be expressed in standard timed automata.

A transition is lazy if its guard g is not curtailed by the source location invariant i, that

is if g∧ i = g, and delayable otherwise.

Urgent actions are an alternative way of expressing eagerness. The idea is simple.

Given a timed automaton over A, an extra set U ⊆ A is specified. The actions in U are

considered eager. They must occur with urgency whenever they are enabled. At this

point, that means whenever their guard and the location invariant at the destination

location are satisfied, but, in the networks of timed automata discussed in the next

section it will also depend on the behaviour of other components.

2.2.3.4 Progress, liveness, and feasibility

While timed automata alone are adequate for expressing possible behaviours, addi-

tional mechanisms are required to express certain necessary behaviours. Progress is

one such mechanism and, in tandem with location invariants, it is adequate for sit-

uations where concrete timing bounds are known or can be assumed. When more

abstract liveness constraints are required, they are sometimes stated together with a

timed automata model as additional acceptance sets or logical formulas; though care

must be taken to avoid any undue interference with the step-by-step operation of the

model. Besides such explicit requirements, models are usually implicitly required to

be feasible, in the sense that they do not specify so called Zeno executions where time

cannot progress beyond a fixed bound.

Under an assumption of progress, a transition system cannot rest indefinitely in

a state where actions are always possible; one of the actions must eventually occur.

Progress is assumed for many untimed formalisms. It is less potent for timed au-

tomata, however, because they may stay forever in any location where the invariant is

equivalent to true, even if one or more discrete transitions from that location are always

enabled, since progress is still made, in a sense, through delay transitions. Still, the

combination of progress and non-trivial location invariants is adequate for expressing

bounded liveness requirements, where concrete deadlines are set on the occurrence of

discrete transitions. Bounded liveness is easy to reason about operationally and readily

incorporated into model checking algorithms.

Liveness constraints that are more abstract are necessary when it is impossible or

24 CHAPTER 2. BACKGROUND

unnatural to place specific, concrete bounds on behaviours. They are typically affixed

to transition system specifications to filter out certain infinite executions that would

otherwise be permissible. Executions that do not satisfy the additional constraints

can be ignored when proving properties of a model, but their impossibility must be

ensured when implementing a model. Two approaches typically applied to untimed

formalisms, namely acceptance sets and pairings with formulas of temporal logic, are

just as applicable for stating abstract liveness constraints on timed automata models.

In language-based timed models [AD94], liveness constraints are specified by des-

ignating subsets of accepting locations and an acceptance condition. As for (untimed)

ω-automata, there are two standard approaches. In one, timed Büchi automata, a single

subset of accepting locations is specified, and an execution satisfies the Büchi accep-

tance condition if it returns to at least one of those locations infinitely often. In the

other, timed Muller automata, a set of subsets of accepting locations is specified, and

an execution satisfies the Muller acceptance condition if the set of locations it returns

to infinitely often is included in one of those subsets.

Liveness constraints can also be specified by pairing models with formulas of tem-

poral logic [AL94, SGSAL94]. Due to the potential subtleties of such formulas, they

are often limited to forms that express fairness alone; but most other liveness prop-

erties can be deduced from these [Lam02, §8]. Fairness assumptions are, in a way, a

discriminating and compositional alternative to universal assumptions of progress.

When liveness constraints are paired with automata (timed or not), they should only

be allowed to influence choices repeated across the infinite totality of an execution but

not to influence the step-by-step choice of transitions. A paired automaton and liveness

constraint where every finite execution of the former can be extended into an infinite

execution that satisfies the latter is termed machine closed [AL94, AL91].8

The assumption that time increases without bound is so fundamental that it is

usually an implicit liveness constraint, and a model is termed feasible if it respects this

expectation. The concept of machine closure makes possible a succinct definition of

feasibility. A timed automaton that contain a single clock called now, which is never

reset, is feasible if it is machine closed with respect to the liveness property: ∀t ∈
R.3(now > t) [AL94]. Feasibility can also be defined in terms of the categorisations

discussed in §§2.2.2.1–2.2.2.3 and shown in Figure 2.1: in a feasible model there is at

least one admissible execution from every reachable state [KLSV06, §4.3.2].

Although feasibility involves, in general, considerations of liveness, some causes of

infeasibility can be identified by static approximations. For instance, a system is time

reactive [BST97] if at least one discrete action is enabled from a state where time is

inhibited.9 Time reactivity is necessary for feasibility, but not sufficient. A time reac-

tive system could, for instance, still perform an infinite sequence of discrete actions

without letting time pass.

The concept of Zenoness is closely related to that of feasibility. A trace or execution

where time does not increase without bound is termed Zeno.10 Any timed model where

delay is possible has Zeno traces; for instance, traces that simply degenerate into an in-

finite number of successively smaller fractional steps. These traces are simply rejected

because they cannot occur in reality. In some modelling frameworks, it is possible to

distinguish whether the cause of Zenoness is a system, its environment, or the two to-

gether [SGSAL94][KLSV06, §6.3]. A model is not feasible if it contains reachable states

from which only Zeno traces are possible. Such states usually indicate an error in mod-

elling or specification since they represent systems that cannot really exist let alone be

implemented. Note, though, that feasibility is necessary for implementability but not

sufficient. For instance, timed automata where arbitrarily many actions can occur in a

finite period of time, or where actions may be arbitrarily close to one another [AD94,

§3.6] are feasible but not implementable.

8Additional care is required to treat liveness constraints when a distinction is made between a system
and its environment [SGSAL94].

9The original, informal definition is: ‘time can progress at any state unless an untimed transition is
enabled’. It could also be interpreted as a form of maximal progress assumption.

10This term refers to the ancient author of apparent paradoxes that declare the impossibility of crossing
a distance because first half of it must be crossed, and then half of that, and so on in unending recursion.

2.3. UPPAAL 25

2.3 Uppaal

Timed automata are fundamentally expressive enough to model a large class of sys-

tems, but the modelling task becomes more manageable if additional features are in-

troduced. Moreover, since it is especially tricky to model timed systems and specifica-

tions, simulation and analysis tools are all but essential.

Uppaal [LPW97, BDL04, BW04] is a software tool for creating models in an extended

version of timed automata and for verifying certain of their properties by exhaustive

state space exploration. It comprises three main components: a graphical user inter-

face for specifying networks of timed automata using diagrams and a C-like descrip-

tion language, an interface for running interactive simulations and viewing traces, and

a model checking engine for deciding whether a model satisfies given formulas.

In Uppaal, timed automata are extended in two main ways: finite variables are al-

lowed in addition to control locations, and sets of timed automata can run in par-

allel and intercommunicate. Variables and related features are described in §2.3.1.

The different types of communication and the various priority rules are described

in §2.3.2. Although the semantics of Uppaal models is involved, the fundamentals

can be understood through the approximation of synchronizing timed automata pre-

sented in §2.3.3. The three subsections present the most important Uppaal modelling

constructs with a minimum of formal definition. A more precise account is presented

in Chapter 5.

The model checking interface is described briefly in §2.3.4. The focus is on the lan-

guage for specifying properties rather than on algorithmic details [BW04] or practical

techniques for effective verification [BDL04, §6].

2.3.1 Variables

Strictly speaking, Uppaal models are not composed of timed automata with locations

and transitions, but rather of processes with nodes and edges. Processes may have local

data variables in addition to clock variables. Furthermore, it is not processes that are

manipulated in the Uppaal graphical editor, but rather parameterised processes, which

are instantiated with concrete parameter values to give processes. This facilitates the

creation of multiple components that share the same control structure.

There are three basic types of data variables: bounded integers, booleans, and scalar

variables; and two type constructors: records and arrays. Scalar variables are a spe-

cial feature of Uppaal. They take values from a finite set and the only operations

allowed on them are equality testing, assignment, and array indexing. These restric-

tions allow the size of the reachable state space of models containing scalar variables

to be compressed using a technique called symmetry reduction [BDL+06]. Type aliasing

(typedef) is especially important for scalar types because each declaration introduces

a unique type.

Process edges incorporate and exploit data variables through three enhancements

to standard transitions. First, their guard expressions can contain predicates over

variables. Second, in addition to clock resets, an edge can be labelled with a sequence of

assignments and function calls that update the value of data variables when the edge is

taken. The assignment expressions and the functions are defined using operators and

control structures based on the C language [BDL+06], and, additionally, with bounded

existential and universal quantifiers. Third, edges can be labelled with a list of selection

bindings. Each selection binding pairs a variable name with a data type. The names are

bound over the guards, action expressions, and update sequences of corresponding

edges. In one way, selection bindings represent a non-deterministic choice since their

values are effectively chosen arbitrarily from their associated types when an edge is

taken. But, because they may be used in guard and action expressions, the choice of

values in fact determines whether an edge is enabled or not, and it is more accurate

to visualize an edge with selection bindings as a set of simpler edges where selection

bindings have been instantiated with explicit values. This form of implicit iteration

make selection bindings especially useful in combination with arrays.

The semantics of data variables and the extra edge labels can be defined by mapping

26 CHAPTER 2. BACKGROUND

every node and variable valuation in a process to a distinct location in a corresponding

timed automaton. An edge from one node to another is mapped to multiple transitions

that account for its selection bindings, the variable valuations where its guard remains

satisfiable, and the effect of assignments and function calls on variables. A precise

definition of this mapping is presented in §5.2.3.

2.3.2 Communication and priority

An Uppaal model comprises channels, processes (instantiated templates), shared vari-

ables, shared clocks, and priority declarations. The edges of a process can be cate-

gorised by whether they are local to a process, or whether they synchronise with other

processes on a channel. They are subject to a variety of priority rules.

There are two types of action in Uppaal: local actions and channel actions.

Local actions always involve a single process. They are represented graphically

as edges without action labels. When a local action occurs on an edge that does not

change any shared variables and that cannot be influenced by priority rules, it is ef-

fectively unobservable and may be considered a τ-action (refer §A.2). Otherwise, it

may be possible to observe local actions by their effect on shared variables, and also

to influence them through the priority mechanisms described below.

Channel actions usually involve more than one process. Channels are names that

allow processes to communicate without identifying one another directly. To each

channel c are associated output and input actions. These are indicated, respectively,

by suffixing the channel name with an exclamation mark c! or a question mark c?.

When processes synchronise on a channel, the assignments and functions associated

with the output action are processed before those of any input actions. This allows, in

particular, value-passing synchronisations to be simulated using shared variables.

There are two types of channels in Uppaal. Handshake channels, or often just ‘chan-

nels’, synchronize a single input action with a single output action. Broadcast channels

synchronize a single output action with all enabled input actions on the same channel.

A broadcast output can occur on a channel even when no corresponding input actions

are enabled. The updates of a broadcast output occur before those of any synchronized

inputs, which are evaluated in the order of their relative instantiation.11

In Uppaal models, the enabledness of edges depends not just on their guards, but

also on the semantics of communication through channels which are subject to sev-

eral forms of priority, namely: urgent channels, channel and process priorities, and

committed nodes.

Enabled actions on an urgent channel take priority over delays. They are, like the

eager transitions of timed automata with deadlines, a way of locally specifying maximal

progress. Unlike eager transitions though, they are declared per channel rather than

per transition and their enabledness may depend on the willingness of other processes

to communicate. Both handshake and broadcast channels may be marked urgent.

While channel urgency gives priority to discrete actions over delays, channel priority

gives enabled edges on some channels priority over those on other channels. A channel

priority declaration defines a total but not necessarily strict ordering between channels.

A special ‘default’ channel identifier defines the status of channels that are not listed

explicitly and also of local actions, which are subject to the same rules. An edge cannot

be triggered when there is, in the same system, an enabled edge of strictly higher

priority. The possible triggerings of edges with the same channel priority are further

determined by a separate process priority ordering (also total and non-strict), where

the priorities of all processes involved in potential synchronisations are considered

and compared.12 Delay transitions are unaffected by channel and process priorities.

Regardless of channel and process priorities, the outgoing edges of committed

nodes have priority over delays and the outgoing edges of uncommitted nodes. Com-

mitted nodes allow sequences of edges to be made atomic, at least with respect to de-

lays and to edges from uncommitted nodes; the edges of simultaneously active com-

11See the language reference distributed with Uppaal, under the section ‘Templates/Edges’.
12The rules for determining edge priorities are given in the language reference distributed with Uppaal

under the section ‘Priorities’

2.3. UPPAAL 27

mitted nodes are still interleaved with one another. Committed nodes were used in

earlier versions of Uppaal to model broadcast communication and for array manipu-

lations requiring iteration. They can reduce the number of possible interleavings and

hence the state space of a model. While the committed attribute is conferred on nodes,

treating it as an attribute of edges facilitates the definition of a compositional seman-

tics [BV08]. The status of nodes cannot be completely neglected, however, since an

active committed node without any (enabled) outgoing edges will still block delays and

edges from uncommitted locations.

2.3.3 Semantics

Defining the semantics of Uppaal models requires more attention than it is often given.

Recent accounts [BV08] give precise definitions that include most features and whose

operators have the properties expected of them. Presently it will suffice, however,

to describe the fundamentals—that is, excluding data variables, priorities, channel ur-

gency, and broadcast channels—in terms of timed automata that communicate through

paired synchronisations [Sto02, §7.5.2]. An Uppaal model is, in this case, n concurrent

timed automata composed using parallel and restriction operators:13

(A1 ‖ . . .‖An)\Acts,

where Acts is the set of all actions excluding the local action τ . The two operators are

defined in the manner of CCS.14 Given two timed automata, each may either act alone,

or alternatively, transitions labelled with complementary actions may synchronise re-

sulting in a silent action that precludes further synchronisation.

Definition 2.3.1

The parallel composition of two timed automataA=A1 ‖ A2 gives a timed automaton

A= (L, l0, K, invK , T) where

L = L1 × L2

l0 = (l01 , l02)

K = K1 ∪̇K2

invK(l1, l2) = invK1(l1)∧ invK2(l2)

and T is the smallest relation such that

l1
g1 R1−−−−→
a1

T l
′
1

(l1, l2)
g1 R1−−−−→
a1

T (l
′
1, l2)

left

l2
g2 R2−−−−→
a2

T l
′
2

(l1, l2)
g2 R2−−−−→
a2

T (l1, l
′
2)

right

l1
g1 R1−−−−→
a T l

′
1 l2

g2 R2−−−−→
ā T l

′
2

(l1, l2)
g1 ∧g2 R1∪R2−−−−−−−−−→

τ T (l
′
1, l

′
2)

both

where a1, a2 ∈ Actsτ and a ∈ Acts.

Location invariants only restrict which delay transitions may occur. Their violation by

a discrete transition indicates a modelling flaw per Definition 2.2.18.

Note that, unlike the process algebras, see Appendix A, and other programming

languages with concurrency, like the synchronous languages, see §2.4, concurrency in

Uppaal is neither nimble nor hierarchical; in any model, a fixed number of processes

run at a single level.

The restriction operator prunes all transitions labelled with actions from a given set.

Definition 2.3.2

The restriction of a timed automaton A = (L, l0, K, invK , T) to actions over channels

not in a set P is written A \ P = (L, l0, K, invK , T
′), where T ′ is the smallest relation

13Relating an Uppaal ‘network of timed automata’ to a parallel composition and restriction of individual
timed automata actually requires more care than the present treatment infers [BV08, §4].

14refer §A.3

28 CHAPTER 2. BACKGROUND

such that

l
g R

−−→
a T l

′ a 6∈ (P?∪ P !)

l
g R−−→
a T ′ l

′
restrict

where P? and P ! are, respectively, sets of input and output actions on channels in P .

A symbolic execution of an Uppaal model is an alternating sequence of sets of

states, where variables and locations are fixed but clock values may vary, and com-

pleted actions.

The actions of processes in an Uppaal model are asynchronously interleaved, while

all clocks increase at the same constant rate. Sets of executions that differ only in the

values of clocks, so called symbolic executions,15 are represented by an alternating se-

quence of completed actions and states. A completed action is either a local action, a

complementary pair of synchronized handshake actions, or a set of broadcast actions

containing one output action and all input actions enabled at the instant of occur-

rence. A state is a triple of the active process nodes, the current variable valuation,

and a symbolic representation of clock values and their time successors. Only execu-

tions containing completed communications are considered. Thus, in contrast to the

open system interpretation made elsewhere in this chapter, Uppaal models are inter-

preted as closed systems [Sto02, §7.5.2]—processes are always simulated and analyzed

in combination with an explicit model of their environment.

2.3.4 Model Checking

Uppaal is used to create and simulate timed models, but its real strength is in auto-

matically verifying their properties using an efficient reachability analysis algorithm.

Given a closed TTS T and a propertyϕ, Uppaal decides whether the former satisfies

the latter, that is, whether T ⊨ ϕ. Properties are evaluated over paths of alternating

delay and action transitions from the initial state s0. They are restricted to the forms:

E3p , asserting that it is possible to reach a state satisfying p on a path from s0.

E2p , asserting that there is a path from s0 along which all states satisfy p. Either the

path is infinite or ends in a state s with either no outgoing transitions or where

s
d−→ s′ is possible for all d ∈ R≥0.

A3p , which is equivalent to ¬(E2¬p).

A2p , which is equivalent to ¬(E3¬p).

p ; q , which is equivalent to A2 (p implies A3q).

In practice, state properties, written here as p and q, are formulated over the nodes

and variable valuations of the component processes from which the TTS is derived.

Additionally, a deadlock property asserts that no action transitions leave a state or its

time successors (states reachable via a delay transition).

Uppaal provides witness traces for properties asserting existence, that is true prop-

erties of the form E3p or E2p, or counter-examples for failed properties of the

form A3p or A2p. Not only do this feature give insight into the failure of a prop-

erty to hold, but it is also useful for generating specific traces to see, for instance,

whether a model is capable of performing them, or to better understand the behaviour

of a system.

Model checking can be a very effective technique, but it is not usually ‘push button

verification’. There are two main reasons. First, although model checking algorithms

are highly optimised, nothing can alter the exponential complexity of parallel compo-

sition. The state space of many models is simply too large to check effectively. It is

not always clear in advance when this limit may be reached. It may, for example, be

15They are called, misleadingly, ‘symbolic traces’ in the Uppaal documentation.

2.4. SYNCHRONOUS LANGUAGES 29

possible to analyze a system of three processes in minutes, but, if the number is in-

creased to four, the model checker may run indefinitely or crash for lack of memory.

Analyzing complex models usually requires the application of modelling tricks and

abstraction techniques. Second, most model checkers analyze finite state models, but

many systems and protocols are designed for an indefinite number of processes, par-

ticipants, or resources. Showing, for instance, that it is possible to infer a property of

an arbitrary number of processes from an analysis of a finite number requires specific

expertise [Hol03, Chapter 5].

2.4 Synchronous Languages

There are many synchronous languages. They can be categorised according to two

main criteria: classical or derivative, imperative or dataflow. Both criteria are somewhat

arbitrary. They aid in the discussion of what is a wide body of work, but, perhaps like

all such categorisations, they should not be construed as fundamental.

The first criterion is historical. The classical languages are, in this thesis, those

appearing in both the first book on synchronous programming [Hal93] and the 1991

special issue of the Proceedings of the IEEE : Esterel [BS91], Lustre [HCRP91], and Sig-

nal [LGGLBLM91]. The book also describes Argos, here considered one of the first

derivative languages.16 Many derivative languages have been developed to explore dif-

ferent design choices and possible extensions. None yet enjoy great success outside

academia, but most are a rich source of ideas and techniques.

The second criterion refers to concepts, notation, and culture. Programming in an

imperative language requires conceptualizing control foci that move around within

the text of a program. At any instant there are active statements that influence the re-

sponse of a program and inactive ones that do not. Programs are depicted as sequences

of imperative statements, as Esterel usually is, as the circles and arrows of state ma-

chines, as Argos usually is, or as a mix of both [And96, Tec05]. The imperative style

is traditionally associated with electronic and software engineering where systems are

often designed as Mealy machines and implemented in algorithmic languages.

Programming in a dataflow language requires conceptualizing streams of values—

sometimes as infinite sequences, sometimes as the successive results of unending

iteration—as they are transformed by networks of interconnected functions. All func-

tions are simultaneously active at an instant. Programs are either depicted as a se-

quence of function declarations, as the interconnected rectangles of a flow diagram,

or, more usually, as a mix of the two. Lustre and Signal have each a textual syntax and

a graphical syntax. Dataflow programming developed in computer science [WA85] and

is natural in lazy functional languages [CP95], but similar concepts also occur in the

mathematics and design of discrete feedback controllers and digital signal processing

applications.

Many systems contain both imperative and dataflow elements. Modern synchronous

languages often try to integrate both styles.

This thesis focuses on the imperative languages Argos and Esterel. Few of the

modern derivative languages, besides Argos, are mentioned or discussed in any detail;

not because they are unimportant, but rather because issues of timing and triggering

can be satisfactorily studied without them. Version 5 of Esterel in pure form is adopted

instead of the feature-rich, but more complicated version 7.

This section has three parts. The first, §2.4.1, discusses concepts common to

all synchronous languages. The second and third describe specific languages, Argos

in §2.4.2 and Esterel in §2.4.3.

2.4.1 Core concepts

The synchronous languages are typified by a focus on specific domains of application,

§2.4.1.1, a common approach to execution, §2.4.1.2, underlying mathematical models,

16The term ‘derivative’ is used here with the sense of ‘derived from’ or ‘influenced by’. No negative
connotations are intended.

30 CHAPTER 2. BACKGROUND

§2.4.1.3, and the adoption of two fundamental principles that relate the behaviour of

models to physical time, §2.4.1.4. These two principles require a new approach to

issues of causality, §2.4.1.5, and influence the approaches to communication, §2.4.1.6,

and concurrency, §2.4.1.7.

2.4.1.1 Domains of application

The three classical synchronous languages, Esterel, Lustre, and Signal, were initially

and independently developed for rigorous programming in specific embedded pro-

gramming domains, respectively: real-time sequencing and coordination [BMR83], dis-

crete feedback controllers [HCRP91, Cas01], and digital signal processing [LGGLBLM91].

Different specialisations have developed over time. Esterel is used, predominantly, for

circuit [Ber92] and system [Tec05] design. Lustre is used in the design of embedded

controllers, as a compilation target for other modelling languages [CCM+03, MH96],

and for research into dataflow programming [CP95]. Signal is the focus of ongoing

research into constraint-oriented specification [GTL03]. New synchronous languages

have since been developed, including Reactive C [Bou91], which is essentially a re-

stricted version of Esterel that is easier to implement in software, and Argos [MR01],

which is a simple graphical formalism that borrows from both Communicating Sequen-

tial Processes (CSP) and Statecharts.

While the applications, design methods, and details of the domains addressed by

the various languages are quite different, the actual implementations of controllers

share the same characteristics, basic structure, and underlying formal model.

The defining characteristic of such controllers is that they loop continually and

maintain an ongoing interaction that is driven by their environment. These proper-

ties define the class of reactive systems [HP85, MP92], by contrast with transforma-

tional systems, where termination is desired and interaction is essentially limited to

taking inputs initially and producing outputs at conclusion, and interactive systems,

where the system determines the speed and nature of interaction with the environ-

ment [Ber00a, §2.1]. In truth, real systems rarely fall neatly into one or other of these

categories [Ber00a, §2.1].

2.4.1.2 Execution schemes

Typical embedded controller programs have, at least in principle, one of two basic

structures [BCE+03]:

sample-driven: event-driven:

for each clock t ick do

sample inputs

compute outputs

update memory

for each input event do

compute outputs

update memory

The two differ in the means of triggering. A sample-driven program is triggered at reg-

ular intervals. The triggering may be implemented, for example, by timer interrupts,

sleep commands, a hardware clock, or a periodic scheduler. An event-driven program

executes in response to events. The triggering may be implemented, for example, by

interrupts, polling,17 function calls, or a queue-driven scheduler. The sample-driven

mode is natural for clocked sequential circuits and also for control domain applica-

tions [Cas01]. The event-driven scheme is more general, since periodic clock ticks are

but one triggering input. It is also harder to realise accurately in practice.

2.4.1.3 Mathematical models

Embedded controllers that follow either of the execution schemes can be formalized

as Deterministic Finite Automata (DFA). Both adjectives are important. Both have

practical and theoretical ramifications.

17Effectively a less structured form of sample-driven behaviour.

2.4. SYNCHRONOUS LANGUAGES 31

Determinism entails that system behaviours are, at least in principle, readily repro-

ducible, which simplifies testing and fault-analysis [BS91, Ber00a]. Deterministic sys-

tems can be given an adequate semantics in terms of finite traces [Hoa85, §1], avoiding

the need for more complicated theories [Ber00a, §2.3].

A finite program can run in a fixed amount of memory, which is an important con-

sideration because embedded controllers usually have limited memory and no swap

files. It is, furthermore, an important correctness concern because systems that use

unbounded amounts of memory can fail due to stack overflows or failed heap allo-

cations, and their response times are difficult or impossible to predict. Finiteness is

ensured in synchronous languages by carefully designed programming structures, as

in Esterel, and by clock calculi, as in Lustre [Cas92]. In principle, finite systems can be

verified automatically with basic model-checking techniques [Hal93, Part III][Bou97].

In practice, because variables are used, abstraction and more advanced analysis tech-

niques are often necessary. Synchronous languages attend to this issue too. In Esterel,

for instance, control flow and data handling are explicitly separated in the grammar of

statements and expressions making it easier to form an abstraction for verification.

Systems can be designed directly using DFA, usually in the form of Mealy or Moore

machines. The event-driven execution scheme corresponds closely with Mealy ma-

chines where input event becomes a transition guard, output event a transition output,

and update memory a state change. Both Esterel and Argos can be seen, at a minimum,

as a more structured way to describe such machines. Although dataflow programs

are not expressed directly in terms of states and transitions, DFA are used in their

compilation to efficient executables [HCRP91][Hal93, §6.2.3].

The direct link with mathematical models, like DFA, is central to the synchronous

approach [BB91]. In contrast to much related work, the models do not result from post

hoc formalisation of a language, but rather integral development with a language. They

aim to be mathematical as well as formal [Ber00a, §6.1.1].

Even though reactive programming languages are often formalised as Mealy ma-

chines, the interplay of instantaneous actions and those with durations that occurs

in practice is usually subtle and a satisfactory resolution is perhaps yet to be found.

There are various approaches though, amongst them Statecharts [Har87, MMP91], with

its activities, variants like Stateflow [Mat04], with during actions, the Communicat-

ing Reactive Processes (CRP) extension to Esterel [BRS93], and formalisms like hybrid

automata [MP93]. This issue is considered again in Chapters 3 and 6.

2.4.1.4 Fundamental principles

Two principles underlie all purely synchronous languages. The first comes of the ob-

servation that the two execution schemes both give rise to a totally-ordered sequence

of loop iterations, termed reactions:

The temporal behaviour of a system can be reduced to totally-ordered

sequences of discrete reactions.

The clarity of this observation is important, but more remarkable are the ramifica-

tions of adhering to it resolutely. First, it implies a certain orderliness and non-

interruptibility that is absent in many other types of systems. For instance, with

interrupt-driven routines or preemptive schedulers there is the possibility that any

single thread of behaviour could be temporarily displaced by a higher-priority one.

Second, the intervals between reactions are ignored. This abstraction from continuous

time is the essence of a discrete system, but most other types of software systems

have finer granularities. In the synchronous approach, delays, time-stamps, and time-

outs are not expressed in real-time, or its approximation by a low-level clock, but rather

in terms of relative order and number of reactions. The second principle is related and

distinctive:

A reaction is computed instantaneously.

To argue that this is impossible is to miss the point. It is an idealisation or abstrac-

tion made with the intent of simplifying system design, in the same manner as clas-

sical physics suffices for many tasks despite its neglect of relativistic effects [Ber00a,

32 CHAPTER 2. BACKGROUND

§6][Ber00b, §3]. The principle underlies synchronous circuits and is shared by most

related formal models: in automata, including timed and hybrid variants, transitions

are instantaneous and time only passes in states, in process algebra, actions are in-

stantaneous.18 It is also adopted to some degree by Statecharts [Har87, §8] and similar

approaches. Of course, computation does take time, so in practice the so called syn-

chrony hypothesis is only justified if a system reacts rapidly enough to perceive all ex-

ternal events in suitable order [Hal93, p. 6], or, similarly, if reactions can be computed

quickly enough relative to the frequency of input events.

2.4.1.5 Pure synchrony

Assuming away execution times gives a simple model of external behaviour, but what

does it really mean to react instantaneously? The synchronous approach is defined by

the asking and answering of this question. It means that outputs occur synchronously

with inputs, and further that all intermediate internal actions and communications also

occur synchronously and in zero time [BB91]. While the inputs and outputs of Mealy

machines also occur together on instantaneous transitions, Mealy machines have no

internal structure. Synchronous programs, however, are constructed from interacting

components.

The central philosophical problem is whether internal events can be at once simul-

taneous and causally ordered.

In Argos, they are simply simultaneous. Whilst communication between compo-

nents can usually be interpreted in causal terms, for example, input a causes event b
which triggers output c, the potential transitions from active states actually yield a

set of constraints to be solved and the events a, b, and c occur simultaneously solely

on the basis of constraint satisfaction. Programs whose constraints cannot be satis-

fied are rejected since they do not specify a response to an input—reactive programs

cannot restrict the environment and thus must be input-enabled.19 Programs whose

constraints have multiple solutions are also rejected since they are not deterministic.

The logical semantics of Esterel is similar but the situation is more intricate due

to variables and instantaneous control structures. Consistent signal valuations some-

times run contrary to intuitions on control flow and computing them is unnatural and

potentially expensive. Thus, a concept termed constructive causality has been devel-

oped [Ber99] to respect the causes and effects inherent in imperative control structures

and to allow a more natural, monotonic calculation of signal values [BS00]. It also turns

out that constructive causality gives a model that corresponds neatly with the impor-

tant class of delay-insensitive digital circuits [Ber99].

Constructive causality is, arguably, a compromise between the original conception

of synchrony with only one causal order of events: the total order of reactions; and

the micro-step approach of other languages like Statecharts, where there are two or-

ders: between reactions and within a reaction. Most formalisms, in fact, take the latter

approach. For instance, in timed and hybrid automata the order of actions at a sin-

gle instant of time is significant and can be formalised as two-layered ‘super dense’

time [MP93]. There is, in the constructive semantics of Esterel, an acceptance of the

ordering of computation steps within a reaction, an order intended by the program-

mer and expressed in the program structure, but nevertheless also a desire to treat

internal communications as simultaneous, which accords well with the original notion

of broadcast communication.

2.4.1.6 Communication

In both Argos and Esterel, components communicate through signals, which are named

broadcast communication channels. Every signal has a single, consistent status at a re-

action, either present or absent. The status of (system) input signals is set by the envi-

ronment before a reaction is computed. The status of internal and output signals—the

18Esterel is sometimes credited as an influence on timed process algebras [HR95]. Furthermore, there
are similarities between the assumptions of synchrony and of maximal progress (§2.2.3.3), since in both
all internal actions must occur instantaneously and immediately.

19Input-enabledness is, in the synchronous language literature, sometimes termed ‘reactivity’.

2.4. SYNCHRONOUS LANGUAGES 33

former are lexically scoped and the latter are visible to the environment—is computed

during a reaction. In Argos and the logical semantics of Esterel, an assignment of

statuses to signals is found as the solution of a set of transition constraints. The con-

structive semantics of Esterel is closer to operational intuition. At the beginning of a

reaction, non-input signals have an indeterminate status, written ⊥. They are marked

present only when a corresponding output action is executed, termed an emission.

They are only marked absent if and when it can be determined that no such action can

occur in the reaction.

Two consequences of the signalling mechanism are especially unique. For one, af-

ter a signal has been set additional emissions in the same reaction do not affect its

status. In many languages, for instance Statecharts, several identically-named events

can occur at an instant. They are distinguished by name and relative order. This is

easier to implement in software [HLN+88] and its formalisation is relatively straight-

forward [HPSS87], but there are drawbacks. Notably, the relation between states used

in the expression of a program and states in the underlying model becomes more

complicated and it is more difficult to bound the number of computation steps in a

reaction.

The second consequence is that triggers and conditions within a program can refer

to the absence of an event relative to a reaction. Far from being an obscurity, referring

to absence is a fundamental way to specify priority. For instance in Structural Oper-

ational Semantics (SOS), the possibility of a lower priority transition may depend on

the impossibility of a higher priority one. Furthermore, signal absence is integral to

the meaning of certain control structures, notably suspension and preemption, where

components can only execute when certain events do not occur. Incorporating absence

in full generality gives more opportunity to reduce a language to a small set of primitive

statements [BMR83]. But it also makes distributed implementation and desynchroniza-

tion more challenging, and there is some conceptual discord with the event-driven

execution scheme.

The complications of computing signal absence in Esterel, particularly in software,

have led to other proposals. Most notable is the approach taken by Reactive C [Bou91]

and related languages [BS96, Puc98]. There, absence is only detectable at the end

of a reaction; further computation and state change may occur, but further signal

emissions may not. For instance, in a conditional statement that tests a single signal,

further outputs may occur in the branch taken when the signal is present, but not in

the other branch. This approach can be seen as another response to the problems

that motivated the development of the constructive semantics of Esterel. The result

is simpler to implement in software but less general and also less natural for circuit

implementations.

Besides idempotence of emission and perceivable absence, synchronous broadcasts

have several other interesting characteristics, namely: non-blocking sends, persistence

and global visibility, contrasts with queued communications, and advantages for pro-

gram construction and verification.

Senders can always emit signals. They are thus isolated by default from the be-

haviour of other components.20 The potential drawbacks of not knowing whether a

communication has been received are mitigated by global synchronization and the

possibility of so called instantaneous dialogues [MR01, §3.2.2.7] within a reaction.

Synchronous broadcast communications are persistent within a reaction and visible

at all components with consistent status and value; as if all components were in the

same room speaking to, listening to, and overhearing one another [Ber89b]. Persistence

and consistency together ensure that communications are not lost due to the internal

ordering of a reaction.

As signal statuses are reset between reactions, components can miss communica-

tions if they are not in a receptive state a signal is emitted. This would not happen

were communications queued, but queues have other drawbacks. Unbounded queues

introduce the possibility of indeterminate delays between message sending and receipt,

and of unbounded memory use. Bounded queues, when full, require either the loss of

20A similar design principle is embodied in the temporal firewalls of the Time Triggered Architecture
(TTA) [KB03].

34 CHAPTER 2. BACKGROUND

communications or blocking of the sender. Nevertheless, queuing is sometimes appro-

priate and queues can be expressed in synchronous languages [Jef93, KRSW98, SA01].

Furthermore, doing so explicitly has three advantages: the bounding is explicit, the

timing behaviour is clear, and exceptional cases can be handled as most appropriate

for a specific application.

One practical advantage of global visibility, together with sender isolation and syn-

chronous concurrency, is that systems are easily extended without inadvertently al-

tering their existing behaviour. New components can be added in parallel to ‘listen’

and act on system activity without interfering (providing they do not emit existing sig-

nals).21 This capability can be exploited for verification by encoding a safety property

to be checked as a synchronous observer [HLR93, HR99] that emits an error signal if

the property is violated. Observers can either be expressed directly in the same pro-

gramming language or translated into it from a specification language like temporal

logic [JPO95]. A model checker can guarantee that the error signal is never emitted,

and hence that the property holds of all reachable states, or it can provide a counter-

example trace. In Chapter 4, similar techniques are applied to a non-synchronous mod-

elling language, which has both broadcast and paired communication mechanisms.

2.4.1.7 Concurrency

The concurrent components of a synchronous program operate in lockstep. This ap-

proach has similarities with the synchronous model of distributed systems [Lyn96,

§2][Tel00, §12] and with synchronous process algebras. Synchronous concurrency dif-

fers from the interleaving model common to many software systems [Dij68], although

it can be implemented by interleaving component actions. Ultimately, it is closer to the

type of concurrency found in clocked digital circuits.

A parallel can be drawn between the sequences of discrete reactions in synchronous

programs and the sequences of discrete rounds in synchronous distributed systems.

A round has two distinct phases: communication and computation. All components

have first the opportunity to send and receive messages, and then each may update

its local state before the next round begins. The two models have, by virtue of this

similarity, several properties in common. All components are synchronized to a global

and totally-ordered notion of time. Each component has regular opportunities to make

progress, and thus fairness is less of an issue. Behaviour is not affected by the order

of message receipt and transmission. And absence is significant, for example, for fault

detection in synchronous distributed systems [Tel00, §15].

But synchronous languages differ from synchronous distributed systems in the

treatment of communication between concurrent components. Communications in the

former are broadcast whereas in the latter they are usually directed. More significantly,

while reactions and communications within reactions are instantaneous, rounds must

take time: in a distributed system message transmission delay is not negligible com-

pared to the time between events in a single process [Lam77]. Moreover, communica-

tion and response within a reaction are not so rigidly structured as they are in a round,

rather the two are intermingled, particularly during instantaneous dialogues.22

There are also similarities between synchronous languages and synchronous pro-

cess algebras. The Synchronous Calculus of Communicating Systems (SCCS) [Mil83] is

a process algebra distinguished by having an operator for synchronous concurrency,

rather than one defined in terms of interleaving [Hoa78, Mil89]. All concurrent com-

ponents participate in a system transition, their individual actions are combined by a

product operator and unwanted actions are removed by a restriction operator. The in-

stantaneous dialogues characteristic of synchronous programs can be mimicked using

such operators; Argos, in fact, takes this very approach. Although there is no explicit

operator for asynchronous concurrency in SCCS, asynchronous processes can still be

expressed [Mil83, §7]. Similarly, asynchronous behaviours can also be expressed in

synchronous languages [BS01, HB02].

21Similarly to the ‘publish-subscribe’ or ‘plugin’ mechanisms of some component frameworks.
22Similar cooperations could be achieved in synchronous distributed systems, but components would

have to share many more details of their individual states and control structures than would be natural.

2.4. SYNCHRONOUS LANGUAGES 35

In contrast, operators for asynchronous concurrency do not combine the actions

of components in the same way. Instead they interleave individual actions, usually in

arbitrary, that is non-deterministic, order. Varying degrees of synchronization through

communication are possible but usually only through pairs of complementary ac-

tions.23 The intermingling of component actions within a synchronous reaction can

be implemented by interleaving, using varying degrees of static [WBC+00, Edw00] and

dynamic [EL03] scheduling. While the interleaving may be non-deterministic, the re-

sults, in terms of signal valuations and state change, are still determinate [BS01].

Although synchronous languages were originally developed for programming real-

time software [BMR83], the same notion of concurrency with instantaneous communi-

cation is also a good model for synchronous digital circuits, which are defined against

the regular pulses of a global clock. The voltage levels on the interconnecting wires of

circuits correspond to the logical values of signals and, in well-behaved circuits, they

too converge to a consistent state. For these reasons, synchronous programs that have

no explicit data manipulations are readily compiled into circuits [Ber92] and there is a

close connection between well-behaved Esterel programs and well-behaved cyclic cir-

cuits [Ber99, §4.4]. The circuit form can be realised directly or simulated in software.

Reaction computations in hardware are truly concurrent rather than interleaved.

For all its advantages, the synchronous model of concurrency has some limitations

due to the possibility of signal absence and the rigidity that comes with predictability.

The tight binding of components within a reaction and the need to treat signal ab-

sence make distribution challenging, although techniques do exist [CGP94]. There is a

fundamental conflict between the ideal of delay-free communication in synchronous

programs and the communication delays that define distributed systems. Yet the

simplicity of reasoning about synchronous specifications and the inherent appeal of

adapting them to situations where causality is partially ordered have motivated recent

research [BCLG99, BCLG+02].

Synchronous programs are predictable but rigid. The two attributes are concomi-

tant: for example, a group meeting for lunch each day at the same place and time is

predictable and need only make arrangements at the outset, whereas choosing a differ-

ent place and time everyday involves more communication, and possibly unbounded

time, but gives more adaptability, flexibility, and variety. Compiling away concurrency

and communication means that tasks cannot simply be added at run-time, as is possi-

ble in general-purpose Operating Systems (OSs). This is appropriate for hard real-time

systems, which must account for worst-case scenarios, but too expensive for other

types of system which are expected to be more dynamic. Synchronous languages are

optimised for expressing control structures and calculations, but not for specifying the

kind of data structure manipulations that are also required in systems software and

other types of embedded or low-level programming. There have been attempts to make

the synchronous style more applicable to systems with such features [BCG+97, MM97],

but they have not proved especially effective.

2.4.2 Argos

Argos is a set of operators for combining Boolean Mealy Machines (BMMs) [MR01].

It is similar to Statecharts in motivation and syntax but much simpler in definition;

most notably, inter-level transitions and history junctions are forbidden. The design

of Argos also blends concepts from the classical synchronous languages, particularly

Esterel, and process algebra, particularly Calculus of Communicating Systems (CCS).

There are four Argos operators for combining basic BMMs: parallel composition

for the synchronous product of two machines, encapsulation for enforcing synchro-

nization and hiding signals, inhibition for restricting participation in reactions, and re-

finement for introducing hierarchical structure. The operators, with standard [MR01]

graphical and mathematical notations, are presented in §§2.4.2.1–2.4.2.5. Programs

are sometimes also encoded in the textual syntax described in Appendix D.

23Although the encapsulation function of Algebra of Communicating Processes (ACP) is more flexible,
see §A.4.

36 CHAPTER 2. BACKGROUND

The semantics of Argos are defined recursively over its syntax by a function which

maps each syntactic operator to a corresponding semantic operator over BMMs [MR01,

§4.3]. The semantic operators are defined in §§2.4.2.1–2.4.2.5, following the standard

presentation [MR01], rather than the SOS version [Mar92], with only minor notational

differences. The semantic operators are closed over BMMs, but they do not, in general,

preserve determinism or input-enabledness. Programs that map to non-deterministic

BMMs or to those that are not input-enabled are regarded as incorrect. The seman-

tic function is slightly more complicated as a result since it is undefined when any

subprogram is undefined.

It is reasonable to consider some programs as incorrect [MR01, §1.5]. In statically-

typed languages, for instance, programs are rejected if they are not type correct.

Checking for determinism and input-enabledness in Argos, however, is more expen-

sive. In principle it means analyzing the reachable state space and considering all

input assignments, which is only practical for the smallest programs. In practice, some

form of approximate detection must be adopted and certain valid programs will be

rejected; again analogously with statically-typed languages.

The notion of equivalence in Argos is bisimulation of correct programs [MR01, Def-

inition 8]. The semantics are termed compositional [Mar92], because this equivalence

is a congruence for all the operators [MR01]. In practice, this fact justifies reasoning

about the behaviour of a program in terms of the individual behaviours of its parts.

Although valued extensions have been sketched [MR01, §4.5], Argos programs are,

essentially, free of variables and limited to pure Boolean signals. These limitations en-

able a concise notation and a relatively simple semantic definition, but make it difficult

to express sophisticated behaviours and to program real systems. Argos is neverthe-

less suitable for expressing a certain class of reactive controllers, as is demonstrated

in Chapter 3.

There are good reasons for studying Argos, despite the fact that languages like

Esterel, particularly in the graphical form of Safe State Machines (SSM) [And95], are

a better choice for programming most systems since they have variables, data struc-

tures, host language function calls, and industrial-strength tool support. For one, Ar-

gos treats many of the essential ideas of Statecharts in an uncomplicated way, and,

in doing so, provides a means of expressing Mealy machine models without recourse

to a weightier language like Esterel. It demonstrates, in a simple setting, many of the

fundamental concepts and issues in the design of imperative synchronous languages.

The syntax of Argos, though, is too simple to demonstrate the constructive causality

and modern compilation techniques of Esterel, where subtle interpretations are read

into the more sophisticated, domain-specific constructs.

Another advantage of Argos is that a relatively simple and efficient means of compi-

lation exists [MH96], whereby programs are transformed into dataflow streams; essen-

tially those of Lustre. A separate stream is introduced for every state, local signal, and

output. The streams can also be computed, analysed, and converted to a sequential

program directly using Binary Decision Diagrams (BDDs).

2.4.2.1 Boolean Mealy Machines

notation:

(S, s0, I,O, T)

R1
RN

Ri
i/o

i/o

i/o

BMMs are the basis of the Argos language.

They are depicted graphically as state tran-

sition diagrams and in the mathematical

notation as a tuple, whose formal defini-

tion [MR01, Definition 1] follows. Semanti-

cally, the tuples stand for themselves. There

is a direct relationship between diagrams

and tuples: states are drawn as rectangles; the initial state is marked by an otherwise

unconnected arrow in its upper-left corner; and transitions are drawn between pairs

of states and labelled by input and output expressions separated by a slash. States

may be labelled with names. But neither names, nor the relative positions of graphical

elements have any semantic significance. The four operators of Argos act over BMMs.

2.4. SYNCHRONOUS LANGUAGES 37

Definition 2.4.1

A Boolean Mealy Machine (BMM) over disjoint finite sets I (input signals) and O (output

signals) is a deterministic LTS over A = 2I∪O and P = ∅ where S is finite and S0 = {s0}.
A BMM will be written as a tuple (S, s0, I,O, T), where T ⊆ S × 2I × 2O × S. Each

(s, I′,O′, s′) ∈ T denotes a transition s
a−→ s′, where a = I′ ∪O′.

It is usual, in Argos, to specify subsets of input signals by treating the elements of I
as variables and combining them into Boolean expressions with negation, written by

overlining them (a), and conjunction, written as a dot (a · b). The set of Boolean ex-

pressions with variables in I will be written AB(I) [MR01, Definition 1]. A transition

guard ϕ/O′, with ϕ ∈ AB(I), then denotes a set of transitions on the actions in:

{
I′ ∪O′ | I′ ⊆ I∧ I′ ⊨ϕ} ,

where I′ ⊨ ϕ means that ϕ is satisfied by assigning true to all variables in I′ and false

to those in I \ I′. Transitions are sometimes also labelled with lists of expressions

in AB(I), delimited by plus symbols (ϕ1+· · ·+ϕn), which is a short-hand for multiple

transitions, one for each ϕi, that share the same source state, destination state, and

output set. An absent input label is treated as shorthand for ϕ = true. An absent

output label is treated as shorthand for O′ = ∅ and the dividing slash is omitted.

State names are ignored in the semantics of Argos because they limit composition-

ality [MR01]. Programs with the same external behaviour should be interchangeable re-

gardless of their internal structure. The in() predicate of Statecharts is, for this reason,

not made available but its effect can be recovered by synchronizing on local signals.

BMMs in Argos must be deterministic and input-enabled. That is, in every state,24

for any valuation of inputs, exactly one transition must be possible. This causes a

minor problem of interpretation. For example, consider the BMM diagram:

s0 s1
a

(Figure 2.10)

The corresponding BMM has the form ({s0, s1}, s0, I,O, T). The values of I and O are

not made explicit in the diagram,25 beyond that a ∈ I, but they are not important

at present. There are two relevant possibilities for T . The literal interpretation is

Tl = {(s0, a,∅, s1)}, but this BMM would not be input-enabled since it does not specify

what should happen in s0 in reactions where a is absent. Instead, it is usual to omit

the transitions from a state to itself, if they do not emit signals [MR01, §2.2], giving the

self-loop interpretation:

s0 s1
a

a (Figure 2.11)

where Ts = Tl ∪ {(s0,¬a,∅, s0), (s1, true,∅, s1)}. These implicit self-loop transitions

can be inferred for each state from the set of explicit outgoing transitions. In partic-

ular, the exact value of I is irrelevant. There is a problem, however, when it comes to

refinement, because, as will become clear in §2.4.2.5, an explicit transition from a state

terminates any machine that refines that state, whereas an implicit transition should

not. Furthermore, the explicit transition may be a self-loop, which would restart a re-

fining machine.26 The precise policy could be stated: assume the literal interpretation

for refined BMMs and the self-loop interpretation otherwise. And thus, the machine

that serves as the (refined) controller is not necessarily reactive [MR01, §3.2.4]. This

policy is implicitly adopted in the compilation to dataflows [MH96].

In the following subsections the class of BMMs and a special value ⊥ representing

an incorrect program is written M⊥. The subset of deterministic BMMs is written Md.

24It is usual [MR01, Definition 3] to consider all states, not just those reachable from the initial state.
25They are sometimes given explicitly [MR01, Figure 1].
26In some Statecharts-like languages, Stateflow for example, there is a distinction between ‘internal’ and

‘external’ transitions.

38 CHAPTER 2. BACKGROUND

2.4.2.2 Operator: parallel composition

notation:

E ‖ E
operator:

× : M⊥×M⊥⇒M⊥

E E

The parallel operator joins the behaviours

of two Argos programs which then act in-

dependently, but, true to the synchronous

paradigm, simultaneously. It is expressed in

the graphical notation by drawing two pro-

grams next to one another with a dashed

line between them, and in the mathematical

notation by placing a ‖ symbol between two expressions.

The meaning of parallel composition is given in terms of synchronous composition,

written ×, which maps two BMMs to a third.

Definition 2.4.2

The synchronous composition of two BMMs M1 ×M2 is defined

S1,

s1
0 ,
I1,
O1,
T1

×

S2,

s2
0 ,
I2,
O2,
T2

=

S1 × S2,

(s1
0 , s

2
0)

I1 ∪ I2,
O1 ∪O2,
T ′

where T ′ is the smallest set such that

s1,
m1,
o1,
s′1

 ∈ T1 ∧

s2,
m2,
o2,
s′2

 ∈ T2 =⇒

(s1, s2),
m1∧m2,
o1 ∪ o2,
(s′1, s

′
2)

 ∈ T

′

Both parallel components are synchronized in the resulting BMM, acting simultane-

ously in each of its reactions. The resulting set of states is the Cartesian product of

the original sets. Such definitions are typical of both synchronous and asynchronous

process models. The characteristic feature of synchronous composition is that transi-

tions are combined with conjunction. Between any two composite states all possible

pairings of transitions from one component with those of the other are allowed. The

new guards are conjunctions of the component guards, and the new outputs are the

union of the component outputs.

Synchronous composition alone does not enforce consistency in local signal valua-

tions and thus does not completely resolve communications between components. For

instance the conjunction of transitions (s0,¬a,∅, s′0) and (s1, true, {a}, s′1) gives the

transition ((s0, s1),¬a, {a}, (s′0, s′1)), which is self-contradictory: the transition is only

triggered when a is absent but it itself emits a. Signals that occur in both input guards

and as outputs must, at some point, be declared local using the encapsulation opera-

tor, described next in §2.4.2.3, which removes such inconsistencies. Argos is, in this

regard, similar to CCS where the unsynchronized transitions of a parallel composition

can later be removed with a signal hiding operator.

2.4.2.3 Operator: encapsulation

notation:

EΓ

operator:

\ : M⊥×P(A)⇒M⊥

E

Γ

The encapsulation operator makes a set of

signals local to a subprogram. Local sig-

nals are used for broadcast communication

within the scope of the operator. They are

not visible outside the scope. Encapsula-

tion is represented graphically by a rect-

angle drawn around a subprogram with a

smaller rectangle underneath in which the signals to hide are written. It is written

mathematically by drawing a line above the expression in scope, with the signals to be

hidden next to it in superscript.

The corresponding semantic operator is also called encapsulation.

2.4. SYNCHRONOUS LANGUAGES 39

Definition 2.4.3

The encapsulation of a BMM M = (S, s0, I,O, T) by a set of signals Γ , written M \ Γ , is

the BMM (S, s0, I \ Γ ,O \ Γ , T ′) where T ′ is the smallest set such that27

(s,m,o, s′) ∈ T ∧∀x ∈ Γ . (((x∧m) =m =⇒ x ∈ o) ∧ ((¬x∧m) =m =⇒ x 6∈ o))

=⇒ (s,∃Γ .m, o \ Γ , s′) ∈ T ′

The matrix of the second premise in Definition 2.4.3 can be replaced by the bicon-

ditional expression ((x∧m) =m) ⇐⇒ x ∈ o only if guards are restricted to complete

monomials, otherwise there are actually three possibilities for each x ∈ Γ : x is positive

in m, x is negative in m, or x does not occur in m.

Encapsulation does not preserve input-enabledness or determinism. An example is

shown in Figure 2.12a, where there are two deterministic BMMs M1 and M2 in parallel,

and the local signals a and b are encapsulated: (M1 ‖ M2) \ {a,b}. The synchronous

product before the removal of encapsulated signals is shown in Figure 2.12b. It is

deterministic; one transition emits signals a and b, the other does not. The result after

encapsulation is shown in Figure 2.12c. It is not deterministic; in state (A1, B1) there

are two possible transitions when the external signal i is present. Each transition is

consistent in itself, depending either on the absence of a and b and not emitting either,

or requiring both and also emitting them. Examples for a loss of input-enabledness

after encapsulation are also readily constructed [MR01, 3.2.2.4].

The example of Figure 2.12 also demonstrates the view of synchrony taken in Argos,

that events within a reaction are strictly simultaneous. In particular, it is not possible

to argue that the guards of a transition are evaluated before its outputs are emitted,

and thus that only the transition with guard i∧a∧b could occur.

2.4.2.4 Operator: inhibition

notation:

E〈γ〉

operator:

whennot : M⊥×A⇒M⊥

E

〈Γ〉

The inhibition operator prevents a subpro-

gram from acting in reactions where a given

signal is present.28 Its graphical and math-

ematical representations are the same as

those of the encapsulation operator except

that only a single signal may be given and it

must be written between angle braces.

The corresponding semantic operator is also called inhibition.

Definition 2.4.4

The inhibition of a BMM M = (S, s0, I,O, T) by a signal γ 6∈ I, written M whennotγ, is

the BMM (S, s0, I ∪ {γ},O, T ′) where T ′ is the smallest set such that

(s,m,o, s′) ∈ T =⇒ (s,m∧¬γ, o, s′) ∈ T ′
∧ (s,m∧γ,∅, s) ∈ T ′

The only possible transition when the inhibiting signal is present is a self-loop without

any outputs. When the inhibiting signal is absent the original responses are possible.

The use of inhibition in features related to refinement, namely enter-by-history,

strong abortion, and inter-level outgoing transitions, is discussed in §§2.4.2.5–2.4.2.7.

2.4.2.5 Operator: refinement

notation:

RM(R1, . . . , Rn)
R = E |NIL

operator:

� : Md×M⊥×· · ·×M⊥⇒M⊥

R1
RN

Ri M

The refinement operator, like the parallel

operator, combines BMMs, which may then

act simultaneously and intercommunicate.

Unlike parallel composition, however, re-

finement introduces a hierarchical relation-

ship between BMMs. A controlling BMM de-

termines the lifetimes of subordinate BMMs.

Compared to Statecharts, refinement in Argos is simpler but less flexible.

27The equivalence between expressions here is equivalence under all assignments to free variables.
28Also called the ‘inhibiting operator’ [MR01].

40 CHAPTER 2. BACKGROUND

a,b

A1

A2

B1

B2

i∧ a/b

i∧ a i∧ a i∧ a

i∧ b/a

i∧ b i∧ b i∧ b

(a) Basic Program

a,b

(A1, B1)

(A2, B2)

i∧ a∧ b/a,b

i∧ a∧ b

i

(b) After composition

(A1, B1)

(A2, B2)

i

i

i

(c) After encapsulation

Figure 2.12: An encapsulation that gives a non-deterministic result [MR01, §3.2.2.4]

There is not really a single corresponding semantic operator, but rather a family of

semantic operators, one for each non-zero natural number.

Definition 2.4.5

The refinement of a BMM M = (S, s0, I,O, T), where S = {s0, . . . , sn}, by a set of refining

BMMs M =
{
(Si, si0, I

i,Oi, T i) | 0 ≤ i ≤ n
}

is M � M = (S′, s0
0 , I ∪

⋃
Ii,O ∪ ⋃Oi, T ′)

where

S′ =
⋃̇n

i=0

{
sij | 0 ≤ j ≤ ni

}

and T ′ is the smallest set satisfying the two rules

(
(sk,m, o, sk′) ∈ T

∧
(
skl ,m

′, o′, skl′
)
∈ T k

)
=⇒

(
skl ,m∧m′, o ∪ o′, sk′0

)
∈ T ′ (outer)

(skl ,m
′, o′, skl′) ∈ T k =⇒

skl ,m

′∧
∧

(sk,m,·,·)∈T
¬m,o′, skl′

 ∈ T ′ (inner)

The refinement comprises the states of the refining BMMs, but its transitions account

for the priority of the controlling BMM and the possibility of abortion.

The outer rule preserves the transitions of the controlling BMM and defines their ef-

fect on the refining BMMs. The BMM that refines the source state is allowed to act in the

transition that terminates it—so called weak abortion [Ber00a, §3.6]—in fact, because

both transitions occur synchronously, a refining BMM can terminate itself by emitting

signals that trigger a transition in its parent. The BMM that refines the destination state

is started in its initial state and it may not act until the next reaction. This asymme-

try between actions of the terminated machine and actions of the initialized machine

sidesteps the complexities of process schizophrenia [MR01, §3.2.4][Ber99, §12][TS05],

where the possibility of simultaneous termination and initialization of programs man-

dates nested signal replication. It also precludes practicable encodings of incoming

inter-level transitions and conditional initial states.

The inner rule allows the active refining BMM to act when none of the controlling

transitions are possible. A conjunction of negated controlling guards expresses the

required priority.

The mapping of states to BMMs in Definition 2.4.5 is encoded by consecutively num-

bering states in the controlling BMM, starting from zero for the initial state. While this

is awkward, it does not present any fundamental problems. In the graphical notation,

the mapping is expressed by drawing each refining BMM within a state of the control-

ling BMM. State labels are used in textual encodings; see, for example, Appendix D.

The refinement operator requires a BMM for each controlling state. A place-holder

BMM can be used for states that are not refined.

Definition 2.4.6

The Nil BMM is defined NIL = ({NIL},NIL,∅,∅, {(NIL, true,∅,NIL)}).

2.4. SYNCHRONOUS LANGUAGES 41

A

B

Cy/tz
i

(a) Macro notation

< α >

A

B

Cy/tz
i/α

α

(b) Expansion

Figure 2.13: Expressing strong abortion with inhibition and refinement

A

B

i

(a) Statecharts

A

Bi/α

α

α

(b) Argos equivalent

Figure 2.14: Inter-level outgoing transitions

Different combinations of the inhibition and refinement operators are able to ex-

press enter-by-history, strong abortion, and inter-level outgoing transitions. The last

two are described in subsequent sections where special notations are introduced.

Enter-by-history [Har87, §2] is a characteristic feature of Statecharts. A history

junction H can be added to a refining state machine to indicate that its active state

should not be forgotten when it is aborted, but should instead become the initial state

when the machine is next activated. Argos does not support enter-by-history, but the

same effect can be achieved, with some effort, using local signals, parallel composition,

and inhibition. A Statecharts diagram that use enter-by-history is shown in Figure 3.13,

and an encoding of it in Argos is given in Figure 3.14.

2.4.2.6 Macro: strong abortion

The parallel, encapsulation, inhibition, and refinement operators are the core operators

of Argos. They are defined as direct manipulations of BMMs. Macro notations, in

contrast, are defined as syntactic transformations.

While abortion in Argos is weak by default, it is possible to express strong abortion,

where the aborted subprogram cannot contribute outputs to the reaction in which

it terminates. The macro notation suggested [MR01, §3.3.2] for indicating strong-

abortion is a black dot at the base of a transition, as in Figure 2.13a.29 The meaning

of this notation is defined in terms of the primitive operators. The contents of each

strongly-aborted state are enclosed in an inhibition operator that is labelled by a fresh

local signal, which is added to the outputs of all strongly-aborting transitions sourced

at that state, as in Figure 2.13b.

2.4.2.7 Macro: outgoing inter-level transitions

Inter-level transitions are typical of Statecharts and similar languages. They connect

states at different levels of the hierarchy. They are either incoming from a shallower

state to a deeper one, or outgoing from a deeper state to a shallower one.

Incoming inter-level transitions are effectively a way to choose the starting states of

refining state machines down to and including the destination state. They cannot be

29The term ‘inhibiting transition’ is also used [MR01].

42 CHAPTER 2. BACKGROUND

[d a]

. . .I1 / O1 In / On

I′1 / O
′
1...

I′n′ / O
′
n′

/ Ot
2

. . .I′′1 / O
′′
1 I′′n′′ / O

′′
n′′

(a) Macro notation

. . .

I1 / O1 ∪ {s} In / On ∪ {s}

I′1 / O
′
1 ∪ {r}
...

I′n′ / O
′
n′ ∪ {r}

to / Ot

. . .

I′′1 / O
′′
1 ∪ {k} I′′n′′ / O

′′
n′′ ∪ {k}

Idle 0

1

...

d− 1

s

k

a∧k∧ r

a∧k∧ r

a∧k∧ r

k

k

a∧
k∧
r
/

to

r

r

s, k, r , to

(b) Expansion in parallel

Figure 2.15: Expansion of the temporized state macro

modelled naturally in Argos because the initial states of refining BMMs are fixed and

the refining BMMs themselves do not participate in the initializing reaction.

Outgoing inter-level transitions are effectively a way of terminating controlling state

machines up to the level of the destination state. They can be modelled in Argos by

replacing the multi-level transition with two new transitions: a self-loop at the source

state and a new transition from the ancestor of the source state at the level of the des-

tination state to the destination state itself. The new self-loop transition inherits the

guard of the original and emits a fresh local signal that triggers the other new transi-

tion. Any other outputs can be emitted by either of the new transitions. For example,

the inter-level transition in Figure 2.14a can be replaced by those in Figure 2.14b.

2.4.2.8 Macro: temporized states

The temporized state macro is for specifying time-limited states. These states have a

label of the form [d a], for example [5 SEC], and a single timeout transition designated

by a square box, see Figure 2.15a. Timeout transitions may not have guard expressions,

but they may emit outputs. If the temporized state is still active after d occurrences of

signal a the timeout transition is triggered.

The expansion of a temporized state to basic operators is shown in Figure 2.15b.

Four new local signals are introduced: s for ‘start’, k for ‘kill’, r for reset, and to for

‘timeout’. Fresh names must be chosen, in particular when there are multiple tempo-

rized states in a single BMM. A counter automaton is introduced for each temporized

state. The s signal is added to the outputs of all transitions from other states into the

temporized state; its emission starts the counter automaton. The k signal is added

to the outputs of all transitions from the temporized state to other states, except the

timeout transition. Its emission resets the counter automaton. The r signal is added

to the outputs of all explicit self-loop transitions at the temporized state, except the

timeout transition. Its emission restarts the counter automaton. The timeout transi-

tion becomes a normal transition that is triggered by the to signal which the counter

automaton emits if a timeout occurs. The temporized state becomes a normal state.

The construction of Figure 2.15b must be altered if the temporized state is an initial

state or if the timeout transition is a self-loop. In the former case, state 0, rather than

Idle, is made the initial state. In the latter case, the transition from state d− 1 that

emits to goes to state 0 rather than Idle. These adjustments are readily combined.

The construction presented here differs slightly from the original [MR01, Figure 9]

by accounting for self-loops and initial temporized states. The former must be de-

fined explicitly because self-loops can be addressed in two ways: either resetting the

timer, as here, or not. The natural interpretation of self-loops in the original, adding

both s and k signals to their outputs, is incorrect because it would leave the counter

automaton in the Idle state.

An alternative expansion refines the temporized state with the counter automa-

ton. The counter automaton is placed in parallel with any other refining subprograms.

The guard of the transition that emits to must include the negated disjunction of all

2.4. SYNCHRONOUS LANGUAGES 43

syntax notation

primitive

no-op statement nothing 0

signal broadcast emit s ! s
unit delay pause 1

signal test present s then p else q end s ?p ,q
suspension suspend p when s s ⊃ p
sequencing p ; q p ;q
looping loop p end p∗
concurrency p || q p |q
exceptions trap T in p end {p}, ↑p

exit T k with k ≥ 2

local signals signal s in p end p \ s

derived

immediate suspension suspend p when immediate s end s ·⊃p
abortion abort p when s end p≫ s

Table 2.1: Syntax and notation of the main Esterel statements [Ber99, §5]

guards on transitions from the temporized state. As refinement manages the lifetime

of subprograms, the Idle state and the signals s, k, and r are not required. State 0 is

made initial. The transition that emits to goes to state 0 rather than to Idle. All other

transitions to Idle, and the state itself, are omitted.

The expansion gives the semantics of temporized states, but in practice, counters

are used rather than explicit states.

Temporized states embody the multiform notion of time that is typical of syn-

chronous languages. Alternatively, they can be interpreted in real time [JMO93]. Time-

outs are then expressed in the form [d], that is with an implicit reference to time rather

than to a signal, and programs are defined semantically in terms of timed graphs rather

than BMMs. This possibility is discussed again in Chapter 6 (§6.3.6).

2.4.3 Esterel

Esterel is a larger and more complex language than Argos and, unlike Uppaal, it is not

an extension of a simpler underlying formalism. The treatment of time and events in

Esterel distinguishes it from algorithmic languages like Ada or C.

Esterel can be viewed from two complementary perspectives. In one sense it is a

means of describing DFA from which efficient hardware or software can be generated.

The advantage of expressing designs in Esterel, rather than directly, is to avoid dupli-

cation [Ber00a, §3.2][Ber00b], and to ensure that small changes to the requirements

do not entail large changes to programs [Ber00b, §4.2]. In another sense, Esterel is a

domain-specific notation for describing reactive behaviours. There are statements for

describing event handling, concurrency, preemption, and suspension. Furthermore,

the sequential behaviour of statements is defined tractably and rigorously.

The main Esterel statements are described in §2.4.3.1 through the development of

a small example. An overview of the various semantic definitions and compilation

techniques is presented in §2.4.3.2. Comprehensive descriptions of the Esterel lan-

guage [Ber00a][PBEB07, Part I] and its semantics [Ber99][PBEB07, Parts II and III] are

available in the literature. The literature also contains several extensions and varia-

tions of Esterel, as well as case-studies and applications to diverse domains.

2.4.3.1 Overview

At a glance, most Esterel statements, see the central column of Table 2.1, look like

those of any other imperative programming language; and especially to Ada and Pas-

cal whose syntax also derives from Algol. The behaviour of Esterel is, however, quite

44 CHAPTER 2. BACKGROUND

halt = loop pause end

sustain s = loop emit s ; pause end

present s then p end = present s then p else nothing end

await s = trap T in

loop

pause ;

present s then exit T end

end loop

end

await immediate s = trap T in

loop

present s then exit T end ;

pause

end loop

end

suspend

p
when immediate s

= suspend

present s then pause end ; p
when s

abort

p
when (immediate) s

= trap T in

suspend p when s ; exit T

| |

await (immediate) s ; exit T

end

weak abort

p
when (immediate) s

= trap T in

p ; exit T

| |

await (immediate) s ; exit T

end

loop

p
each s

= loop

abort p ; halt when s
end loop

every (immediate) s do

p
end every

= await (immediate) s ;

loop p each s

repeat e times

p
end repeat

= trap T in

var C : int = e in

loop

i f C = 0 then exit T end ;

C := C − 1; p
end loop

end var

end trap

await e s = repeat e times await s end repeat

Table 2.2: Derived statements of Esterel [Ber00a, BG92]

2.4. SYNCHRONOUS LANGUAGES 45

inputs:

LEGS_IN

LEGS_OUT

BOOM_IN

BOOM_OUT

STICK_OUT

STICK_IN

BUCKET_IN

BUCKET_OUT

STOP_BUTTON

EXTEND_BUTTON

RETRACT_BUTTON

outputs:
LEGS_EXTEND
LEGS_RETRACT
LEGS_STOP

BOOM_PUSH
BOOM_PULL
BOOM_DRIVE

STICK_PUSH
STICK_PULL
STICK_DRIVE

BUCKET_PUSH
BUCKET_PULL
BUCKET_DRIVE

Figure 2.16: Backhoe loader example: input and output signals

1 module BACKHOE:

2

3 input BOOM_OUT, BOOM_IN;

4 relation BOOM_OUT # BOOM_IN;

5

6 input STICK_OUT, STICK_IN ;

7 relation STICK_OUT # STICK_IN ;

8

9 input BUCKET_OUT, BUCKET_IN ;

10 relation BUCKET_OUT # BUCKET_IN ;

11

12 input LEGS_OUT, LEGS_IN ;

13 relation LEGS_OUT # LEGS_IN ;

14

15 input STOP_BUTTON, EXTEND_BUTTON, RETRACT_BUTTON;

16

17 output BOOM_PUSH, BOOM_PULL, BOOM_DRIVE;

18 output STICK_PUSH , STICK_PULL , STICK_DRIVE ;

19 output BUCKET_PUSH, BUCKET_PULL , BUCKET_DRIVE ;

20 output LEGS_RAISE , LEGS_LOWER, LEGS_STOP ;

21

22 % Controller implementation :

23 halt

24

25 end module

Figure 2.17: Main backhoe loader controller module

46 CHAPTER 2. BACKGROUND

different to most other languages. It is perhaps most easily understood through a con-

crete example. For that reason, the concepts and constructs of Esterel are introduced

in this subsection as they are needed to develop a controller for the backhoe loader

system shown in Figure 2.16. The subsection begins with an outline of the example.

Backhoe loaders, or just backhoes, are specialised tractors. A backhoe is fitted

with a loader unit at front for pushing and carrying, and an extensible arm at rear

for digging, lifting, and pushing. The arm has three segments: the boom, stick, and

bucket. A driver is able to swivel his seat and coordinate the segments using joysticks.

Now, suppose a control unit is added to automate some sequences of movements

in response to buttons pressed by the driver. The controller receives input from the

eleven sensors shown at the top of Figure 2.16. There are two sensors for each segment:

one triggered when the segment is driven against its minimum position, ∗_IN, the other

when it is driven against its maximum position, ∗_OUT. Similar sensors exist for a pair

of stabilising legs which must be extended before the arm can be moved. In addition,

there is a sensor for each of three buttons in the cabin: stop, extend, and retract. The

controller can send twelve different commands. There are three commands each for

the hydraulic pistons attached to each arm segment. Two of them set the position

of an internal valve that determines whether the segment moves toward the maximum

position, ∗_PULL, or the minimum position, ∗_PUSH, when driven. The arm only moves

when a third control, ∗_DRIVE, is sent continuously, otherwise it is held in position.

The legs operate differently. They are pushed downward when engaged to the drive

train by a LEGS_EXTEND command and similarly pulled upward by a LEGS_RETRACT

command. Either movement can be stopped by a LEGS_STOP command.

An Esterel system has three layers [BG92]:

1. an interface that converts between external events and signals, and implements

one of the event-driven or sample-driven execution schemes,

2. a reactive kernel that executes compiled Esterel programs, and,

3. data-handling functions written in an algorithmic language.30

For the backhoe controller, an event-driven interface layer is assumed and no data-

handling functions are necessary. Only the reactive kernel is relevant.

Esterel programs are structured using modules which comprise a name, a list of

interface declarations, and a reactive statement. A top-level module for the backhoe

controller is presented in Figure 2.17. An input signal is declared for each sensor and

an output signal is declared for each command. They are all pure signals, meaning that

they have a status at each reaction, either present or absent, but not a value. Esterel

programs must usually be input-enabled, that is they must usually specify what hap-

pens for any combination of input signals in any state. A relation declaration relaxes

this requirement by either stating that two signals are never present simultaneously,

using # as shown in the figure, or that the presence of one signal implies another, using

=> (but not shown in the figure). Compilers and interpreters use relations between sig-

nals for optimisation and to ignore behaviours that would otherwise be illegal. Modules

may also contain declarations of types, constants, functions, and procedures [Ber00a,

§7.3]. It is also possible to declare inputoutput signals that are both emitted within the

module and received from other parts of the program. Such signals cannot be inputs

from the external environment.

The module template in Figure 2.17 contains a halt statement where control flow

will stop indefinitely. The analogue in Argos would be a state with self-loop transitions

for each input, none of which emit any outputs. The halt statement in the template

is a placeholder for the real controller program. Using the nothing statement instead

would have given a program that terminated immediately. Besides their behaviour,

there are two other distinctions between halt and nothing that warrant discussion

before returning to the example, namely the differences between primitive and derived

statements, and between instantaneous and non-instantaneous statements.

Each statement of Esterel can be categorised as either primitive or derived. The se-

mantics of primitive statements are defined explicitly whereas derived statements are

30The latest versions of Esterel also provide features for expressing classical computation.

2.4. SYNCHRONOUS LANGUAGES 47

defined syntactically as translations into other statements [BMR83][Ber99, §2.2], as are

the macro notations of Argos. This division reduces the effort needed to define and

understand the semantics, to develop program transformations and analyses, and to

prove properties of the language or programs written in it. The primitive statements,

which include nothing, are listed in the upper part of Table 2.1. The lower part of

that table contains two derived statements that are so convenient for reasoning se-

mantically that they are given their own mathematical notation. These two derived

statements and several others are presented with their definitions in Table 2.2. In

particular, the halt statement is defined as a pause statement within a loop statement.

Each statement of Esterel can also be categorised as either instantaneous or non-

instantaneous.31 Instantaneous statements begin and end in a single reaction and thus,

in principle, their execution takes no time. Execution of a non-instantaneous statement

begins in one reaction but may end in a subsequent reaction. Of the primitive state-

ments only pause is non-instantaneous. When a control flow reaches a pause it stops

and, if not otherwise influenced, continues again from that statement in the next reac-

tion. A reaction ends when all control flows have either stopped at pause statements or

terminated. The nothing statement thus begins and ends in a single reaction whereas

the loop and pause of halt effect repeated delays from each reaction to the next.

Returning now to the example, suppose pressing the extend button should make

the controller to lower its legs fully, and then to lift the three arm segments simultane-

ously. The first half of this operation is expressible as a sequence of three statements:

await EXTEND_BUTTON;

emit LEGS_EXTEND;

await LEGS_OUT.

The await and emit statements are composed by the sequence ‘;’ operator. Sequencing

is instantaneous: when the first statement terminates, the second begins immediately.

In particular, this means that waiting for three seconds and then waiting for two sec-

onds, await 3 SECONDS; await 2 SECONDS, is equivalent to waiting for five seconds,

await 5 SECONDS [BMR83, BC84], which is not true of all programming languages.

Intuitively, execution stops at an await statement until the given signal is present.

By default, an await statement ignores the status of the given signal at the instant

in which its execution begins. There is also an await immediate statement that ter-

minates instantaneously when the awaited signal is already present. The difference

between the two is obvious in their expansion to primitive statements, refer Table 2.2.

The standard version pauses before testing for the signal whereas the immediate ver-

sion pauses afterward. The present statement, used in the expansions, executes one

subprogram or another depending on the status of a signal. In this case, when the

signal is present, exit T is executed and control then jumps to the enclosing trap T

statement. The trap and exit statements form a structured goto mechanism. The

former introduces a labelled lexical scope and the latter terminates it instantaneously.

In this example, the emit LEGS_EXTEND statement causes the interface layer to send

a command to the backhoe machinery. The mapping of output signals to external ef-

fects is application dependent but all signals are treated identically within the reactive

kernel. Signal emission occurs instantaneously. Within a reaction, every signal is given

a single, consistent valuation. In particular, subsequent emissions of a signal within

a reaction have no additional effect; they do not give rise to distinct events. And all

components within the scope of the signal act against the same value. The treatment

of the interaction between emit and present statements is central to the semantics of

Esterel and it is discussed in the next subsection.

Once the legs are extended the arm segments are driven outward. The boom, for

one, is extended by first setting the direction of the piston, and then driving it until the

sensor indicates that it has reached the upper position:

emit BOOM_PULL;

abort

sustain BOOM_DRIVE

when BOOM_OUT.

31Hardware designers use, respectively, the terms combinational and sequential [Ber00a, p. 19].

48 CHAPTER 2. BACKGROUND

last instant
strong weak

d
e
la

y
e
d

im
m

e
d

ia
te

fi
rs

t
in

st
a

n
t

abort

p
when s

weak abort

p
when s

abort

p
when immediate s

weak abort

p
when immediate s

Figure 2.18: Variations of the abort statement

Both sustain and abort are derived statements. A sustain expands to a loop that emits

the given signal at each reaction. An abort expands to two concurrent components in-

side a trap. The first component executes the enclosed statement and the second

monitors the watched signal. An abort terminates instantaneously when either the en-

closed statement terminates or the watched signal is emitted. The enclosed statement

is subject to a suspend . . . when s statement that, like the inhibition operator of Ar-

gos, prevents it from executing in any instant when s is present; specifically, it is not

given a chance to execute in a reaction in which it is aborted. Abortion in Esterel is

thus strong by default. A weak form is also possible. Furthermore, the aborting signal

is by default ignored in the first instant, but an immediate form is also possible. The

four possible combinations of the weak and immediate modifiers of abort are shown

in Figure 2.18.

The suspend statement is usually considered primitive, but it can be omitted by

altering pause statements in the primitive expansion of an enclosed statement [TS05].

Essentially, control is only allowed to resume from those pause statements when the

suspending signal is absent.

The stick and bucket segments are extended identically but for the names of signals.

The module system allows the behaviour to be described once, generically:

module MOVESEGMENT:

input STOP, DIR , SECOND;

output DRIVE ;

emit DIR ;

abort

sustain DRIVE

when STOP

end module,

and then instantiated multiple times by a run statement followed by a list of signal,

type, constant, and variable renamings:

run MOVESEGMENT [signal BOOM_PUSH / DIR ,

BOOM_OUT / STOP,

BOOM_DRIVE / DRIVE]

| | run MOVESEGMENT [signal STICK_PULL / DIR ,

STICK_OUT / STOP,

STICK_DRIVE / DRIVE]

| | run MOVESEGMENT [signal BUCKET_PULL / DIR ,

BUCKET_OUT / STOP,

BUCKET_DRIVE / DRIVE] .

Module instantiation is purely syntactic. As far as the semantics are concerned, each

run is replaced by the body of the module with parameters renamed appropriately.

The three module instantiations are composed with the parallel || operator. They

run concurrently in lockstep. The resultant behaviour is relatively simple in this case

because the three components do not intercommunicate.

2.4. SYNCHRONOUS LANGUAGES 49

fork

join

P1 P2

Figure 2.19: Conceptual sketch of synchronization in the statement P1 || P2

The parallel operator in Esterel is different from those in many other concurrent lan-

guages. First, it is completely deterministic; the result of executing subprograms does

not depend on how they are interleaved. Second, the parallel operator only terminates

when both its components have terminated, its components are thus synchronized ini-

tially and at termination, see Figure 2.19. Third, concurrent components execute in a

lexical context that determines signal visibility, preemption, and suspension. Fourth,

the operator is hierarchical and completely orthogonal. In many languages, there is

only a single level of parallel processes. In Esterel, a process effectively evolves as a

dynamic tree of active threads.

To conclude the example, suppose that the stop button is to pause and resume the

movement of the arm. The composition of the three MOVESEGMENT modules is placed

inside a more complicated construction:

signal DONE in

weak abort

signal STOP_MOVING in

loop

await STOP_BUTTON;

abort

sustain STOP_MOVING

when STOP_BUTTON

end loop

| |

suspend

run · · · | | run · · · | | run · · ·
when STOP_MOVING;

emit DONE

end signal

when DONE

end signal.

The innermost signal declaration encapsulates the concurrent composition of a com-

ponent for monitoring the stop button and one for extending the arm segments. The

monitoring component has two states: paused and not paused. In the paused state it

sustains the local STOP_MOVING signal, which causes the immediate suspension of the

extension component. Although the two components run concurrently, the monitoring

component must, in every instant but its first, execute before the extension compo-

nent to determine the status of the local signal and thus whether the three modules

are suspended or not. The outermost signal declaration, weak abort, and emit DONE

statements are necessary to terminate the monitoring component when the three seg-

ments are full extended. Such constructions, though in this case less convenient than

a simple trap statement, are sometimes useful.32 Moreover, abortion by a local signal

demonstrates another aspect of causality in Esterel. The body of a weak abort is exe-

cuted before the status of the aborting signal is tested, whereas the body of a (strong)

abort is only executed after the absence of the aborting signal has been determined.

The program obtained by removing the weak modifier from the example is erroneous

32And make for direct comparison with similar constructions in Argos.

50 CHAPTER 2. BACKGROUND

because the body of the abort can only be executed if DONE is absent, but it contains

an emit statement that can cause the signal to be present.

All the primitive Esterel statements and many derived ones have been used in the

example. Several features are, however, not used. There are, for instance, variants

of the present, trap, await, and abort statements with branches listed in order of

decreasing priority:

present

case FIRST do . . .
case SECOND do . . .
case THIRD do . . .

end present.

Furthermore, statements are not limited to testing the presence or absence of a single

signal. Delay expressions formed from signals, their negations, their previous values,

and conjunction and disjunction are permitted [Ber00a, §4.6.3]. They can be prefixed

by a count expression which is evaluated once when the statement is first executed

and then counted down through each reaction where the delay expression is true. The

associated statement is only triggered when the count becomes zero.

The example only contains pure signals. Full Esterel allows valued signals, vari-

ables, assignments, procedure calls, and branching on variable values. Some of these

features are present in the expansion of the repeat statement, shown in Table 2.2,

which executes an enclosed statement a number of times. The table also shows how

an await statement with a count expression is expanded using repeat. Note that a

variable can only be shared between concurrent components if none of them update it.

2.4.3.2 Semantics and compilation

In contrast with many other programming languages, the semantics of Esterel were

developed together with the language itself [BC84, BG92, Ber99]. Moreover, rather than

just provide a formalization in Greek letters and funny symbols [Ber00a, p. 98] or a

26-tuple of sets and relations [Ber00b, §3], the semantic development aims to provide

an intuitive underlying model with mathematical properties.

This subsection contains an overview of the four main contemporary semantic defi-

nitions of Esterel and each of their two possible variants. Detailed definitions from the

literature [Ber99][PBEB07, Part II] are not repeated, instead the main characteristics of

the approaches are compared in broad terms. An early semantics [BG92] is also dis-

cussed because it differs from contemporary approaches by being based on primitive

statements with a bias toward event-driven execution. The precise semantic definitions

makes it easier to discuss and address several issues that are peculiar to Esterel, like

instantaneous loops and signal reincarnation, and to develop compilation techniques.

The semantic rules of Esterel are either presented using the concrete syntax shown

in the centre column of Table 2.1 [BC84, BG92, PBEB07, TS05] or the concise notation

shown in the rightmost column [Ber99]. The concise notation is an additional obstacle

to understanding the semantic definitions, but it is easier to write by hand and the en-

coding of completion codes is particularly natural. Completion codes indicate whether

an Esterel statement has terminated instantaneously, 0, paused until the next reac-

tion, 1, or thrown an exception, k ≥ 2. The nothing and pause statements are written

in the concise notation as 0 and 1 respectively. The names that identify particular trap

statements in the concrete syntax are replaced by an encoding that assigns an integer

to each exit which pairs it with an enclosing trap declaration.33 Since outer trap state-

ments have priority over inner ones, priority rules can be resolved using predicates

over natural numbers.

The four types of definition and the two variants are listed in Table 2.3. Given a

state and input assignment each must determine a new state and output assignment.

Internally they track variously the completion status of subprograms, the values of

local signals, and the possibilities of signal emissions.

33Similarly to de Bruijn indices for bound variables in the lambda calculus.

2.4. SYNCHRONOUS LANGUAGES 51

logical constructive

rewriting [BG92, §6] and [Ber99, §6] [Ber99, §7]

state-marking [Ber99, §8.3.1] [PBEB07, §4] and [Ber99, §8.3.2]

operational [BG92, §8] [PBEB07, §5]

circuit translation [PBEB07, §6] and [Ber99, §13]

Table 2.3: Main semantic definitions of Esterel

In the rewriting definitions [BG92, §6][Ber99, §§6 and 7], states are encoded as

program terms. Each SOS rule defines a transition that maps an input term to an output

term and determines a completion code and updated valuation of signals. Rewriting

can be described in a small number of relatively abstract rules. It can be implemented

directly, but not efficiently and the structure of the original program is rapidly lost.

In the state-marking definitions [Ber99, §8.3][PBEB07, §4], states are encoded by

annotating terms, usually with a circumflex; for example in the term 1; ! o1; 1̂; ! o2; 1∗
control flow is paused after emitting o1 but before emitting o2. Markings change from

state to state but the program term does not. More syntax and rules are required

compared to the rewriting semantics. The state-marking semantics is adequate for

implementing interpreters, but it is not practical for code-generation, particularly for

the full language with variables [PBEB07, p. 48].

There are two variations of the rewriting and state-marking semantics: the logical

and the constructive. Each proposes a way of calculating a consistent signal valuation

within a reaction, and thereby also a notion of program correctness: a program is only

correct if the calculation always succeeds for it. The constructive approach is more

restrictive than the logical approach. The two differ only in the rules for handling local

and output signals. Within either variation the status of output signals are calculated

in the same way as for local signals. The only fundamental difference between output

signals and local signals is the restriction of the scope of the latter type.

The logical approach is the simplest to define but valid programs can be counter-

intuitive and their implementations inefficient. Argos and early versions of Esterel take

the logical approach. For a given state and input assignment, valuations of local and

output signals are assumed. A valuation is logically coherent iff all present signals

are actually emitted [Ber99, p. 27]. A state is termed logically reactive if for every al-

lowed34 input valuation, there is at least one logically coherent valuation, and logically

deterministic if there is at most one logically coherent valuation. A program is logically

correct if it is both logically deterministic and logically reactive for all reachable states.

The logical approach does not respect the flow of control within a reaction. The values

of local and output signals cannot necessarily be determined step by step; it is some-

times necessary to speculate and test. For example, consider this program with two

parallel components [Ber99, p. 33]:

present O1 then emit O1 end

| |

present O1 then

present O2 else emit O2 end

end.

By itself, the upper component is not deterministic: assuming the presence of O1 is

valid because it will then be emitted, assuming its absence is also valid because it

will not then be emitted. On the other hand, the present O2 statement in the lower

component is not reactive: neither assuming the presence of O2 nor its absence gives

a logically coherent valuation. The statements taken together, though, are logically

correct because the only logically coherent valuation is O1 and O2 absent.

The constructive approach properly respects control flow within a reaction. Sophis-

ticated rules are required for determining the status of local and output signals but the

resulting models are nevertheless intuitive and they correspond to an important class

of digital circuits [Ber99]. The constructive versions of the rewriting and state-based

definitions no longer ‘guess’ at signal values but instead calculate Must and Cannot

34Only input valuations that respect relation declarations are considered.

52 CHAPTER 2. BACKGROUND

sets that, respectively, contain all signals that will definitely be emitted and all signals

that will definitely not be emitted. Membership in the Must and Cannot sets increases

monotonically until a fixed point is reached as more information about signal statuses

becomes available. A fixed point is constructive if every local and output signal is a

member of exactly one of the sets [Ber99, p. 83]. A program is constructive iff for every

reachable state and allowed input assignment a constructive fixed point can be found.

The semantic definitions have the property that these fixed points are unique [Ber99,

§7.5]. The previous example is not constructive because O1 cannot be added to either

of the Must or Cannot sets; it is not possible to conclude at the outset that it definitely

must be emitted, nor that it definitely cannot be emitted, and there is no additional

status information that would help.

The rewriting and state-based definitions either involve multiple recursions to de-

termine logical signal valuations or complex mutual recursion to determine Must and

Cannot sets. The operational definitions [BG92, §8][PBEB07, §5] describe instead the

efficient step-by-step computation of a reaction.

The circuit semantics describes the translation of a pure Esterel program into a dig-

ital circuit [Ber92][Ber99, §13][PBEB07, §6]. It can be considered a semantic definition

because the hardware domain comprises simple and well-understood components and

can be considered as a set of Boolean relations between state and signal variables.

In contemporary semantic definitions [Ber99, PBEB07], the only non-instantaneous

primitive statement is pause. The spirit of these definitions is arguably more sample-

driven than event-driven because, although not strictly necessary, it is more natural to

interpret pause as delaying until the next clock tick rather than to the next occurrence

of any input signal. In contrast, halt is the only non-instantaneous primitive state-

ment in the earlier definition [BG92], and abort,35 rather than polling the status of the

watched signal at each reaction, per Table 2.2, is itself a primitive statement. With

these primitives, await s translates to abort halt when s, rather than to the loop with

pause of Table 2.2. The earlier definition does not include the suspend statement,

which was introduced later [Ber93].

Besides causality, two other issues arise in the definition and compilation of Esterel:

instantaneous loops [Ber00a, §§4.7.5–4.7.6][TS05] and schizophrenia [Ber99, §12][TS05].

Both involve the instantaneous termination and restarting of loops.

The simplest example of an instantaneous loop is loop nothing end. Such diver-

gence within an instant is obviously pathological, but there are more subtle examples:

var C : int = 5 in

loop

C := C − 1

i f C = 0 then C := 5; pause end ;

end

end.

The loop body is executed five times per reaction. Such bounded repetitions cannot be

created with pure signals alone in a constructive program, this attempt, for instance,

is not constructive:

signal S , T

loop

present S then

present T then pause end ;

emit T

end ;

emit S

end

end.

This program relies on S and T having different statuses in each of two and a half iter-

ations, which is not allowed. Both unbounded and bounded iterations of loops within

a single reaction are forbidden in Esterel. Loop bodies are forbidden from terminating

instantaneously, which is assumed in semantic definitions and ensured in practice by

35Written do p watching s in earlier versions of Esterel.

2.4. SYNCHRONOUS LANGUAGES 53

static analysis [Ber99, §6.6][TS05]. Precise analysis can be exponential in the number

of input signals [TS05].

Implementing loops requires care even when their bodies are non-instantaneous

because a single syntactic construct may have two different incarnations within a reac-

tion: a situation termed schizophrenia. A single statement may be executed twice, as

in the example [TS05]:

loop

present I then pause end ; V := V + 1

| |

pause

end loop.

If I is present initially, then the program pauses in both parallel branches. In the next

reaction, the variable V is incremented and the loop restarts instantaneously. If I is

now absent then V will be incremented a second time before the reaction ends. The

parallel operator also has two incarnations [Ber99, §12.2]: one where both branches

have terminated and another where only the first has. Local signals also cause compli-

cations [Ber99, §12.3]:

loop

signal S in

present S then emit O else nothing end ;

pause ;

emit S

end signal

end loop.

Assume that this program is restarted from the central pause statement. The local

signal S is then emitted and the loop restarted instantaneously. The first statement of

the new loop iteration tests the value of S, but it is not the same signal! Schizophrenic

signal statements cause local signal reincarnation. The reason can be seen more clearly

if the loop is unrolled to give the semantically-equivalent program:

loop

signal S in

present S then emit O else nothing end ;

pause ;

emit S

end signal

signal S in

present S then emit O else nothing end ;

pause ;

emit S

end signal

end loop.

This type of unrolling is necessary prior to translation into a circuit, where for instance

specific hardware is needed to resynchronize parallel branches, and it also facilitates

other types of compilation where care is otherwise needed to assign or reuse memory

locations that track the status of local signals.

Various compilation techniques have been developed to transform Esterel programs

into efficient executables [BCE+03, Part III, B]. An important feature of Esterel is that

concurrency and communication are resolved statically, that is during compilation,

and thus without the overhead of dynamic scheduling. In the earliest approach [BS91]

a DFA was generated directly, which gives an executable that is fast but often pro-

hibitively large due to combinatorial explosions of input combinations and parallel

statements [BG92]. Another approach is to transform programs into a circuit rep-

resentation which is then effectively simulated at runtime. This produces compact

executables, but they are not efficient because most circuit equations must be evalu-

ated in every reaction even though typically only a few will be relevant to the active

control flows. Modern approaches [WBC+00, Edw00, Edw02, PBEB07] transform an Es-

terel program into a control flow graph and then extract a static schedule from which

54 CHAPTER 2. BACKGROUND

compact and fast sequential code is produced. Most Esterel compilers produce C code

that can then be compiled for execution on a standard microprocessor. Some, though,

target reactive processors that are optimised for executing Esterel programs compiled

to custom assembly languages [BASRB04, LLB+05].

The accurate detection of non-logical or non-causal Esterel programs within com-

pilers is fundamentally expensive because it depends on the reachable state-space and

all combinations of input values. In fact, model-checking techniques, like symbolic

reachability analysis using BDDs, are sometimes used. Other compilers insist on the

absence of static dependency cycles, which can be checked quickly but which disallows

some valid programs.

2.5 Concluding remarks

This chapter has presented a broad introduction to transition systems, TTSs, timed

automata, and the synchronous languages Argos and Esterel. Several topics, however,

have been omitted. For instance, temporal and real-time logics for specifying systems

and properties are not discussed in any detail, nor are specializations and variations of

timed automata, like event-clock automata [AFH99] and stop-watch automata [CL00].

While these and similar concepts are important, they are not required directly in the

technical chapters. Some additional background topics are included as appendices.

Appendix C discusses preorders and equivalences, Appendix A contains an overview

of process algebra theory, and Appendix B discusses IOA and related formalisms.

The topics of timed automata and synchronous languages are taken up immediately

in the next chapter, where they are applied to together to the simulation of embedded

controllers in Simulink.

Chapter 3

Simulating synchronous execution†

Computer simulation is an important technique for designing real-time embedded sys-

tems. Complex timing characteristics can be analyzed by calculating step-by-step the

behaviour of models, which usually comprise both the components being designed

and aspects of their intended environment. Simulink [Mat03a] is the de facto industry

standard for simulating embedded systems. As its modelling and compilation features

have evolved, so has its use as a platform for design and implementation. Recent

versions even include a graphical programming language called Stateflow.

Simulink is a practical and powerful tool. It has been developed in response to

real-world requirements and warrants academic study if only because the features of

the modelling language offer insights into the requirements of industry. Put simply,

Simulink is a great source of ideas for modelling and developing embedded systems.

Some Simulink features, however, lack the rigorous definitions and attention to funda-

mentals found in many formal, and often also more theoretical, approaches. Precise se-

mantic definitions are essential for accurate automated analyses, such as model check-

ing, and transformations, such as certified compilation. Recent research has aimed

to better define subsets of the Simulink and Stateflow modelling languages through

translations to other languages that have a formal basis, such as SMV for model check-

ing [BKB99], hybrid system models for verification [TSR03], Lustre for compilation

and analysis [CCM+03, SSC+04, TSCC05], and hybrid automata using graph rewrit-

ing [ASK04] and to improve simulation coverage [AKRS08]. The Stateflow language has

been studied closely [HR04, Ham05] both because its meaning is particularly intricate,

and because it is seen as important to practice.

The proposal in this chapter is not, however, a translation from Simulink/State-

flow to another formalism. It has rather more in common with the co-simulation of

controller programs and Simulink models [TNTBS00]. This chapter describes the de-

velopment of a custom Simulink block that allows the insertion of programs written

in the Argos synchronous language [Mar91, MR01] into Simulink models. Argos was

chosen because it is an imperative synchronous language with a graphical syntax and

because it has a relatively simple definition. Furthermore, the graphical notation en-

ables a direct comparison with Stateflow. While Argos is neither as powerful nor as

feature-rich as Stateflow, its underlying model of computation is easier to understand

and reason about—a distinct advantage for embedded applications where accuracy and

correctness are paramount.

Argos, like all synchronous languages, is based on a discrete model of time de-

rived strictly from the occurrence of events. Simulink, in contrast, executes models

in simulated physical time. Embedding Argos programs within Simulink thus requires

establishing a relationship between values of the simulation clock t, essentially a finite

approximation of a real-valued clock, and a linear sequence of synchronous reactions.

In this chapter the mapping is given indirectly by defining a translation from Boolean

Mealy Machines (BMMs), the semantic model of Argos, to timed automata; the resulting

models thus make for an interesting comparison with the timed automaton models

that are developed more directly in Chapter 4. While it is normally assumed that

†This chapter is based on two published papers [BS05, BS06].

56 CHAPTER 3. SIMULATING SYNCHRONOUS EXECUTION

Argos programs are perfectly synchronous, in the sense that outputs occur simulta-

neously with inputs within the same simulation step, the translation can account for

abstract timing imperfections: specifically non-zero execution times and limits on the

frequency of reactions. The mapping accounts for both event- and sample-driven ex-

ecution schemes, and emphasizes their similarities and differences. There were two

aims for developing such a timing model. First, to allow for more detailed simulation

results, and second, to gain insight into the effect of implementation limitations on

synchronous programs.

The mapping is not only an interesting thought experiment. It also provides a

precise specification for implementing the Argos block, which, although conceptually

simple, involves many fine details of latching and triggering.

The chapter begins with descriptions of Simulink and Stateflow in §3.1. The details

are drawn mostly from experience and user manuals, but much can also be learnt from

the research literature. The concepts and algorithms behind Simulink, summarised

in §3.1.1, are important to understand the Argos embedding. Details of the Stateflow

language are included in §3.1.2 to motivate the embedding and for contrast. The em-

bedding of Stateflow into Simulink, described in §3.1.3, informs the later embedding

of Argos into Simulink.

The Argos embedding encodes an idealised execution scheme which is presented

in §3.2. The details are first sketched in §3.2.1 and then formalised using timed au-

tomata in §3.2.2. The practicalities of implementing the embedding are described

in §3.3 and demonstrated in §3.4.

The chapter ends with two reflective sections. In §3.5 the Argos embedding is

compared with other similar approaches. In §3.6 the advantages and disadvantages of

the approach are evaluated.

3.1 Simulink and Stateflow

Simulink and Stateflow can be used together to create hybrid system models where

discrete state changes are combined with continuous dynamics, and to specify designs

that combine control logic and discrete dataflow specifications. The Simulink/State-

flow combination is increasingly used as a platform for model-based design, where

circuits and executable programs for embedded systems are generated directly from

simulation models.

The Simulink modelling language is flexible: continuous and discrete elements may

be mixed together in a single model. The implementation is designed for perfor-

mance, allowing the simulation of large and complex models, and also for features

like hardware-in-the-loop testing where real hardware is integrated into a model.

The Simulink modelling language and simulation algorithms are described in §3.1.1.

Simulink models are built from a set of blocks, of which there are many, and to which

new blocks, like the Argos block described later in this chapter, may be added. The

Stateflow block is described in §3.1.2, in preparation for a later comparison with mod-

els expressed in Argos.

3.1.1 Simulink

Simulink1 [Mat03a] is a sophisticated realisation of a simple concept: blocks are chosen

from several libraries and then connected together with lines called signals to form a

model whose behaviour over a period of simulated time is calculated by repeatedly

executing blocks and updating signal values.

Each block provides specific functionality. Blocks are usually parameterised. Pa-

rameters range from single values, such as a multiplication factor in a gain block, to

complete programming languages, like the Stateflow block. Strictly speaking, libraries

contain block classes, each of which may be instantiated multiple times, with differing

1Version 5.1.

3.1. SIMULINK AND STATEFLOW 57

Sine Wave

|u|

Abs

3

Constant

1

Gain
Scope

Manual Switch

Figure 3.1: Example Simulink model

t

u
(inputs)

x
(states)

y
(outputs)

(block behaviour will also
depend on parameter values)

Figure 3.2: Simulink Block

parameter values, in a model. The term ‘block’ will henceforth refer to a block in-

stance. Some block parameters can be changed while a simulation is running,2 thereby

allowing interactive models. Blocks may be grouped and encapsulated hierarchically.

Blocks are connected together by signals which represent quantities that change

over time. Signals are typed [Mat03a, §7], primarily for reasons of simulation perfor-

mance and code generation. Basic values are stored with fixed size and precision in

floating point, fixed point, or integer form. There are derived types for matrices and

objects. Type checking is performed prior to simulation.

Time is modelled by a single decimal number, nominally seconds, which is incre-

mented by the simulation engine as a model is executed. Conceptually, simulation

time mirrors the notion of time typically adopted for physical models: a real number

that increases from zero. Simulation on a discrete computer, however, can only cal-

culate signal values at a finite, or at most countable, number of instants. Since such

calculations may be non-trivial, various techniques are used to minimise the number

of instants where values are calculated while simultaneously trying to maintain sim-

ulation accuracy—or at least to allow users to specify the trade-off. Furthermore, the

sampling behaviour of implementation models must be taken into account; both for

simulation accuracy, as well as for generating implementations.

An example Simulink model is shown in Figure 3.1. The model is simple but serves

well enough to illustrate several basic concepts. Blocks are represented by a variety

of suggestive shapes: rectangles, triangles, switches, etcetera. Signals are drawn as

arrowed lines between blocks. The blocks labelled Sine Wave and Constant are signal

sources with adjustable parameters, for instance the amplitude and frequency of the

sine wave or the value of the constant (which is displayed on the block itself). The out-

put value of the sine wave block changes as simulation time passes, and it is passed

along the connecting signal lines to the respective inputs of two other blocks, Gain

and Abs. The Gain and Abs blocks are passive: output values are only updated when

input values change. The Constant and Abs blocks are connected to a block called Man-

ual Switch which transmits values from one of its inputs to its output. A parameter

chooses which input is transmitted. The parameter value is represented graphically

and can be changed during simulation. The Gain and Manual Switch blocks are con-

nected to a multiplexor block that combines multiple input values into a single output

2Parameters that can be changed are termed tunable, and those that must remain constant during a
simulation are termed non-tunable [Mat03a, p. 5-2].

58 CHAPTER 3. SIMULATING SYNCHRONOUS EXECUTION

vector.3 The multiplexor output is connected to the input of a Scope block, which is a

signal sink that plots incoming values against simulation time. When a simulation is

running, a window associated with Scope shows the behaviour of the model, which can

be influenced by toggling the switch, as time progresses.

3.1.1.1 Block details

A Simulink block, see Figure 3.2, defines the instantaneous relationship between time t,
input signals u, state variables x, and output signals y . The relationship may depend

on the values of parameters.

States are discrete or continuous. The values of discrete states change at specific

instants, whereas those of continuous states evolve over intervals of time. Blocks that

contain only discrete states are termed discrete blocks, those that contain only continu-

ous states are termed continuous blocks, and those that contain both types are termed

hybrid blocks. Discrete blocks specify the times when state changes may occur whereas

continuous state values are approximated from information on their derivatives and

significant values. The states and outputs of discrete blocks are piecewise continuous

rather than truly discrete in the sense of possessing only a finite or countable sequence

of values [CCM+03]. Controller models, particularly those intended for synthesis, are

usually built exclusively from discrete blocks [Mat01].

Conceptually, each block represents three functions of the simulation time t, state

vector x, and input vector u [Mat03b, p. 1-6]:

y = fo(t, x,u)

x′d = fu(t, x,u)

ẋ = fd(t, x,u)

Output values are determined by fo, discrete state changes by fu, and derivatives of

continuous state elements by fd. While in principle the functions are defined over a

dense interval of t, since only a finite number of values can be sampled in any sim-

ulation run it is assumed that the functions fo and fu are constant between sample

points, that is given consecutive sample times ti and ti+1:

∀t′. ti ≤ t′ < ti+1 :

fo(t
′, x,u) = fo(ti, x,u)

fu(t
′, x,u) = fu(ti, x,u)

In practice, each block is triggered by the simulation engine to compute values for

the functions—for given values of the simulation time, inputs, and state. The methods

called by the simulation engine are defined per block class. The engine stores the

state of each block instance and passes it to the class methods when required. There

are three main methods to compute outputs, update discrete states, and calculate

derivatives. Other methods handle initialization, termination, and parameter changes.

The simulation engine ultimately decides the simulation times at which to calculate

signal and state values, but blocks have an influence in two ways: through discrete

sample times [Mat03a, pp. 2-8 and 2-28][Mat03b, p. 1-15], which are discussed now,

and zero-crossing detection, which is discussed in the next subsection.

Discrete sample times are specified as pairs of parameters: a period ts , which must

be greater than zero, and an offset t0, which is relative to the start of the simulation

and whose absolute value must be less than the period. Several discrete sample time

pairs may be specified for a single block, which allows, for instance, modelling of the

behaviours of distinct periodic tasks within a block. Separate discrete sample time

pairs may also be specified for each input of a block.

Instead of discrete sample times, a block, or individual inputs, may be specified as

continuous, implicit, or variable. Continuous blocks are triggered at every simulation

step.4 The triggering of a block with an implicit sample time is calculated from the

3Multiplexors belong to a class of ‘virtual blocks’ [Mat03a, p. 5-2]. They are not polled directly by the
simulation algorithm, but serve rather to assemble models.

4Although triggering can be limited to major steps, described in §3.1.1.2, if desired.

3.1. SIMULINK AND STATEFLOW 59

sample times of the other blocks connected to its inputs through a process called sam-

ple time propagation which is similar to the clock inference of synchronous dataflow

languages [CCM+03]. A block with an implicit sample time will be continuous if any of

its inputs are continuous, otherwise it will be discrete with a sample time calculated

as the greatest common denominator, with allowance for offsets, of the input sample

times [Mat03a, p. 2-8]. Blocks with variable sample times are polled by the simulation

engine to determine when to schedule their next triggering.

The decisions of the simulation engine can be influenced by signals within a model

through enabled and triggered subsystems [Mat03a, §4]. The blocks in an enabled

subsystem are only executed when the value of a designated control signal is positive.

Those in a triggered subsystem are executed when certain value changes occur in a

designated control signal. Enabling and triggering may be combined. Blocks may, in

addition, be placed within so called function-call subsystems [Mat03b, p. 7-31] where

execution is completely controlled by another block rather than by the simulation en-

gine. Execution then occurs when the other block makes a specially designated func-

tion call, and it is processed within the calling block’s thread of control between its

other actions.

Custom Simulink blocks are called s-functions [Mat03b]. They can be written in vari-

ous programming languages. An s-function must export a set of functions to be linked

into the simulation engine. The functions are called at various times to query, initialize,

and execute block methods. Block methods call functions in the Matlab and Simulink

Application Programming Interfaces (APIs) to query and manipulate data values, to

modify the visual appearance of a block, and to request configuration parameters.

3.1.1.2 Simulation algorithm

A Simulink model is simulated in two phases: it is first initialized and then it is exe-

cuted in a simulation loop. The details of the simulation loop are influenced by solvers,

which make key decisions within the simulation engine. Special techniques identify

instants when signals change in significant ways, termed zero-crossing detection, and

also loops of instantaneous feedback, termed algebraic loops.

During initialization [Mat03a, p. 2-12], models are examined for mismatched signal

types and possible algebraic loops. The block hierarchy is flattened. Sample times are

collected, propagated, and checked. Data structures are initialized. The simulation

engine determines a sequential execution order based on instantaneous signal inter-

dependencies.5 The blocks of a model are executed in sequence even though they are

conceptually concurrent.

Simulink processes a model—a set of blocks and their interconnections—by increas-

ing a global time parameter t in steps from zero. At each step, blocks are polled in

sequence to determine new signal and state values. When (if) a stable value is found

for every signal, t is increased by an amount determined by the active solver using

information from each block. There is a trade-off between accuracy, which, for con-

tinuous blocks, means smaller increments of t, and performance, which means larger

increments, or equivalently, executing blocks as infrequently as possible. The trade-off

is made, in greatest part, by the choice of a solver and its parameter values. The basic

simulation algorithm together with a specific solver and parameter values effectively

determine the semantics of a model [TSCC05].

The most appropriate solver depends on the particularities of a given model and

the requirements of the modeller [Mat03a, pp. 10-9–10-15]. Some solvers are limited to

models that only contain certain types of blocks, for instance models where all blocks

are discrete or models where no blocks have variable sample times.

For a model containing only discrete blocks, either a fixed step or variable step

discrete solver is most suitable. The former increments t by a fixed value at each

simulation step. The fixed value is chosen so as to include all instants where blocks

require triggering, according to their offsets and sample times [Mat03a, p. 2-31]. The

fixed step solver is the simplest and its results are easy to understand and manipulate,

but for some models, depending on the relative ratios between sampling rates, there

5Only blocks with direct-feedthrough inputs are considered [Mat03a, p. 2-13].

60 CHAPTER 3. SIMULATING SYNCHRONOUS EXECUTION

Initialize Model

Calculate next sampling

instant

Calculate outputs

Update Discrete Statesm
a
jo

r
ti

m
e

st
e
p

Calculate derivatives

Calculate outputs

Calculate derivatives

Calculate outputs

Locate zero crossings

End Simulation

m
in

o
r

ti
m

e
st

e
p

S
im

u
la

ti
o
n

L
o
o
p

Integration

Zero-crossing detection

Figure 3.3: Basic simulation steps (Adapted from [Mat03a, p. 14-13][Mat03b, Figure 1-2

and pp. 3-36 and 3-37])

may be many sampled instants where nothing changes. A variable step solver only

considers instants where at least one block requires triggering. Less work is done but

the results are more complicated because signals are effectively sequences of pairs that

combine time and value, rather than just a sequences of values with an implied period.

A model containing only continuous blocks is essentially a set of Ordinary Differ-

ential Equations (ODEs). Analytical solutions to ODEs are not possible in general, so

Simulink provides several different numerical solvers to find signal values over time.

Both fixed-step and variable-step continuous solvers exist; the most appropriate de-

pends on the dynamics of a model and the desired precision [Mat03a, pp. 10-9 and 10-

10]. Hybrid system models, containing both discrete and continuous blocks, are sim-

ulated by constraining a continuous solver with step-size information calculated from

the subset of discrete blocks.

The calculation of, and iteration over sampling instants, as described above, is the

chief part of simulation. Each such iteration is known as a major time step in contrast

with other, subordinate minor time steps that some continuous solvers also calculate

to increase simulation accuracy. The distinction is clear in Figure 3.3: at each major

time step, the value of t is calculated and fixed, blocks are then executed in sequence

to determine output signal values, when these have stabilised each block is executed

again to update its state. Minor time steps are divided into two parts: integration and

zero-crossing detection.

During integration, blocks are polled for derivative values. For increased accuracy,

a solver may also iteratively calculate continuous state values for subintervals within

the major time step [Mat03a, p. 2-16].

Zero-crossing detection is a technique that aims to identify instants of significant

change in continuous state variables, without unnecessarily increasing the number of

simulation steps. The need for zero-crossing detection can be understood by compar-

ing two different representations of continuous behaviour.

3.1. SIMULINK AND STATEFLOW 61

+
−

u
z

(a) Solution converges: z = u/2

+
+

1 z

(b) No valid solution (divergent): z = z + 1

Figure 3.4: Algebraic Loops [Mat03a]

The behaviours of a hybrid system, like those modelled in Simulink, could be

thought of as alternating sequences of continuous variable trajectories and discrete

actions, that is, essentially as the (A,V)-sequences described in §2.2.2.3. Such a dense

representation gives a variable valuation for every instant of a dense time interval.

Alternatively, a sampled representation only gives variable valuations for a countable,

monotonically increasing sequence of time instants.6 Dense representations are a more

faithful description of continuous behaviours but sampled representations are closer

in spirit to the sequence-based approaches used to model discrete systems [MP93].

Simulink does not represent models analytically, but rather approximates their be-

haviour numerically: it cannot calculate values for every point in a dense interval and

must instead create sampled representations. A sampled representation of a con-

tinuous behaviour is adequate if it includes all significant state changes. In some

approaches, the significant events in a system are identified by a set of assertions

over variable values [MP93]. In Simulink, the timing of significant events is expressed

through zero-crossing variables [Mat03a, pp. 2-18–2-23].

Each block can register one or more zero-crossing variables with Simulink. The vari-

able values are calculated similarly to output signals, but rather than being passed to

other blocks their values are tracked internally by the simulation engine. The instants

when a value changes sign—when its function crosses through zero—are regarded as

significant. When the simulation algorithm detects such a sign change it tries to itera-

tively hone in on the instant when the value would be zero, although it tries to avoid the

exact instant since there the value of a state variable may be undefined [Mat03a, p. 2-

19]. Zero-crossing variable values are usually calculated as functions of state variables

such that discontinuities and other significant events map to zero.

Algebraic loop calculation [Mat03a, pp. 2-23–2-26] is another special feature of the

simulation algorithm. The static schedule of block execution that Simulink tries to

calculate during initialization is based on signal dependencies. It can happen that the

chain of dependencies is circular; that there is a path of direct feedback such that

the inputs of a block are directly required to calculate its outputs, which in turn are

required to calculate its inputs. These cycles of instantaneous dependency are termed

algebraic loops. Two simple examples are shown in Figure 3.4. Such cycles may also

run through several blocks and there may be several cycles within a model. Some

dataflow languages, like Lustre [HCRP91], prohibit paths of instantaneous feedback,7

but Simulink allows them.

Blocks where there is a delay between changes on input signals and corresponding

changes on output signals effectively break paths of instantaneous feedback. Each

block declares the input signals that have direct feedthrough to output signals so that

Simulink can detect algebraic loops. At each instant, the simulation algorithm iterates

through the blocks in an algebraic loop trying to determine a fixed point, viz. a set

of stable signal values. Some models, like Figure 3.4a, converge in this way, others,

like Figure 3.4b, do not.8

3.1.2 Stateflow

Stateflow9 [Mat03c] is a Simulink block for modelling and implementing discrete con-

trol logic in a graphical notation that is inspired by Statecharts [Har87]. Stateflow is em-

6Sampled representations can be thought of as generalisations of timed sequences, see §2.2.2.2.
7Unit delays are required: inputs can only depend on previous outputs.
8Such issues are common to languages where instantaneous feedback is possible, especially the syn-

chronous languages.
9Version 5.1.

62 CHAPTER 3. SIMULATING SYNCHRONOUS EXECUTION

[c2]{a2}

[c1]{a1}

[c3]{a3}

(a) Original graphical notation

i f [c1] {
a1

i f [c2] {
a2

} else i f [c3] {
a3

}
}

(b) Translation to source code

Figure 3.5: Standalone Flow Diagram [Mat03c, p. 2-20]

inently practical, but its semantics is intricate and, arguably, less principled than those

of other languages for expressing discrete controllers, most notably the synchronous

languages. The outline of Stateflow in this subsection is divided into four parts: the

flow diagram language in §3.1.2.1, the details of diagram execution in §3.1.2.2, re-

lated issues of event processing in §3.1.2.3, and a consideration of semantic issues

in §3.1.2.4.

Stateflow is based on Statecharts [Har87], which embodies a compelling and natural

idea: to extend the utility of finite automata with parallelism, hierarchy, and variables,

for application to complex reactive controllers. It is not alway clear, however, what

such diagrams mean precisely. Despite later proposals [HPSS87, HN96] and vague in-

tuitive expectations there have always been behavioural differences between various

Statecharts-like languages [Bee94]. It has been suggested [SSC+04] that the reason for

this is the relative immaturity of research into structured state machines, particularly

compared to block diagram languages, and because their semantics are both intricate

and, to date, seemingly without a complete set of widely-accepted principles.

Stateflow incorporates the main syntactic features of Statecharts, like refinement,

orthogonality, multi-level transitions, and entry-by-history, but not some minor fea-

tures, like asterisked history junctions, the history-clear function, and forking transi-

tions. It also has other features. There are, for example, truth tables for expressing

and documenting transition logic [Mat03c, §9][LHHR94] and a flowchart-like program-

ming language called Flow Diagrams10 that extends the basic conditional junctions of

Statecharts. Flow diagrams are used for expressing both complex transitions between

states and for programming standalone functions.

The three most unique and interesting features of Stateflow are the possibility of

compound transitions between states, the handling of input and internal events by

queuing and stacking respectively, and the intricate rules for ordering executions. Each

of these is discussed in turn in §§3.1.2.1–3.1.2.4.

3.1.2.1 Flow diagrams

A Flow Diagram is a graph of transition segments, or just segments, between various

types of nodes. Default markers, small black dots with only out-going transitions,

and states serve as starting points for sequences, branchings, and loops of transition

segments between connective junctions, that may end in either those junctions, history

junctions, or other states. States are drawn as rectangles with rounded corners and

junctions are drawn as unfilled circles.

For standalone functions [Mat03c, p. 3-40], Flow Diagrams are simply a graphical

programming language. An abstract example is shown in Figure 3.5a. Execution be-

gins at the default marker and takes one of two paths through the connective junc-

tions until no further steps are possible. A segment is only eligible for execution

when its condition is true. Conditions are boolean expressions written between square

brackets; c1, c2, and c3 in the figure. Execution of a segment performs the associ-

ated condition actions—written between braces like a1, a2, and a3 in the figure—and

transfers control to the next destination junction. Segments leaving a junction are

10Hence the name: ‘state’ for state machines and ‘flow’ for flow diagrams.

3.1. SIMULINK AND STATEFLOW 63

considered for execution in a deterministic order. Those with conditions take priority

over those without [Mat03c, p. 4-9] and otherwise they are ordered by relative angular

position [Mat03a, p. 4-10]. Flow Diagram functions can thus be translated directly to

sequential source code, as for example in Figure 3.5b.

Transitions between states are expressed as Flow Diagrams which, despite possess-

ing a declarative aspect by virtue of additional priority rules and the possibility of

repeated evaluation, remain an essentially imperative programming language. Flow Di-

agrams that express transitions between states [Mat03c, pp. 3-13–3-24] may have extra

event and transition action labels for, respectively, responding to events and generating

new ones. The general transition label format is [Mat03c, p. 2-18]:

event1|...|eventn [condition] {condition-actions} / transition-actions.

Segments labelled with one or more events are only considered for execution when

one of those events is being processed. They have priority over segments without

event labels. Event labels may contain temporal operators, like after(n, E) or every(n, E),

where n is an integer expression and E an event [Mat03c, pp. 7-77–7-84].

While condition actions are executed immediately when a segment is taken from

one junction or state to another, transition actions are only executed when a com-

plete path to a destination state has been found. Transitions that are evaluated,

along a path of enabled segments but not actually taken due to a later lack of en-

abled segments may yet have an effect on state and output. In addition to variable

assignments and function calls, both types of actions may emit new events, which are

evaluated recursively against a diagram. Events emitted from transition actions are

processed after the source state has been exited, whereas for those emitted from con-

dition actions, the source state remains active. The latter fact introduces the risk of

non-termination [Mat03c, pp. 4-43–4-44].

3.1.2.2 Executing diagrams

The execution of transition segments within a state diagram in response to an event

is influenced by the relative positions of segments and states. An event is processed

down through the hierarchy of states, either from the top of a diagram or from an ex-

plicitly named state therein. Active states at higher levels are considered before those

at lower levels, and then, from each, segments labelled with the event are considered in

order of their destination state (higher states having priority), their label, and, finally,

their relative angular position on the source state. If no valid segment with an event

label is found then segments without event labels are considered [Mat03c, pp. 4-8–4-

10]. Segments are followed from a state until interruption by event emission, or arrival

at a junction with no outgoing segments, or at a junction where none of the outgoing

segments are enabled, or at a state. For junctions with no outgoing segments and for

states, a transition is regarded as complete and no further segments from the source

state are considered. But, if evaluation reaches a junction where there are outgoing

segments but where none of them are enabled, then the segment next in order from

the previous junction is considered, and so on back through to the original state.11

This unwinding of control back through intermediate junctions is called ‘backtrack-

ing’ [Mat03c, pp. 4-61–4-62], but the effects of condition actions that have already been

evaluated are not undone.

Besides transitions between states, other actions may be associated with states us-

ing various keywords [Mat03c, pp. 3-9–3-12], and on so called inner transitions [Mat03c,

p. 3-21, pp. 4-41–4-49]. These features provide flexibility in expression and further

complicate the already intricate interpretation algorithm.

Stateflow diagrams may contain parallel components at any level of the state hi-

erarchy. Their behaviours are neither concurrent nor interleaved. Rather, they are

evaluated in order of relative graphical position. Stateflow is thus a completely deter-

ministic sequential imperative language without concurrency [HR04].

11The operational semantics [HR04, p. 8] and the description of the translation to Lustre [SSC+04] are
more lucid than the official description [Mat03c, pp. 4-61–4-62].

64 CHAPTER 3. SIMULATING SYNCHRONOUS EXECUTION

3.1.2.3 Processing events

When several input events occur simultaneously at a single simulation step, they are

queued in order of their position in the input vector [Mat03c, p. 6-8] and processed

one by one per the foregoing description. Unlike other versions of Statecharts that

process compound events [HN96, HN96] and the synchronous languages, conjunction

is not possible in Stateflow event guards. Actions of a Stateflow block may provoke new

inputs from other blocks in the same instant, but these are not usually processed until

the next simulation step [Mat03c, 6-11]. Such details are not immediately clear from

the informal documentation [Mat03c] nor are they always present in detailed semantic

treatments [HR04, Ham05], which may, for instance, only describe the response of a

diagram to a single event.

Events emitted whilst evaluating a diagram are not added to the queue of pending

input events. Rather the original event and the status of the interpreter, that is the

current focus within the hierarchy of states and segments, are effectively pushed onto

a stack until the new event is processed. Any subsequently emitted events are treated

in the same way, and as the processing of each is completed, prior interpretations are

resumed one by one from the stack. The state of the diagram, active states, and variable

values, is treated as a global variable: changes made within a recursive evaluation

persist after its return. In particular, the focal state of a resumed interpretation may

have become inactive, in which case interpretation of the affected segments is ended

prematurely—so called ‘early return logic’ [Mat03c, pp. 4-18–4-20].

The stacking of emitted events has both advantages and disadvantages. On one

hand, the model of execution is essentially the same as any other sequential program-

ming language and it can thus be interpreted and compiled with standard techniques,

whereas, for example, techniques for effectively compiling Esterel have required more

novel efforts [PBEB07]. On the other hand, while Stateflow diagrams may look like

hierarchical automata, they lack many of the properties, and hence benefits, of more

considered languages. In particular, they are not compositional, and, moreover, se-

mantic mappings to more fundamental models, like LTSs, are ineluctably intricate,

which renders manual analysis all but impossible, and makes automatic analysis less

effective, since the number of states may be unbounded and subcomponents cannot

be processed in isolation, and also more complicated, since many corner cases must

be considered. Furthermore, the presence of a stack makes it difficult to predict or

bound memory usage at compile time, which is important for resource-constrained or

critical embedded systems. Correct translation into stringent languages requires fixing

an upper bound on recursive processing [SSC+04].

3.1.2.4 Semantics

The behaviour of Stateflow diagrams can be complicated and difficult to determine.

Calculating the response of a diagram to a triggering input can require working through

intricate execution rules: considering priorities of states and transition segments,

tracking which states are active, or about to become active, accounting for backtrack-

ing behaviour, and maintaining both a stack of emitted events and a queue of input

events [Mat03c, §4]! Flow diagrams, moreover, may involve looping, branching, func-

tion calls, and updates to variables.

Although tracking many details and steps presents no fundamental problem for

computerized tools, the interpretation algorithm is rather involved, and it must be im-

plemented at least three times: for simulation, for hardware generation, and for soft-

ware generation. Any misinterpreted or unconsidered detail may cause behavioural

differences. Similarly, analysis tools must also encode parts of the interpretation algo-

rithm: any discrepancies risk soundness.

Most formal treatments are limited to subsets of the full language [SSC+04, HR04,

Tiw02], often even excluding hierarchy [Spe02] and internal communications [ASK04].

Even industrial bodies recommend that some features are best avoided, namely undi-

rected events [Mat01] and backtracking [Com99], either for reasons of safety or imple-

mentation efficiency. Efforts have also been made to simplify and normalise the use of

flow diagrams [Com99, BR01].

3.1. SIMULINK AND STATEFLOW 65

3.1.3 Executing Stateflow within Simulink

The Stateflow block integrates Stateflow diagrams into Simulink models. The block

provides an interface from signal values to events and variables for inputs and outputs

and vice versa. It is responsible for triggering a diagram in response to input events,

simulation steps, and the passage of time.

The Stateflow block is triggered during simulation, like any other block, to calculate

state and output values. Block parameters determine when triggering is required, and

whether there will then be an awakening, which means repeated executions of the in-

ternal diagram until no pending events remain. The distinction between triggering and

awakening is only important for edge-triggered blocks where input values are polled

during triggering to detect transition events and the diagram is only executed when

such events actually do occur.12 Triggering otherwise implies awakening.

In addition to edge-triggering, there are four other types of triggering for Stateflow

blocks: sampled, continuous, inherited, and function-calls [Mat03c, pp. 8-11–8-21].

A sampled block is triggered at regular intervals of simulation time. The period

and offset are either set explicitly for the whole block, as they are for the sample-

driven executions of synchronous programs, or inherited from the input signals. In

fact, multiple period/offset pairs may be specified for a single block; this feature is

useful for modelling the presence of multiple periodic tasks.

Continuous blocks are executed at each simulation step. They are intended for

diagrams that model functional relations between input and output signals, or phase

changes in physical systems, rather than for specifying discrete control logic, as such

they are candidates for zero-crossing detection [Mat03c, pp. 8-14–8-15].

The triggering of inherited blocks is determined by sample-time propagation.

A block triggered by function-call is awakened as part of the execution of another

block; possibly another Stateflow block. Execution of the calling block continues, pos-

sibly with changed variable and signal values, after the awakening has been processed.

Relations between Simulink signal values and Stateflow variables and events are

defined per block. An input variable associates a name with an input port of the block.

Reading from such variables returns the current value of the connected signal. For

edge-triggered and sampled blocks, input variables are like the sensors of Esterel. For

other types of blocks, the connection between input signal rates and awakenings makes

input variables closer in nature to the internal signals of block-diagram languages like

Lustre and Signal. An edge-triggered block has a distinguished vector of input signals

which are polled to detect either, or both, rising and falling transitions [Mat03c, pp. 6-

11–6-12]. Detected transitions cause associated events to be added to the input queue

of a chart, which is then awakened to process them.

Both Stateflow variables and events can be designated as block outputs. Assigning

a value to an output variable changes the latched value of the associated signal. Events

may be individually designated as either edge-triggering or function-call outputs. Emis-

sions of edge-triggering output events [Mat03c, pp. 8-19–8-21] cause alternately rising

and falling edges on attached signals. These signals can trigger other blocks through

the usual Simulink scheduling algorithm; specifically, execution of the emitting block is

completed before the execution of triggered blocks commences. Emissions of function-

call output events [Mat03c, pp. 8-16–8-19], in contrast, cause immediate execution of

connected blocks, and execution of the triggering block continues afterward. Some

guidelines [Com99] recommend that control be explicitly propagated through a model

using function-call output events, rather than via the Simulink scheduler so that de-

signers have explicit control over execution orderings.

Besides emitting output events, a Stateflow controller can coordinate other activi-

ties within a Simulink model through during [Mat03c, pp. 3-9–3-12] and bind [Mat03c,

pp. 7-85–7-92] state actions. The combination of Stateflow and Simulink in this way is a

natural and powerful implementation of the original Statecharts idea of associating dis-

crete states with continuous activities [Har87, §5], or continuous equations [MMP91].

12Somewhat like the event-driven executions of synchronous programs.

66 CHAPTER 3. SIMULATING SYNCHRONOUS EXECUTION

3.2 Modelling synchronous execution

Synchronous programs execute over a series of discrete instants. Only the ordering of

reactions is relevant and quantitative aspects of time are expressly ignored. But time in

Simulink is less abstract and one issue when embedding a synchronous program into

Simulink is specifying the relationship between simulation time and logical time.

The relationship is defined in this section by mapping a semantic model for Argos

programs, Boolean Mealy Machines (BMMs), into timed automata. The mapping is in-

fluenced by both the mode of execution, either sample-driven or event-driven, and two

parameters that account for some idealised limitations of implementations. It provides

both a specification for the block that will be described in §3.3 and a different way of

thinking about synchronous programs implemented in software.

In §3.2.1, the idealised execution parameters are described and discussed. In §3.2.2,

the timing model is first described intuitively and then defined formally.

3.2.1 Execution parameters

It will be useful to regard synchrony along two orthogonal dimensions: one internal,

relating to the semantics of languages and models, the other external and concerned

with the interaction of implementations and the environment. Different modelling

approaches can be classified by whether, for each of the two dimensions, they treat

behaviours as instantaneous or delayed. A sketch of this idea is shown in Figure 3.6.

Perfect synchrony, Stateflow, and the Argos block are discussed subsequently. The

combination that models both internal and external delays, labelled ‘other’, could be

seen as corresponding to programming in assembler where the delays of individual

instructions between observable effects are accounted for and exploited.13

internal:
(semantics)

external:
(observable)

perfect
synchrony

Stateflow Argos block other

Figure 3.6: Conceptual sketch of internal and external synchrony

The model of perfect synchrony shared by languages such as Esterel, Argos, and

Lustre, is ‘perfect’ in both dimensions. Internally, concurrent components commu-

nicate and change state simultaneously in a single step. This principle challenged

researchers to provide satisfactory semantics despite seeming paradoxes. It yields de-

terministic behavior with strong mathematical and physical foundations. Externally,

the assumption allows a mapping between system function in terms of input/output

traces and discrete instants of time. For the synchronous languages the internal and

external views are inseparable and interrelated: the single step nature of the internals

justifies the assumption of an instantaneous, or at least very fast, transformation of

inputs to outputs; instantaneous reactions imply that internal events cannot be further

ordered; and each reaction is assigned a single, consistent set of signal valuations. But

such a strong coupling between external and internal semantics is no fait accompli.

In Statecharts and Stateflow reactions are ideally computed without delay from an

external perspective, but the results do depend on internal execution orderings. At

each chart awakening, inputs trigger sequences of internal transitions and signal emis-

sions which culminate in outputs and a new chart state. Since events are processed

one-by-one and may reoccur in a sense, notions of consistency are less applicable. Fi-

nal variable values may depend on fine details of the evaluation order. This scheme

avoids the difficulties of synchronous language compilation and, arguably, provides

a clear sense of cause and effect [Bee94]. Unfortunately, it can also make reasoning

13An example of this style is presented in §4.5.

3.2. MODELLING SYNCHRONOUS EXECUTION 67

reaction instant reaction

computation

output

instant

ti ti + δout ti+1 ti+1 + δout

τ

Figure 3.7: External timing parameters

about system behavior complicated and lead to brittle behaviors that depend on the

execution target; be it simulation, software, or hardware.

Simulink is used to analyse the dynamic behavior of models containing both con-

tinuous and discrete elements. Models may contain liberal mixtures of components

and parameters, thanks to the numeric techniques employed, and it is thus feasible to

experiment with low-level controller detail and the idiosyncrasies of different external

environments. In this spirit, a block for simulating synchronous language programs

might remain true to the synchronous semantics internally, but admit more choice

when modelling externally observable behavior. The remainder of this chapter pur-

sues this idea in the form of an Argos block.

The Argos block is parameterized by two timing values:

1. (Minimum) Period τ . In sample-driven mode τ > 0 is the time between reactions.

In event-driven mode τ ≥ 0 is the minimum time between reactions.

2. Output lag δout . This is the delay between the instant that a reaction is triggered

and the instant that the resulting output values may be observed. 0 ≤ δout ≤ τ .

The intuition behind the parameters is sketched in Figure 3.7. The vertical open-

arrowed lines mark program reactions at ti and ti+1. Two reactions must be separated

by, either a minimum or exactly, τ time units. Furthermore, reaction computation

takes time and system outputs do not change instantaneously, but rather after a delay

of δout time units from the previous reaction instant.

An event-driven system with both parameters set to zero would be perfectly syn-

chronous internally and externally, that is reactions would occur precisely when trig-

gered by input events, take zero time, and yield outputs in the same instant.

Fixing δout at zero and choosing any τ > 0 (still for an event-driven system) implies

a finite number of otherwise perfectly synchronous reactions in any interval of time.

This blurs the line somewhat between event-driven and sample-driven systems. All of

the inputs that occur after one reaction are treated as a single synchronous event at the

subsequent reaction. Multiple triggerings of an input, in violation of the assumption

of synchrony, reduce to a single observation.

With δout > 0 reactions have finite duration; the instant of output emission is sep-

arated in time from the triggering instant of reaction. To maintain atomicity, inputs

that occur during this period are not considered until the subsequent reaction. When

δout = τ , outputs of the ith reaction may be externally simultaneous with the inputs of

the (i + 1)th reaction. Internally, nothing changes, nor should it; that this behavior is

not always desirable is not a sufficient reason for its prohibition. Overlapping reactions

are excluded, however, by the constraint δout ≤ τ , as there seems little practical gain

from allowing them and much added complexity for models and implementations.

The timing parameters are deliberate simplifications: δout encompasses the WCET

for computing a reaction and τ captures other inherent limitations of a target plat-

form. Acquiring values for these parameters may not be trivial, though the general

assertion that they are relatively easy to calculate for a synchronous program has re-

ceived more attention recently [BTH07, JHRC08].14 Furthermore, the model assumes

that all reaction computations are of equal duration, and the δout parameter implies

14The commercial SCADE tool from Esterel Technologies also incorporates WCET tools from AbsInt.

68 CHAPTER 3. SIMULATING SYNCHRONOUS EXECUTION

that output signals always change value simultaneously at a fixed time after the start

of each reaction. These simplifying assumptions could be met by an implementation if

necessary.

3.2.2 Timed Automaton Model

3.2.2.1 Intuition

The semantics of the execution parameters τ and δout with respect to a given syn-

chronous language program are formalized by mapping from a Boolean Mealy Machine

(BMM) and the parameters themselves to a timed automaton. This makes the model

unambiguous, leads to an accurate Argos block implementation, and provides a pre-

cise basis for thinking about how a controller implementation operates over time. A

simple example will clarify the basic idea.

Figures 3.8a and 3.8b show the ABRO program [Ber00a] in Argos and Esterel respec-

tively. It has three input signals, a, b and r , and one output signal, o. When both a
and b have been received, in any order, or even simultaneously, an o is emitted. The r
signal resets the program, prohibiting o from being emitted and forgetting any as or

bs that may have already been received. The Argos version uses two local signals, l1
and l2, to emulate the behavior of the Esterel parallel construct. Both programs map

to the same BMM, shown in Figure 3.8c.

Given parameters τ and δout , and an execution mode, in this case sample-driven

execution, the timed automaton of Figure 3.8d can be produced. The cube-like struc-

tures, positioned at each state of the original BMM, represent input latches. A single

clock c constrains the timed behavior of the automaton. Latch transitions within the

initial BMM state may happen at any time, but those in the other states may only occur

when 0 < c ≤ τ (for technical reasons discussed in §3.2.2.2). The solid transition lines

mark instants of reaction occurring precisely when c = τ , the reaction transitions from

the initial state are marked differently, they must occur immediately on startup, that is

when c = 0. The destination of the reaction transitions depends on the latch contents

and the original automaton, but it is always to an empty latch state. The clock c is

reset on each reaction transition and thus measures the time elapsed since the last re-

action. The right-most original state is split in two: control stays in the left-hand latch

until the output o occurs and then it shifts into the right-hand latch. The connecting

transitions encode the emission of the output o when c = δout and they do not change

the input latch contents.

When the event-driven mode is chosen, the translation works differently. Events

received while c ≤ τ are latched and a reaction occurs when c = τ , as illustrated

by the left-hand side of Figure 3.9. Events received when c > τ trigger a switch to

an urgent latch, the right-hand side of Figure 3.9 (on page 71), where further events

may be captured before a reaction occurs in the same instant. Time may not progress

between the first such event and a reaction.

3.2.2.2 Details

The intricacies of latching and timing in the transformation are made precise by a

mapping from BMMs, Definition 2.4.1, given certain timing and execution-mode pa-

rameters, into timed automata, Definition 2.2.17. BMMs [MR01] are the basic semantic

model for pure Argos programs. Pure Esterel programs may be treated in a similar

way. The combination of program and implementation in dense time will be expressed

as a timed automaton.

Given a BMM, fixed values for the parameters τ and δout , and a choice of either

sample-driven or event-driven execution, a timed transition system that incorporates

the intuitions just described is constructed. In the definition B = {true, false} and Q≥0

is the set of positive rationals including zero.

Definition 3.2.1

For a set I, a valuation with respect to J ⊆ I, written νJ : I −→ B, is defined:

∀i ∈ I : νJ(i) = true iff i ∈ J

3.2. MODELLING SYNCHRONOUS EXECUTION 69

ABRO(a, b, r)(o)

a/ l1

/ l1

b / l2

/ l2

l1 · l2 · r /o r

r

l1, l2

(a) Argos

module ABRO:

input a , b, r ;

output o;

loop

[

await a

| |

await b

] ;

emit o

each r

end module

(b) Esterel [Ber00a, §3.1]

a · b
· r

a · b · r

a · b · r /o

b · r /o

a · r
/ o

r + a · b

b · r

a · r

r

1

r

r
r

(c) Boolean Mealy Machine

a · b
· r

a · b · r

a · b · r /o

b · r /o

a · r
/ o

r + a · b

b · r

a · r

r

1

r

r

r

bb

rrbb

rr aarr

aa

aa
bb

aa bbrr

bb

rrbb

rr aarr

aa

aa
bb

aa bbrr

bb

rrbb

rr aarr

aa

aa
bb

aa bbrr

bb

rrbb

rr aarr

aa

aa
bb

aa bbrr

bb

rrbb

rr aarr

aa

aa
bb

aa bbrr

bb

rrbb

rr aarr

aa

aa
bb

aa bbrr
oooo

oo

oo oo

oo oo

oo

c > 0∧ c ≤ τ

c = δout

react, c = τ, c :=0react, c = 0, c :=0

tt

(startup state transitions)

signals already in latch

(d) Timed Automata (trigger = sample)

Figure 3.8: Translation of ABRO to a sample-driven system

70 CHAPTER 3. SIMULATING SYNCHRONOUS EXECUTION

Definition 3.2.2

A valuation is lifted to an interpretation with respect to J over Boolean formulas in I,
νJ : AB(I) −→ B, by structural induction.

Definition 3.2.3

Given a BMM B = (S, s0, I,O, TB) and parameters trigger ∈ {sample, event}, τ ∈ Q≥0,

and δout ∈ Q≥0, such that (C1) δout ≤ τ , and (C2) trigger = event∨τ > 0, define a timed

automaton TA
trigger
τ,δout

= (L, l0, K, invK , T) on A = I ∪̇O ∪̇{react}:

• L = (S ∪̇{startup})× P(I)× P(O)× B

• l0 = (startup,∅,∅, false)

• K = {c}

• invK(s, J, P,u) =

c ≤ δout if P ≠∅,
c ≤ τ if trigger = sample,

c ≤ 0 if u = true,

true otherwise.

• T is the smallest set defined by the conjunction of:

1. i ∈ I
=⇒ (s, J, P, false)

c>0∧ c≤τ ∅−−−−−−−−→
i T (s, J ∪ {i}, P , false)

2. trigger = event

=⇒ (s,∅, P , false)
c>τ {c}−−−−−→

i T (s, {i}, P , true)

3. i ∈ I
=⇒ (s, J, P, true)

c=0 ∅−−−−→
i T (s, J ∪ {i}, P , true)

4. (∃m ∈ AB(I).
∧ (trigger = sample∨ J ≠∅)
∧ (s,m,P, s′) ∈ TB
∧ νJ(m))
=⇒ (s, J,∅, false)

c=τ {c}−−−−−→
react T (s

′,∅, P , false)

5. (∃m ∈ AB(I).
∧ (s,m,P, s′) ∈ TB
∧ νJ(m))
=⇒ (s, J,∅, true)

c=0 ∅−−−−→
react T (s

′,∅, P , false)

6. o 6∈ P
=⇒ (s, J, P ∪ {o}, false)

c=δout ∅−−−−−−→
o T (s, J, P, false)

7. trigger = event

=⇒ (startup,∅,∅, false)
{c} true−−−−−→

i T (s0, {i},∅, true)

8. trigger = sample

∧ i ∈ I
=⇒ (startup, J,∅, false)

true ∅−−−−→
i T (startup, J ∪ {i},∅, false)

9. (∃m ∈ AB(I).
∧ trigger = sample

∧ (s0,m, P, s) ∈ TB
∧ νJ(m))
=⇒ (startup, J,∅, false)

c=0 {c}−−−−−→
react T (s,∅, P , false)

Each state of the resulting timed automaton is a 4-tuple. The first element tracks the

state of the original BMM. A distinguished marker, startup, indicates that the program

is in the initial state s0 and that a reaction has yet to occur, in which case the timing

of transitions is different. The second and third elements are latches for inputs and

outputs, respectively. The fourth component is a flag used to model actions that must

3.2. MODELLING SYNCHRONOUS EXECUTION 71

bb

rrbb

rr aarr

aa

aa
bb

aa bbrr

bb

rrbb

rr aarr

aa

aa
bb

aa
bb

rr

react, x = τ,x :=0 react, x = 0

x ≤ τ x = 0

x > τ,x :=0

Figure 3.9: Urgent inputs (trigger = event)

occur urgently. Initially, the underlying state is set to startup, both latches are empty,

and transitions are not urgent.

A single clock c measures the time elapsed since system startup to the first reaction,

and thereafter the time since the last reaction.

The transitions coordinate latching and reacting while respecting the timing and

triggering parameters. The end of a reaction is not marked by a special action but a

similar effect could be obtained by adding a distinguished output to each transition of

the original BMM.

The conjuncts of the definition characterizing T can be understood as follows:

1. Input latching after a reaction in the period (0, τ].

2. If event-driven, a first input after the period (0, τ] causes a reaction urgently.

3. Input latching during an urgent reaction.

4. For sample-driven systems, or event-driven systems where at least one input has

been latched, reactions occur when c = τ .

5. Urgent reactions must occur before time can progress.

6. Outputs occur one-by-one when c = δout .

7. An initial input triggers an urgent reaction in an event-driven system.

8. Inputs are allowed at t = 0 in sample-driven systems.

9. A reaction occurs at t = 0 in sample-driven systems.

The react symbol marks the beginning of a reaction. All inputs that have occurred

since the last reaction are grouped into a single synchronous event. Inputs that occur

afterward are latched for the next reaction, thus maintaining the atomicity of reactions.

Multiple input events may occur simultaneously with react and will have the same time

tag. There are essentially three options for treating such inputs:

1. With a closed time guard (conjunct 1, c ≥ 0) they are latched for the next reaction.

2. With an open time guard (conjunct 1, c > 0) they occur in the immediate reaction.

3. Alternatively, the inputs at the instant of reaction are split into those that oc-

cur before react and form part of the immediate reaction, and those that occur

afterward and are thus latched for the next reaction.

Option 1 is problematic for event-driven systems where inputs may in fact cause simul-

taneous reactions. It may be reasonable for sample-driven systems and could be used

to add a feedback delay of sorts. For option 3, the meaning of an order on events shar-

ing the same time tag must be considered. At present, this option is rejected, though

further consideration may be warranted. Option 2 is adopted in Definition 3.2.3. It

72 CHAPTER 3. SIMULATING SYNCHRONOUS EXECUTION

excludes timed words where simultaneous inputs occur after react. This choice ne-

cessitates special cases—conjuncts 7, 8 and 9—for the initial state where c = 0 even

though a reaction has yet to occur.

Event-driven systems react as soon as possible once an input event occurs. If an

input is received while a reaction is being processed, the corresponding reaction will

occur when c = τ (conjunct 4). Otherwise, a reaction occurs simultaneously with the

triggering inputs by switching to an urgent state, the last component of the state tuple

is set to true by conjunct 2, where inputs may still be latched (conjunct 3) but time

may not advance until react has occurred (conjunct 5).

Outputs are emitted δout units after a reaction. While it would be possible to rep-

resent this emission with a single symbol, chosen from P(O), the outputs occur indi-

vidually in arbitrary order, and all share the same time tag (conjunct 6). Timed words

where some outputs are not emitted are forbidden by the location invariant. Or, if the

location invariant were omitted, by constraining react transitions to those states where

the output buffer component is empty (conjuncts 4 and 5).

The state before any reaction has occurred is marked by the startup element. For

event-driven systems, conjunct 7 ensures that the first event triggers a simultaneous

reaction even if it occurs when c = 0. For sample-driven systems, conjunct 8 permits

input latching at time c = 0 and conjunct 9 mandates that the first sample-driven

reaction occurs simultaneously. An additional parameter specifying the time of the

first sample-driven reaction could be introduced. Only the clock guard of the transition

implied by conjunct 9 need change. A simpler alternative would be to assume that the

first reaction occurs at or after c = τ . In this case, conjuncts 7, 8 and 9 would be

omitted, L would become S × P(I)× P(O)× B and l0 would become (s0,∅,∅, false).

Transitions become urgent due to the location invariant invK in three cases. First,

when the output latch is not empty and δout units have passed since the last reaction.

Second, for sample-driven systems when τ units have passed since the last reation.

And, third, when the urgent flag is set. If the location invariant were omitted, the

timed automata resulting from Definition 3.2.3 would only specify safety constraints.

Liveness could be introduced by imposing a Büchi condition for the set of accepting

states F = {(s,∅,∅, false) | s ∈ S}, which would force reactions to occur infinitely

often, but for event-driven systems, it would unnaturally exclude timed words where

inputs do not occur infinitely often.

Definition 3.2.3 is effectively an interface between a dense-time model where inputs

and outputs are interleaved, though simultaneous events may have identical time tags,

and the synchronous model where multiple, distinct inputs may be consumed at a re-

action as a single event. Implementation details are modelled to some degree. The

abstract program is effectively executed by evaluating the guards of potential transi-

tions against the contents of the input latch, that is by νJ(m) for each (s,m,O, s′)
matching the current state.

The mapping defined in Definition 3.2.3 oversimplifies several issues. Inputs are

latched instantaneously as soon as they occur. Event detection is idealized; for in-

stance, to detect changes it may be necessary to continuously sample an input value.

Perfect timing is assumed; neither clock digitization nor drift are modelled. And all

reactions take an exact and equal amount of time to compute, whereas in many pro-

grams the time taken will vary depending on which functions are called in a given

state. A consistent execution time could be achieved with extra effort, for instance, by

double-buffering outputs and updating them on a timer.

3.3 Implementation of an Argos block

The Argos block executes an Argos program inside a Simulink model. The timing

details expressed in the transformation to a timed automaton must be realized in terms

of the concepts and API of Simulink.

The first part of this section, §3.3.1, describes the structure of the implementation

and the timing logic. The second part, §3.3.2, describes practicalities of the software.

3.3. IMPLEMENTATION OF AN ARGOS BLOCK 73

s
im

u
la

ti
o
n

in
p

u
ts

e
v
e
n

t
d

e
te

c
ti

o
n

in
p

u
t

la
tc

h

s
y
n

c
.

k
e
rn

e
l

o
u

tp
u

t
la

tc
h

o
u

tp
u

t
s
u

s
ta

in

simulation time
triggering

s
im

u
la

ti
o
n

o
u

tp
u

ts

latch

react

latchreset

Figure 3.10: Simulation components

3.3.1 Embedding within Simulink

The timed automata produced by the timing translation of Definition 3.2.3 must now

be related to the operations of Simulink. There are at least three possible approaches:

1. Adopt a semantics for Simulink either in terms of the simulation engine, or of the

presumed intent of a model. Timed automata could then be interpreted within

the given setting.

2. Relate Simulink models, via informal descriptions of the tool and test simulations,

to another better defined model of computation. There have been several such

proposals. One of them [TSCC05] shows how to translate some types of Simulink

models into the synchronous language Lustre. The present timing translation

could be adapted to produce Lustre programs, although questions would remain

about how best to encode continuous features.

3. Restrict attention to a single component and view its interaction with Simulink

through a mix of conceptual and low-level operations.

The last approach was taken. It provides sufficient guidance to implement a block

or model, but does not directly describe interactions with other components nor the

functioning of an entire model.

The realization in Simulink of the desired timing behavior will comprise the sub-

components depicted in Figure 3.10. Timed automata produced by the timing transla-

tion describe the synchronous kernel that implements the original program, the input

latch and output latch, and the triggering logic. Some additional event detection is nec-

essary to translate Simulink signal changes into discrete events, for example by polling

signal values to detect rising and falling edges.

The output sustain subcomponent of Figure 3.10 interfaces the pure signals used

within synchronous programs to other Simulink components. The external effect of a

synchronous signal is implementation-specific. It could, for instance, trigger a Simulink

function call, or generate a rising, falling, or pulse signal. Or it could be treated as

valued, emitting a zero when absent and a one when present, although it then becomes

impossible to distinguish consecutive signal emissions.

While it would be possible to implement each subcomponent of Figure 3.10 sep-

arately, using a mix of built-in and custom Simulink blocks, it turns out that imple-

menting most of the subcomponents in a single custom block makes it easier both to

encode the subtleties of the timing behaviour and to use the tool in practice. Thus, the

components inside the dashed region—input latch, triggering, synchronous kernel, and

output latch—are implemented in a single custom Simulink block to the specification

of Definition 3.2.3

Implementing the timing behaviour requires care. The clock c of the timed au-

tomaton model must be simulated in terms of the current time in Simulink t, which is

provided to a block whenever one of its functions is called. The block must calculate

when next it should be called and communicate this to Simulink through sample times

and zero-crossings. Potential algebraic loops must also be reported.

74 CHAPTER 3. SIMULATING SYNCHRONOUS EXECUTION

The clock c of a timed automaton produced according to Definition 3.2.3 is tied

to the simulation time t by tracking the clock value and previous sample time tp as

discrete state variables. At any sample instant, c = xc + (t− tp), where xc is the stored

clock value. The next clock value to be stored x′c depends on whether a reaction has

occurred,

x′c =
{

0 if is_reaction

c otherwise,

where at any sample point, after processing inputs, is_reaction is defined as

is_reaction =
{
c = τ ∨ t = 0 if trigger = sample

(c ≥ τ ∨ s = startup)∧ J ≠∅ if trigger = event

where s = startup is true only until the first reaction and J represents the input latch.

The next required sample hit tv is defined as

tv =

t + δout − x′c if x′c < δout

t + τ − x′c if x′c ≥ δout ∧ (trigger = sample∨ J ≠∅)
∞ otherwise

The block uses port-based inherited sample times to ensure that all input changes

are detected and latched.

The technique for scheduling reactions and output emissions depends on the value

of trigger .

When trigger = sample, block-based sample times that depend on the δout parame-

ter are used:

blocktimes =
{
{[τ,0]} if δout = τ ∨δout = 0

{[τ,0], [τ, δout]} otherwise

where a sample time is written [period,offset].

When trigger = event and τ = δout = 0 inherited sample times are sufficient to

schedule output emissions, otherwise the implementation is more involved. Variable

sample times are not appropriate because it cannot be known when triggering inputs

will occur. Instead two zero crossing functions are defined: Z1 = c−δout and Z2 = c−τ .

These identify the instants when outputs are emitted and those where reactions occurs

as significant events.

When δout = 0 outputs depend instantaneously on inputs and may thus contribute

to algebraic loops within a model. The block warns Simulink of this possibility.

3.3.2 Practicalities

A prototype Argos tool chain was designed and implemented to evaluate the ideas and

approach just described. The tool chain ultimately provides two of the three layers of a

synchronous language implementation: a reactive kernel defined by a compiled Argos

program and an interface between Simulink signals and synchronous signals. External

data handling is not supported.

The tool chain comprises Simulink, a third-party C compiler, and three custom

programs: argostoflow, flowtoc, and syncblock. The way they work together to simulate

an Argos program within a Simulink model is shown in Figure 3.11.

The tool chain would ideally include a graphical editor and animator for Argos

programs. Such features were not, however, central to this research. Argos programs

must instead be provided in the textual format described in Appendix D.

The argostoflow compiler transforms textual Argos programs into Boolean equa-

tions using an existing technique [MH96]. It is implemented in C using a generated

parser and a BDD library. Reachability analysis is performed to ensure that programs

are deterministic and input-enabled for every reachable state and any assignment of

inputs. Aside from the calculation of reachable states, constructing BDD transition

relations is also sometimes prohibitively expensive. A realistic compiler would include

3.3. IMPLEMENTATION OF AN ARGOS BLOCK 75

program
Argos

as text
Boolean

equations
as text

ANSI
source code

Simple protocol
over FIFOs

Simulink

Dynamically linked
as an s−function

graphical

editor

argostoflow flowtoc cc

syncblock

executable
stand−alone

editing and animation

Figure 3.11: Tool chain for Argos block

sampled
sensor

counter
transition

falling

rising

x

c

iff x ≠ 0 when c

Figure 3.12: Mapping Simulink signals to logical signals

techniques for handling partitioned transition relations, or, more likely, employ less

expensive algorithms for approximate analysis.

The Boolean equations are transformed by flowtoc into a C program that can be

compiled and linked with a library that implements a simple stream-based interface

for querying program properties and computing reactions. The resulting executable

provides the reactive kernel.

The syncblock component is a Simulink s-function that provides a bridge between

a Simulink model and an Argos program. It launches the compiled Argos program and

communicates with it through two FIFO channels. Dynamic linking would be faster,

but when it was used in an earlier version, it was found to be less robust and unable to

adequately accommodate updates of compiled Argos programs.

The syncblock maps to and from Simulink signal values and pure Argos signals.

While any change in the value of a Simulink signal could be regarded as a triggering

event, the Argos block only detects the events shown in Figure 3.12. A rising event

occurs when an input changes from zero or false to one or true in consecutive simu-

lation steps. Falling and transition events are defined likewise. The counter mode is

similar: events are registered whenever the input signal is incremented by at least one

or decremented by more than one. In sampled mode an input signal is coupled with

a clocking signal. The former is read when an event occurs on the latter. Non-zero

sampled values are interpreted as true signals.

Block outputs are set to one when the corresponding signal is present, and zero

when it is absent. They are latched between reactions. Program states can be linked to

output signals, but given that Argos state names have no semantic value [MR01] this is

provided as a debugging technique only.

Instances of the syncblock are configurable through the parameters defined in the

timing translation.

76 CHAPTER 3. SIMULATING SYNCHRONOUS EXECUTION

3.4 Experience

Simulink is distributed with a number of example models that demonstrate the fea-

tures of Stateflow. In this section, two of them, sensor failure detection in an auto-

motive fuel controller and a bang-bang temperature controller, are first described and

then reimplemented in Argos using the Argos block. The aim is to demonstrate the

tool set and to compare its practical aspects with those of Stateflow.

3.4.1 Sensor failure detection

The Mathworks sensor failure detection example models an automotive fuel supply

subsystem which determines the rate of fuel supply to an engine based on input from

several sensors. Interactive switches allow users to simulate the effect of failed sensors

on the subsystem’s performance. In this subsection, both the original example and a

reimplementation of the Stateflow control logic using the Argos block are described.

The analysis focuses on the differences between the Stateflow and Argos models, and

on the practicalities of using the Argos block.

3.4.1.1 Original model

The original Mathworks model is shown in Figure 3.13. The upper half, Figure 3.13a,

shows the top-level Simulink model and the fuel rate controller subsystem.

There are three parts to the top-level model: a discrete controller, a model of the

environment, and components for manipulating and analysing the simulation. The

discrete controller is wholly contained within the fuel rate controller block, whose con-

tents are shown underneath. It will subsequently be described in detail. The envi-

ronment is modelled within the engine gas dynamics block, it comprises mathemat-

ical models—continuous integration, multipliers, non-linear effects like thresholding,

etcetera—of a throttle and manifold.15 The other smaller blocks at left change the sim-

ulation parameters. The engine speed switch chooses between two engine speed con-

stants. The throttle is modelled by a saw-tooth waveform; as if an accelerator peddle

were being alternately pushed in and then released. The four central switches toggle

the discrete controller inputs between correct sensor signals and erroneous constant

values that indicate sensor failure. There are four sensors: throttle position, engine

speed, Exhaust Gas Oxygen (EGO), and Manifold Absolute Pressure (MAP). The two

smaller blocks at bottom right chart signal values against time as a simulation pro-

gresses: Metered Fuel is the control signal produced by the discrete controller, and

air/fuel mixture ratio is the state variable of interest.

The discrete controller subsystem is shown in the lower part of Figure 3.13a. The

sensor inputs are connected at left and the control output at right. There is a Stateflow

block and three subsystem blocks. The subsystem blocks contain discrete dataflow

networks—unit delays, table lookups, triggered subsystems, etcetera. The Sensor cor-

rection and Fault Redundancy block tries to compensate for sensor failures, which are

detected by and communicated from the Stateflow block, by estimating the missing

values. The Airflow calculation and Fuel Calculation blocks calculate control laws to

determine the required rate of fuel supply.

The Stateflow block is sampled and executes every 0.01 units of simulation time.

The block contains the diagram shown in Figure 3.13b. It comprises six concurrent

state machines. Each is numbered according to a priority derived from its relative

position.

Each of the top four machines tracks the state of a sensor input, setting a corre-

sponding element in the fail_state output vector to 0 if the sensor value is reliable,

and to 1 otherwise. The oxygen sensor monitor begins in the O2_warmup state, where

the oxygen sensor value is marked unreliable until the simulation time exceeds a con-

stant value. After warming up, the oxygen sensor monitor has behaviour similar to the

other three monitors. If the sampled sensor value is not within an expected range, the

transition to the fail state is taken, sending an INC event to the Sens_Failure_Counter

15A manifold is piping that supplies fuel and air to the combustion cylinders of an engine.

3.4. EXPERIENCE 77

engine
speed

300

Nominal
Speed

High
Speed

(rad./Sec.)

700

throttle
command

throttle sensor

0

speed sensor0

EGO sensor12

MAP sensor0 fuel rate
controller

throttle

engine speed

EGO

MAP

fuel rate

engine
gas

dynamics

engine speed

throttle angle

fuel

o2_out

MAP

air/fuel ratio

Metered Fuel air/fuel

mixture ratio

1
throttle

2
engine
speed

3
EGO

4
MAP

control logic

throt

speed

Ego

press

fail_state

fuel_mode

Sensor correction and
Fault Redundancy

Sensors

Failures

Corrected

Airflow calculation

sens_in

Failures

mode

est. air flow

feedback correction

Fuel Calculation

est. air flow

feedback correction

Failures

mode

fuel rate 1

fuel
rate

(a) Simulink Model (top-level model, above, and fuel rate controller subsystem, below)

Low_Emissions
entry: fuel_mode = LOW

H

H

[in(FL1)]

[in(FL0)]

[in(O2_normal)]

[in(FL1)]

[speed > max_speed]

 [!in(MultiFail)]

enter(MultiFail)

exit(MultiFail)

 [in(MultiFail)]

speed < (max_speed − hys)]
[in(speed_norm) & ...

6

Shutdown

Overspeed

Fuel_Disabled
entry: fuel_mode = DISABLED

Single_Failure

Warmup

Normal

Running

Fueling_Mode

entry: fuel_mode = RICH
Rich_Mixture

DEC

FL4FL3FL2
MultiFail

Sens_Failure_Counter

FL1FL0

5
INC

DEC

INC INC

DEC DEC

INC

Speed_Sensor_Mode 4

[speed > 0] /
Sens_Failure_Counter.DEC

[speed==0 & press < zero_thresh]/
Sens_Failure_Counter.INC

entry: fail_state[SPEED] = 1entry: fail_state[SPEED] = 0
speed_norm speed_fail

Throttle_Sensor_Mode

[throt> max_throt | throt < min_throt]/
3

/ Sens_Failure_Counter.DEC
[throt > min_throt & throt < max_throt]

Sens_Failure_Counter.INC

entry: fail_state[THROT] = 1;

entry: fail_state[THROT] = 0;
throt_norm

throt_fail

press_fail
entry: fail_state[PRESS] = 1entry: fail_state[PRESS] = 0

press_norm

Pressure_Sensor_Mode 2

[press > min_press & press < max_press] /
Sens_Failure_Counter.DEC

/Sens_Failure_Counter.INC
[press > max_press | press < min_press]

[t > o2_t_thresh]

[Ego < max_ego] /
Sens_Failure_Counter.DEC

1
entry: fail_state[O2] = 1;

entry: fail_state[O2] = 0;
O2_normal

[Ego > max_ego]/

Oxygen_Sensor_Mode

O2_warmup
entry: fail_state[O2] = 1;

O2_fail

Sens_Failure_Counter.INC

(b) Stateflow Controller

Figure 3.13: Fault-tolerant Fuel Controller [The03b]

78 CHAPTER 3. SIMULATING SYNCHRONOUS EXECUTION

state machine, and the sensor is marked as failed in the fail_state vector. If the sampled

sensor value later returns to the expected range, the transition to the normal state is

taken, sending a DEC event to the Sens_Failure_Counter state machine, and the sensor

is marked as reliable in the fail_state vector. The expected value of the speed sensor

also depends on the value of the pressure sensor.

The Sens_Failure_Counter state machine counts the number of failed sensors by

reacting to INC and DEC events. The MultiFail superstate is entered when two or more

sensors have failed. Its status is monitored by the Fueling_Mode state machine.

The count of failed sensors is integral to the Fueling_Mode state machine which de-

termines whether the fuel_mode output is LOW, RICH, or DISABLED. This state machine

is the most complicated, having a deep hierarchy of states with multi-level transitions

between them. It is normally in the Running state, but if the speed input exceeds

the max_speed constant, or if Sensor_Failure_Counter enters the MultiFail state then it

transitions to the Fuel_Disabled state.

In the absence of excessive speed values and multiple failures, the Running mode

begins in the Warmup substate until the oxygen sensor comes online. It then alternates

between a substate where the fuel_mode is low and one where it is rich, depending on

whether there are, respectively, no detected sensor failures or a single detected failure.

The history junctions ensure that the active substate is remembered if control enters

and then returns from the Fuel_Disabled state.

If an excessive speed is detected, the Fueling_Mode state machine enters the Over-

speed substate, where it remains until the speed sensor is marked as reliable and its

value has dropped below the maximum by a certain margin. If multiple failures are

detected, the Shutdown substate is entered, but only if—according to the relative pri-

ority of transitions—speed is less than or equal to max_speed. Interestingly, if multiple

sensor failures are first detected, and then the speed exceeds the limit, and then the

MultiFail state becomes inactive, control may return momentarily to the Running state

before a continued excessive speed value would trigger a transition to Overspeed.

3.4.1.2 Argos controller

The Stateflow controller, the block labelled control logic in Figure 3.13a, can be replaced

with the Argos block running an Argos program, but additional interfacing is required.

The replacement subsystem is shown in Figure 3.14a. It has the same inputs and

outputs as the original Stateflow block.

The subsystem inputs are connected through a network of constant, comparison,

conjunction, and arithmetic blocks that map integer sensor values into boolean val-

ues. For instance, the Stateflow guard press > min_press & press < max_press is

replaced by comparison blocks for the min_press and max_press values, and an AND

block to combine the results into a boolean Press_inrange input. This same input

is negated to serve for the guard press > max_press ‖ press < min_press. The

Stateflow and Argos models differ slightly in their treatment of pressure values equal

to either of the constants: these values do not satisfy either of the Stateflow guards but

they are valid in the Argos model. The other guard expressions are treated similarly.

The external predicates are necessary because the Argos block only executes Pure

Argos programs. Such expressions are more conveniently expressed as text, as is done

in Stateflow, and as could be done using Argos with variables [MR01, §4.5].

The subsystem outputs are also filtered through external blocks. The sensor fault

values are combined into a vector using a multiplexor. The three mutually-exclusive

fuel mode outputs are combined into an integer value using a summation block. While

the overhead is small for this example, it could be prohibitive for larger systems.

The triggering of the Argos block in the diagram is slightly unusual because it was

modelled in a prototype [BS05] that preceded the three-parameter timing model §3.2.

The details can, nevertheless, be interpreted in the three-parameter model, and they

make little difference to this comparison between modelling styles.

The Argos block is event-driven, trigger = event. There is a single triggering

(clock) input, visible at bottom left. A rising edge on this distinguished input trig-

gers the block immediately: τ = 0. Reaction time is not modelled: δout = 0. The other

3.4. EXPERIENCE 79

2
fuel_mode

1
fail_state

>

toofast

speed_under_hys

Moving

toofast

Throt_inrange

Press_underthresh

Ego_inrange

TSEC

Press_inrange

(clock)

FAIL_O2

FAIL_PRESS

FAIL_THROT

FAIL_SPEED

fuel_mode_low

fuel_mode_rich

fuel_mode_disabled

syncblock

<

speed_under_hys

>= 3

min_throt

>= 0.001

min_press

<= 90

max_throt

628

max_speed

<= 1

max_press

25

hys

AND

Throt_inrange

< 250

Press_underthresh

AND

Press_inrange

> 0

Moving

3

Gain1

2

Gain

<= 1.2

Ego_inrange

Add

100ms clock

4
press

3
Ego

2
speed

1
Throt

(a) Simulink Interface

MULTI

press norm press fail

OverspeedRunning Shutdowntoofast=fuel mode disabled FAIL SPEED:speed under hys:MULTI=fuel mode disabledSINGLE=fuel mode rih+gorih=fuel mode rihgorih
+FAIL SPEEDspeed under hys=fuel mode disabled=fuel mode disabledO2 old:gorih=fuel mode lowFAIL 02:FAIL PRESS:FAIL SPEED:FAIL THROT=SINGLE+FAIL 02:FAIL PRESS:FAIL SPEED:FAIL THROT=SINGLEFAIL 02:FAIL PRESS:FAIL SPEED:FAIL THROT=SINGLE+FAIL 02:FAIL PRESS:FAIL SPEED:FAIL THROT=SINGLE+throt norm O2 normalO2 warmup Ego inrange=FAIL O2O2 fail Press inrange=FAIL PRESSEgo inrange[48TSEC℄

speed norm speed failMoving:Press underthresh=FAIL SPEED Moving=FAIL SPEEDZERO:SINGLE=MULTI

=O2 old;

WarmupNormal Single Failure=fuel mode lowO2 old:SINGLE:gorihSINGLE:gorih hfuel mode disabledi toofast:MULTI MULTI=go rihSINGLE=fuel mode rih+gorih=fuel mode rih
O2 old; ZERO; SINGLE; MULTI

Ego inrange=FAIL O2
FAIL 02:FAIL PRESS:FAIL SPEED:FAIL THROT=ZERO

Press inrange=FAIL PRESS
=fuel mode low +gorih=fuel mode rihO2 old:SINGLE=fuel mode rihSINGLE:gorih=fuel mode low

Throt inrange=FAIL THROT Throt inrange=FAIL THROTthrot fail
FAIL O2 Press inrange

FAIL SPEED:speed under hys:MULTIMovingThrot inrange
=fuel mode disabled=fuel mode disabled

(b) Argos Controller

Figure 3.14: Fuel control subsystem in Argos

80 CHAPTER 3. SIMULATING SYNCHRONOUS EXECUTION

inputs are sampled at the instant of triggering, a signal is marked present only when

the corresponding input is not zero. These inputs are thus interfaced like sensors

but treated internally as signals.16 The triggering (clock) input is driven by a square

wave signal with a period of 100ms, so the Argos block executes at the same rate as the

Stateflow original. Were the block truly sample-driven, that is with trigger = sample

and τ = 0.100, there would be no (clock) input, and, transitions of the other in-

put values would be latched between reactions rather than recorded at the instant of

reaction. Such behaviour would be unfaithful to the original model.

The Argos block runs the program shown in Figure 3.14b.17 The Argos program

mimics the basic structure of the Stateflow original, having three component group-

ings, namely, from top to bottom, four individual sensor monitors, a means for de-

tecting multiple failures, and logic for determining the fuel mode. Within each of the

groupings, however, the Argos and Stateflow versions differ in several details.

Each of the four sensor-monitoring components in the Argos program has essen-

tially the same structure as the corresponding component in the Stateflow program.

The Argos components differ both in the way timing is expressed, and by using self-

loops to sustain status signals instead of INC/DEC signals and array assignments.

The oxygen sensor must remain in a warmup state for 4.8 seconds after initializa-

tion. This is expressed in the Stateflow original by the guard t > o2_t_thresh, where

o2_t_thresh is a workspace variable with value 4.8 and t is the simulation time. Ex-

pressions relative to the simulation time may be convenient but they suffer from at

least three deficiencies. First, the time is relative to the start of the simulation, not

to the initialisation of the controller. Second, there is, in general, a risk of designing

systems that rely on implicit synchronisation. Third, and most importantly, the rela-

tionship between such timing specifications and program triggering is unclear—there

is a blurring of real and logical time.18

Timing in Argos, as in all synchronous languages, is strictly logical. The oxygen

sensor warmup period is measured by counting out 48 TSEC events. The TSEC signal

is present at every reaction because it is a sampled input connected to the triggering

100ms clock signal. The reason for this redundancy, since the program could as well

count 48 implicit tick events, is the conceptual isolation of triggering and timing.

The sensor-monitoring components in the Stateflow program mark a sensor failure

by setting a flag in the fail_state array. In the Argos version, there is a signal for

each monitored sensor—FAIL_O2, FAIL_PRESS, FAIL_THROT, and FAIL_SPEED—which

is emitted when values of that sensor go out of range and then sustained while neces-

sary by a self-loop transition. These signals are merged into an array by a multiplexor

block in the interface subsystem. The FAIL_O2 signal is sustained in the warmup state

by a self-loop on a refining state so as not to reset the timer at each reaction.

The sensor failure signals are also used in the Argos program to detect multiple

failures, instead of counting INC and DEC signals as the Stateflow version does. Such

counting is not possible anyway in Argos since signal emissions are conceptually simul-

taneous; multiple signal emissions cannot be distinguished from a single emission.19

Instead, three conditions are evaluated at each reaction, by self-loop transitions in par-

allel state machines, to determine whether zero, one, or many failures have occurred.

These failures are communicated by broadcasting one of the signals ZERO, SINGLE, and

MULTI. These signals, and O2_cold, are visibly encapsulated as local signals at the top

level of the program. In Stateflow, such declarations of scope are also possible, but

they are not evident from the state diagrams alone.

The fuel mode component is the most difficult to translate because it uses history

junctions and multi-level transitions, and Argos possesses neither. Instead, the Run-

ning and Fuel_Disabled superstates of the Stateflow original are implemented as two

parallel state machines in the Argos version, and the former is enclosed in an inhibi-

tion operator, the rectangle with label 〈fuel_mode_disabled〉, so that its operation is

16There is less distinction between boolean sensor inputs and pure events in sample-driven Argos and
Lustre programs than there is, for instance, in event-driven Esterel programs.

17The textual version of this program in Appendix E was created manually.
18This topic will be resumed in Chapter 6.
19There is no analogue in Argos for the signal combination functions of Esterel.

3.4. EXPERIENCE 81

suspended in reactions where the latter emits the signal fuel_mode_disabled. This

standard technique [MR01, §6.1] has the same effect as the combination of refined

exclusive states and history junctions: the suspended behaviours are not involved in

reactions, but their state is maintained. The ‘disabled’ component also influences the

‘running’ component through the gorich signal, which is local to the pair.

The restructuring of the fuel mode component eliminates one source of multi-level

transitions. The other source is treated by duplicating the emission of fuel_mode_low,

which, as in the sensor monitoring components, replaces the variable assignment of

the original, in the Warmup and Normal states. This duplication is difficult to avoid

and some of the clarity of the Stateflow original is lost.

Finally, it is worth noting that many transitions in the Argos fuel mode component

are triggered by conjunctions of signals and negated signals. Such triggers explicitly

express transition priority. They are irrelevant in Stateflow, where priority is implicit

and signals are processed one by one, but they are needed in Argos programs to ensure

deterministic behaviour for all input assignments. For example, of the two transitions

leaving the Running state it is clear which is taken for any combination of the toofast

and MULTI signals when at least one is present. Guard expressions in Stateflow are

certainly less cumbersome, but detecting non-determinism and requiring its explicit

elimination ensures that a conscious design choice has been made, and results in pro-

grams whose behaviour cannot be accidentally altered by incautious rearrangement.

3.4.1.3 Summary

This section has shown that Argos and the Argos block can sometimes function as a re-

placement for a Stateflow controller, though extra interfacing components are required

to work around the limitations of Pure Argos.

The reduced set of programming constructs available in Argos, as compared to

Stateflow, is sufficient to express the failure detection controller but a different style

of programming is required. There is some evidence that a more concise program

could be written in a synchronous language with more features, like Esterel or Safe

State Machines. The failure counting component could, for instance, be simplified

using combination functions and valued expressions.

The single timing constraint in the Stateflow controller is stated with respect to

simulation time t, which is, at least conceptually, dense. While convenient, this mode

of expression has disadvantages, particularly because its relation to program execution

is not clear. The same constraint is expressed in the Argos version by counting discrete

events, as is usual in synchronous programming. These events are related to the dense

time of Simulink through convention, viz. signal names, and the timing parameters of

the Argos block. The timing parameters were peripheral to this example. They are

more central in the next.

3.4.2 Bang-bang temperature controller

A bang-bang temperature controller tries to maintain a given temperature by switching

a heating element on if a measured temperature drops too low, and off again if it

becomes too high.

The focus of the temperature controller reimplementation of this subsection is on

the generation of simulation results from the two implementation timing parameters.

3.4.2.1 Original model

The original Mathworks Simulink model, Figure 3.15a, has, like the sensor failure

model, three parts: a discrete controller, a model of the environment, and compo-

nents for observing the controller outputs and effect. It is, though, much simpler. The

discrete controller, labelled Bang-Bang Controller, comprises a Stateflow block, a trig-

gering signal, and a constant parameter. The environment, labelled Boiler Plant model,

is a subsystem block that encompasses simple models of the heating element and the

82 CHAPTER 3. SIMULATING SYNCHRONOUS EXECUTION

20

temperature
set point

reference

temp

LED

boiler

Bang-Bang
Controller

Boiler

Plant model

on/off

actual temp

digital temp

1 sec Timer

LED {OFF=0, RED=1, GREEN=2}

TEMP (deg C)

BOILER CMD {OFF=0, ON=1}

(a) Simulink model

Heater

Off
entry: turn_boiler(OFF)
on every(5, sec): flash_LED()

On

after(20, sec)
after(40, sec)
[cold()]

[Heater.on.warm()]

function
turn_boiler(mode)

function
flash_LED()

function
b = cold()

function turn_boiler(mode)

[mode==ON]

{color=RED} {color=GREEN}

{LED=color;

boiler=mode}

function flash_LED()

[LED==OFF]

{LED=OFF} {LED=color}

function b = cold()

{b=temp<=reference}

On
entry: turn_boiler(ON)
du: flash_LED()

H

HIGH [warm()] NORM [Heater.On.warm()]

function b=warm()

{b=!cold()}

(b) Stateflow controller

Figure 3.15: Bang-bang temperature controller [The03a]

3.4. EXPERIENCE 83

actual temperature—a switch and integrator respectively—and a detailed model of a

digital thermometer which measures the temperature.

The discrete controller has two inputs, the reference and measured temperatures,

and two outputs, a Light Emitting Diode (LED) and a boolean control signal. The LED

is off when the system is not operational, or blinking when it is: red and slowly if

the heating element is switched off, green and more rapidly if it is switched on. The

heating element is switched on while the control signal is true and off while it is false.

The discrete controller program is shown in Figure 3.15b. At the top level there is

a state machine with two states and three Flow Diagram functions.

The three Flow Diagram functions are shown to the right of the figure. The first, at

top, turn_boiler, sets two variables: whether the heating element is on or off and the

corresponding LED colour. The second, flash_LED, toggles the LED alternately on and

off. The third, cold, returns true when the measured temperature is less than or equal

to the reference temperature.

The state machine begins by entering the Off state, which calls turn_boiler to switch

the heating element off. When the Off state is active, the flash_LED function is called

on every fifth sec event—this controller expresses delays relative to input events rather

than to the simulation time. The single outgoing transition, to the On state, is taken if

the cold function returns true and at least forty sec events have been received.20 The

delay prevents the heating element from being cycled on and off too rapidly.

The On state is refined by the two-state machine at the bottom of Figure 3.15b.

The heating element is switched on when this state is entered. While the state remains

active the flash_LED function is called on every triggering, that is, every second. The On

state is never active for more than twenty seconds. It contains a function called warm

that simply negates the value returned by the cold function. The history junction

means that the HIGH state is active until the first measurement considered warm is

taken, that is until the On state is terminated by a reading rather than a timeout. The

first warm measurement triggers a transition to the NORM state, which becomes the

initial state in subsequent activations of On. A warm measurement in the NORM state

triggers the multi-level transition back to Off.

3.4.2.2 Argos controller

The bang-bang temperature controller can also be implemented using the Argos block.

Like the fuel controller, additional interfacing components and a slightly different pro-

gramming style are required.

The Simulink model is shown in Figure 3.16a. The original Stateflow block has been

replaced by a subsystem block whose contents are shown underneath. The reference

and measured temperatures are passed into a comparison block to produce a boolean

signal that the Argos block maps to an input signal COLD, which replaces the warm and

cold functions of the Stateflow original. Individual outputs for the LED colour, GREEN

and RED, are mapped to a single integer value by a summation block.

The Argos control program is shown in Figure 3.16b (the textual version may be

found in Appendix E). It comprises two main states: On and Off.

The Off state contains two parallel state machines. The one at left causes the LED

to blink red every five SEC events. The refining state with a self-loop implements a

Moore-style output for RED (which does not reset the timeout). The state machine at

right counts off forty SEC inputs and then sustains the local onOk signal, which is used

in conjunction with COLD in the transition from Off to On. Modelling the LED flashing

and minimum delay as refining state machines involves slightly more effort than do the

Stateflow equivalents, due to the simpler nature of Pure Argos. This is a disadvantage.

On the other hand and more generally, the simplicity allows the interplay of different

components to be readily understood in terms of a small number of basic operators,

rather than requiring that it be divined through interpretation of user manuals and

experimentation with models.

The On state is similar. It contains parallel state machines to both blink the GREEN

signal, and to sustain the BOILER output. There are two transitions back to the Off

20The after operator counts events from the last entry into the source state [Mat03c, pp. 7-79–7-80].

84 CHAPTER 3. SIMULATING SYNCHRONOUS EXECUTION

20

temperature
set point

SEC

reference

temp

LED

boiler

Argos Bang-Bang
Controller

Boiler

Plant model

on/off

actual temp

digital temp

1 sec Timer

LED {OFF=0, RED=1, GREEN=2}

TEMP (deg C)

BOILER CMD {OFF=0, ON=1}

Argos block

Argos block

COLD

SEC

GREEN

RED

BOILER

<=

COLD

3
temp

2
reference

1
SEC

1
LED

2
boiler

+

+

+

(a) Simulink model

Off
[5 SEC]

[5 SEC]

/ RED

[40 SEC]

/ onOk

On

SEC / GREENSEC

SEC / GREEN
[20 SEC]

/ BOILER

COLD.onOk / BOILER COLD

onOk

(b) Argos controller

Figure 3.16: Bang-bang temperature controller in Argos

3.4. EXPERIENCE 85

 0

 5

 10

 15

 20

 0 100 200 300 400 500 600

simulation time

Bang-bang Controller: Stateflow

Temperature
LED

BOILER

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 35 35.5 36 36.5 37 37.5 38 38.5 39 39.5 40 40.5 41 41.5 42 42.5 43 43.5 44 44.5

δout = 0.3 δout = 0.3

Figure 3.17: Argos simulation results

state: one for a 20 SEC timeout, the other for when the COLD signal is absent. The

controller’s behaviour differs from the Stateflow original because the first activation of

the boiler ends after a single ‘warm’ reading. Implementing the special case is tedious

in Argos. One technique is to add another state machine in parallel at the top level.

It would have two states, with a single transition from the initial state to the second

state when both BOILER and ¬COLD are present and a self-loop on the second state

to sustain a new local offOk signal, which would be required along with ¬COLD to

make a transition back to Off. There seems to be the same trade-off between modelling

convenience and language simplicity.

Simulation results for parameters trigger = event, τ = 0.8, and δout = 0.3, with

SEC as a rising edge input and COLD as a sampled input, are shown in Figure 3.17. The

internal panel shows detail of the signals between 35.0 to 44.5 seconds.

The heater is alternately switched off and then on. When the heater is off, the

measured temperature gradually decreases and the LED signal alternates between 0

(off) and 1 (red). When the heater is on, the measured temperature increases and the

LED signal alternates more rapidly between 0 (off) and 2 (green). The temperate zig-

zags upward until it attains the reference temperature 20°C, which is then maintained.

Note that, due to the controller timing constants, the temperature never increases

for more than twenty seconds and always decreases for at least forty seconds. For

similar reasons, the shorter LED pulses for the colour red, have a ten second period,

while the taller ones for the colour green, more easily seen in the internal panel, have

a two second period.

The effect of the δout parameter is obvious, the outputs from reactions occurring at

40.0 and 42.0 seconds, to choose but two, are not manifest until 40.3 and 42.3 seconds

respectively.

3.4.2.3 Summary

The bang-bang temperature controller can also be implemented using the Argos block.

Extra interfacing elements and adjustments to programming style are required.

86 CHAPTER 3. SIMULATING SYNCHRONOUS EXECUTION

The simulation results show the effect of varying the timing parameters. They also

raise questions. How important is it really to capture such small deviations from ideal

behaviour? Is an assumption of synchrony sufficient? Certainly, for these idealised

examples, the deviations do not seem to be significant. The prototype and examples

seem sufficient to propose and demonstrate the approach but they are not convincing

in themselves.

3.5 Comparisons with related work

The timing transformation and Argos block were developed with two aims: to account

for implementation timing constraints in an abstract model and to integrate a syn-

chronous language into Simulink. In this subsection, four other approaches that share

one or both of these aims are discussed.

Various synchronous execution machines [AMP91, AP93, BHHS93] propose struc-

tured specifications for the interface layer of synchronous language implementations.

They are described in §3.5.1. A translation from Simulink to Lustre [CCM+03, SSC+04]

applies synchronous language techniques to Simulink models, as described in §3.5.2.

TAXYS [BCP+01, STY03] is a methodology for designing applications in discrete time

with Esterel and then showing their correctness with respect to implementations mod-

elled in continuous time with timed automata. It is discussed in §3.5.3. The Almost As

Soon As Possible (AASAP) semantics [DWDR04] accounts for idealised implementation

parameters in timed automata models; similarities with the present work are discussed

in §3.5.4.

3.5.1 Synchronous execution machines

Most synchronous language research focuses on the reactive kernel. The required in-

terface layer is usually considered an unimportant implementation detail. But, not

unlike the timing translation of this chapter, there have been attempts [AMP91, AP93,

BHHS93] to understand and implement the interface layer systematically.

The interface layer can be understood as a link between an asynchronous envi-

ronment and a synchronous automaton [AMP91]. It can be described abstractly as

an execution machine that is to be implemented for simulation, as on a worksta-

tion [AMP91, AP93], or on a Real Time Operating System (RTOS) [AMP91] or micro-

kernel [BHHS93].

The abstract execution machines have distinct components for mapping system

events, like interrupts or value changes detected by polling, to signals, for bundling

these signals into events, for deciding when to execute the reactive kernel, for do-

ing so, and for collecting and dispatching output signals. Triggering decisions may

involve event queueing [AMP91], or custom strategies that account for signal rela-

tions, resource management, and quality of service issues [BHHS93]. Additional sig-

nals that mark, for instance, the beginning and end of reactions, may be introduced.

The abstract execution machine may even itself be specified in Esterel [BHHS93]. Im-

plementations of these machines may involve multiple processes and care is required

to preserve the atomicity of reactions and other characteristics of the synchronous

semantics. The machines usually support access to asynchronous aspects of the im-

plementation through the exec statement of Esterel.

The timing translation and Argos block confront the same issues of embedding a

synchronous program into a non-synchronous environment. And similar solutions are

proposed: different components for latching inputs and outputs, and explicit logic

for deciding when to trigger a reaction. The timing translation goes beyond the asyn-

chronous environments previously considered, and adds timing detail. The formal

model and details of its integration into Simulink are also more specific and concrete

than previous approaches. The similarities and differences between sample-driven and

event-driven execution schemes are better clarified.

3.5. COMPARISONS WITH RELATED WORK 87

3.5.2 Simulink to Lustre

Simulink was originally used only to design and simulate discrete controllers. But its

newer code generation features make it possible to compile models into executable

code. The correctness of these features and the quality of their results, though, can be

questioned.

A translation from subnetworks of discrete time Simulink blocks to Lustre pro-

grams has been proposed [CCM+03] as part of an alternative compilation technique.

An extension [SSC+04] handles a subset of Stateflow programs. In this approach, con-

trollers are designed and simulated in Simulink together with continuous models of

their environments. The controller components are then automatically translated into

Lustre whence they can be verified using model checking and compiled into executa-

bles using a certified compiler.

The transformation assumes a time-triggered execution platform. The timing char-

acteristics of the platform are expressed as annotations that state lower and upper

bounds on task execution times. The annotations are used to perform timing analyses

and to constrain algorithms for synthesis and scheduling.

A different perspective is taken in the Argos block proposal. The most obvious

difference is that rather than convert a Simulink model into a synchronous program,

the block allows synchronous programs to be integrated into Simulink models. It is

conceivable that the Argos block could be incorporated into the Simulink to Lustre

translation. The two execution parameters, τ and δout , might then be passed into the

timing analysis and compilation stages. Care would be required to adapt the triggering

scheme declared for an Argos block to the scheme used after translation to Lustre. In

particular, the event-driven model would likely add complications.

3.5.3 TAXYS framework

In the TAXYS methodology [BCP+01, STY03], application software is specified in logical

time, as an Esterel program, and then compiled to an implementation in continuous

time, modelled as a timed automaton. A formal notion of correctness between two

such models is defined.

The execution times of external functions called from the Esterel program are anno-

tated with lower and upper timing bounds. The running time of the control skeleton is

ignored. Systems are analyzed in closed-loop with an environment that is specified as

an Esterel program with special clock annotations. The system is verified by compiling

the controller and environment models into timed automata, and then incorporating

routines from the Kronos model checker [Yov97] to produce a verification engine.

TAXYS specifies an execution platform involving multiple asynchronous tasks, a

scheduler, and an event-handler. These are comparable with the synchronous execu-

tion machines described earlier, and the Argos block components described in §3.3.1.

The TAXYS event-handler bundles individual inputs into synchronous inputs based on

separator events, others events are added for interrupts and sampled signals.

The focus of TAXYS is the verification of system properties, and, in particular, that

an abstract model is correctly implemented, whereas the Argos block focuses on Simu-

lation with automatic adjustments for simple implementation parameters. The timing

parameters of the Argos block are provided separately, rather than as internal pro-

gram annotations. It may be advantageous to simulate annotated TAXYS programs.

The timing behaviours could then be more dynamic and potentially more accurate.

The environment could also be modelled in Simulink rather than with Esterel. A mech-

anism for selecting specific values from between the timing bound annotations would

be necessary because Simulink only traces single paths through models.

3.5.4 AASAP Semantics

In the AASAP semantics [DWDR04] controllers are directly expressed as timed au-

tomata. Two platform timing characteristics are considered: delays between the oc-

currence of an event and its detection as an input, and the time taken to compute a

88 CHAPTER 3. SIMULATING SYNCHRONOUS EXECUTION

response. Both are expressed as a single parameter ∆. The delay between occurrence

and detection necessitates latching, which is expressed by tracking the ages of events.

AASAP programs are executed in three steps:

1. Read the time from a digital clock.

2. Update input latches.

3. If possible, take a transition that updates the state and may emit an output.

The ∆ parameter used for modelling and verifying controllers is refined into two im-

plementation parameters: ∆L for the execution loop delay and ∆P for the digital clock

precision.

There are several differences between the AASAP approach and that of synchronous

languages. Transitions in AASAP models may be non-deterministic, whereas determin-

ism is central to synchronous languages. The AASAP execution scheme is not neces-

sarily either sample-driven, since the period is only bounded by ∆L, or event-driven,

since programs may act spontaneously by emitting outputs and taking internal steps.

The explicit referrals to a digital clock in an AASAP controller contrast with the more

abstract idea of multi-form time espoused for synchronous languages. The biggest dif-

ference between the AASAP semantics and synchronous languages is the treatment of

events. In AASAP, input events are queued and processed one-by-one and individual

output events occur separately from one another, whereas in a synchronous program

individual inputs and outputs are bundled together into simultaneous events.

The parameterization of delays in the timing translation of this chapter is similar

to that of the AASAP semantics. It differs, though, in both intent and detail. The tim-

ing translation focuses on generating simulation traces and not on verification issues.

The timing translation models the classical synchronous language execution schemes.

It addresses signal bundling explicitly, and also the fact that multiple occurrences of

an input event between two reactions are ignored. Multiple event occurrences in the

AASAP semantics would be classed as a receptiveness problem for the given environ-

ment. Finally, in the AASAP semantics, the delay before an action becomes urgent

depends on when individual input events are latched, whereas in the timing transla-

tion it is measured from the previous reaction.

A recent report [AT05] presents a technique for modelling programs embedded

in system implementations. It could be seen as combining elements of synchronous

execution machines with aspects of the AASAP approach. The proposal describes a

timed automata construction with five components: an execution model for trigger-

ing computations; a digital clock model that provides discrete timing signals; a digital

controller model that incorporates an abstract program; an input and output interface

model which is, in effect, a generalisation of the latching in the timing translation; and

a plant/environment model.

3.6 Reflections and conclusions

An approach for modelling and simulating controllers expressed as synchronous pro-

grams has been presented in this chapter. Certain implementation details are ac-

counted for by mapping discrete semantic models into timed automaton models.

The details were implemented and evaluated using Argos. There are two advantages

to using Argos. First, the graphical syntax of Argos makes possible a direct compari-

son with Stateflow programs; the two languages share the fundamentals of their State-

charts heritage. Second, Argos is simple and clarifies the key concepts of the approach;

particularly the translation to timed automata, which can be visualised directly from

BMMs. Argos is easier to understand and to compile than a more feature-rich language,

like Esterel. Esterel though, would likely compare more strongly with Stateflow as it is

ultimately a more practical language for expressing reactive controllers.

The three-parameter model is a novel proposal for integrating synchronous lan-

guage programs into a dense time model. It can be judged from two perspectives: the

practical and the semantic.

3.6. REFLECTIONS AND CONCLUSIONS 89

From a practical perspective, the model promises increased simulation accuracy.

On the positive side, it is able to account for certain realities of synchronous language

execution, particularly as the assumption of synchrony breaks down. It allows for the

evaluation of slower, relative to the occurrence of inputs, execution speeds. It is not

certain, however, that having the extra detail is really a compelling advantage. Any

systems whose correctness rests on such fine timing details is perhaps too brittle,

and, when this is unavoidable, an even more concrete model may be required. Other-

wise, the basic assumption of synchrony may be sufficient. Furthermore, it has been

suggested that latencies and jitter between input occurrence and action may be more

important to control stability than delays through to output actuation.21

From a semantic perspective, the model formalizes aspects of synchronous lan-

guage interfacing that are usually assumed away. By doing so, it reveals issues of

latching and coordination that, while not conceptually difficult, are intricate and sub-

ject to choices during design and implementation. The model emphasizes the similari-

ties and differences between the realities of event-driven and sample-driven execution.

These benefits aside, the model is deficient in two main ways. First, it does not really

make the design of embedded systems any easier; no one would reason directly on

the timed automata produced by the transformation. For systems where an assump-

tion of synchrony is suitable, engineers would continue to reason against the model

of perfect synchrony, and, at best, employ the three-parameter model to experiment

with implementation choices. For systems where synchronous languages are inade-

quate or awkward, the more detailed model provides no extra assistance. Second, the

combination of synchronous programming and real-time parameters is shallow. The

transformation is defined on semantic models of Argos programs; their internal struc-

ture, wherein the designer’s intent is encoded, is ignored.

The next chapter is concerned with modelling rather than simulation. The example

described therein requires a deeper embedding of timing parameters. The timing de-

tails are no longer mere implementation inconveniences, but rather essential to under-

standing and meeting an application specification. And, the eventual implementation

relies on the concrete intricacies of the execution platform.

21Paul Caspi made this observation at EMSOFT 2006.

90 CHAPTER 3. SIMULATING SYNCHRONOUS EXECUTION

Chapter 4

An infrared sensor

4.1 Introduction

This chapter contains an examination of a relatively simple sensor component in more

detail than is customary. It differs in some obvious ways from Chapter 3. Exhaustive

analysis in Uppaal takes the place of simulation in Simulink.1. Models are created man-

ually, or from assembly language programs, rather than associated with programs in

synchronous languages like Argos or Esterel. Yet the two chapters share the same un-

derlying themes. They both address the real-time behaviour of embedded controllers,

particularly as modelled with timed automata. They are both concerned with the im-

plementation issues of platform limitations and triggering, and their interaction with

the more abstract concerns of higher-level programming and specification. The exam-

ples in both typify a specific sort of embedded system, although the system in this

chapter is smaller in scale and studied in more detail. The observations made in this

case study, and the idea of working from a specification sheet to a model, bear on the

approach to programming, triggering, and timing of Chapter 6.

The sensor, typically for such components, is described by a data sheet that in-

cludes a timing diagram. The timing diagram is interpreted and then modelled as a

timed automaton. The timed automaton model is refined into a split model of cooper-

ating timed automata where the roles of driver and sensor are separately modelled. A

testing automaton is constructed from the original model and analyzed together with

the split model in Uppaal to show timed trace inclusion. Furthermore, a transmis-

sion correctness property is formulated and verified, also by reachability analysis. The

driver component of the split model can serve as a specification for actual implementa-

tions. One such implementation, an assembly language driver, is modelled with timed

automata and validated against the specification via timed trace inclusion testing.

The timed automaton model of the timing diagram is created manually. An alter-

native approach is to transcribe the diagram into one or more of the formal notations

proposed in the literature. An example of this alternative is presented, along with a

comparison to the present approach, in Appendix F.

The sensor was chosen because it is simple, time is essential to faithfully describe

its behaviour, and it is a concrete example of the type of embedded systems devel-

opment of interest. One of the original motivations for pursuing this case study was

to experiment with different real-time modelling approaches, thereby revealing their

relative strengths and weaknesses. Although some progress was made with a timed

process algebra [BM02], it turned out that much experience could be gained using

timed automata alone. Experiments relating one timed automata model to another led

directly to the techniques and software described in Chapter 5. Another original moti-

vation was to compare different ways of specifying delays in programming languages,

and related issues of implementation. This theme is reprised in Chapter 6.

The sensor is a small-scale case study: the specification sheet has only four pages

and a driver can be written in around twenty lines of assembly language. It suits the

intent of looking in detail at an example taken from practice rather than one contrived,

1Uppaal is described in §2.3

92 CHAPTER 4. AN INFRARED SENSOR

or adjusted, to exhibit points of theoretical interest. Regrettably, some characteristics

of the example limit the possibility of generalisation; they are listed, after the timed

automaton model has been presented, in §4.3.5. The discussion of possible interpreta-

tions and modelling choices would be less manageable with a larger example.

Quantitative time is integral to understanding and directing the sensor. Mostly

because the timing diagram prescribes a way for two asynchronous components to

communicate with minimal interconnections: two wires in fact. Both the description

of these timing constraints and the way they may be met by implementations are ex-

amined. Although the meaning of most signal changes depends more on protocol state

than on precise time of occurrence, an open-loop version of the driver is also consid-

ered; its operation relies on the passage of time rather than the receipt of events.

Integrating specialist components into larger systems is fundamental to most em-

bedded engineering projects. Engineers must select, understand, and interface with,

components and subsystems supplied by third parties. While the selection process

may involve sales and technical representatives, the latter two tasks are often per-

formed in isolation working from data sheets, application notes, and manuals alone.

The models in this chapter are thus intentionally developed under similar constraints.

The models are expressed with timed (safety) automata [HNSY94], which are well-

suited for describing the time-constrained sequential behaviour at hand, and have the

considerable advantage that many relations and properties can be checked automati-

cally in Uppaal [LPW97],2 which is described in §2.3.

The sensor and its timing diagram are explained in §4.2. A timed automaton model

of the timing diagram is then presented and explained in detail in §4.3. In §4.4, a

different, two component version of the original model is described and verified. Part

of this model is carried over into §4.5 where it becomes the specification for an as-

sembly language program that is modelled with timed automata and shown to be a

correct implementation. Finally, the strengths and weaknesses of the whole approach

are discussed in §4.6.

4.2 The Sharp GP2D02 range sensor

The Sharp GP2D02 range sensor exemplifies the sort of specialist component which

an engineer would integrate into an embedded system. The sensor contains electro-

optical components that exploit physical principles to produce a specific result that is

useful in the context of a larger system.

The choice of investigating the GP2D02 is somewhat arbitrary. Significantly, how-

ever, the device specification is relatively simple, includes timing constraints, and

mixes event-driven responses with sampling. An awareness of the example’s strengths

and weaknesses could guide future experiments at the same scale. The guiding phi-

losophy is to examine realistic examples for opportunities where they may be better

understood or developed using rigorous approaches, rather than to choose examples

which suit one or another particular approach.

Several features of the GP2D02 limit the possibilities of generalising from it. They

are not listed in this section, but rather in §4.3.5 after the timing diagram model has

been presented, where they may be understood more readily.

4.2.1 Overview

The sensor, refer Figure 4.1, is a small (14 by 29 by 14mm) box. Visible features include

two mounting slots, an infrared light emitting diode, a lens that covers a detecting sur-

face, and four electrical terminals: voltage, ground, input (vin), and output (vout). The

sensor measures the distance between itself and another object by emitting infrared

beams from the diode, these are reflected by the object and returned to the detecting

surface. The distance is estimated by measuring the position of the reflected beams

2Discussion in this chapter refers to version 4.0.6.

4.2. THE SHARP GP2D02 RANGE SENSOR 93

along the detecting surface. Measurement cycles are triggered and 8-bit distance esti-

mates read from the output terminal by providing a suitable signal on the input termi-

nal. This signal and other details are described in a datasheet [Sha97], which is typical

of those made available to engineers for integrating components. The behavioural

descriptions are informal and thus subject to interpretation against a background of

engineering practice.

Figure 4.1: Physical appearance of sensor

More abstractly, the sensor is a unit that returns a data value when prompted.

Communications with the unit are subject to timing constraints: range estimation is

not instantaneous, the eight bits of data must be transferred serially between two oth-

erwise unsynchronized components, and the sensor cannot be re-triggered or powered

down immediately after producing a reading.
timing
diagram

driver sensor

vout

vin

Figure 4.2: Using the sensor

In practice a sensor is connected to another device, which will be termed the driver,

as shown in Figure 4.2. The driver has control over the signal level on vin, and the

sensor over the signal level on vout. The first model §4.3 will describe the combined

protocol—the various causal relations and timing constraints between voltage levels

and voltage level changes on the two wires—as represented by the sensor timing dia-

gram. The sensor will be treated as a black box that guarantees the stated behaviours

on vout provided the driver conforms to the expected behaviours on vin. Later models

will describe the individual roles of driver and sensor §4.4, and also detailed imple-

mentations of the driver §4.5.

4.2.2 Timing Diagram

As is typical, signal values and constraints on when they may change are communicated

by a timing diagram. Figure 4.3 is copied directly from the sensor datasheet. The upper

signal vin specifies the input sequences that may be applied to the unit. The lower

signal, labelled output but henceforth called vout, specifies the expected response.

Both signals are high in the quiescent state.3

The first falling edge on vin triggers a range reading which may take at most 70ms.

A series of pulses are then applied to clock data out of the sensor, and, finally, at least

1.5ms must elapse before either repeating or terminating the process.

The choice between stopping and continuing is the only point where control be-

haviours, as opposed to timing or data valuations, branch. Both possible scenarios are

shown at right in the diagram, in each a pulse on vin is labelled with 1.5ms or more.

The first pulse on vin is interpreted as the beginning of another range reading. The

second, which is labelled with Power OFF is interpreted as the decision to switch the

sensor off. Between these two alternative behaviours, the signal lines are broken by

a dashed horizontal section. Clearly, representing branching in a timing diagram is

awkward. Specifications often resort to such ad hoc depictions of multiple scenarios,

or to multiple figures and explanatory notes.

3The datasheet states that vin is open drain and that an internal pull-up resistor is connected to vout.

94 CHAPTER 4. AN INFRARED SENSOR

70ms or more
0.2ms or less

1ms or more
1.5 ms or more 1.5ms or more

Po wer OFF

Vin

Output

MSB LSB LSB

Figure 4.3: Sensor timing diagram [Sha97]

There are four dashed vertical lines between the two signal waveforms. These seem

to indicate synchronizing events, from left: commencing a range reading, triggering

a change in vout for the most significant bit (MSB), similarly for the least significant

bit (LSB), and returning to a low vout level after an unspecified, though bounded, delay.

There is also a fifth vertical line that does not extend all the way to the lower waveform.

Its meaning is the most difficult to decipher, it seems to imply that vout will be returned

to the high level before 1.5ms has elapsed.

The diagram indicates that the vin signal should remain constant for at least 70ms

after the falling transition that triggers a range reading, during which time the vout

signal will change. Some implementations [Gri99, Ram01] ignore the timing constraint

and act instead as soon as vout becomes high.

The crossed boxes on the vout signal, between most and least significant bits, in-

dicate data non-determinism. The signal value, either high or low, will depend on the

range reading itself and will usually be sampled since there will not necessarily be a

detectable event (consider, for example, the eight bits representing 255). For accurate

sampling, it is necessary to know precisely when, relative to other signal events, the

vout level will be stable. The timing diagram could be more explicit, but it seems that

changes in vout are usually triggered by falling transitions on vin. The exact behaviour,

however, of vout after the least-significant bit has been sampled is not clear. If the last

bit is zero, vout must return to the high level before 1.5ms elapses. If it is one, it seems

that vout must go to a low level first before returning to a high level. An engineer could

clarify such unclear details, should they prove important, by running experiments with

an instance of the device. This is an effective approach, but, at least in principle, such

observed behaviours may change between different versions of the specified device.

It is assumed that a rising vin transition after the last sample triggers vout to fall if

necessary and then rise again.

According to the diagram, the sensor requires at least 1.5ms between the end of

one complete range reading and the beginning of the next. During this period there

is a rising transition on vout which could indicate that the sensor is ready to make

another reading before the whole 1.5ms has elapsed. The specification is not clear.

The 70ms or more and 1.5ms or more constraints are readily justifiable: it takes

time for the device to make measurements and to recover afterward. Less so the 0.2ms

or less constraint. Rather than seek motives the constraints will simply be accepted as

given. Also, rather than interpret 0.2ms or less as a constraint for all the other positive

pulses and perhaps also the negative pulses , it will be assumed to pertain only

to the first.

The pulses, though, must definitely have some minimum value, as suggested by the

1ms or more constraint. The minimum width of a positive pulse will be represented by

minmark, and that of a negative pulse by minspace. The 1ms or more constraint is not

otherwise further interpreted. The values of minmark and minspace will depend on the

sensor’s (unspecified) internal electronics and properties of the interconnection (such

as wire capacitance). They are assumed to be equal to zero in the rest of the chapter.

The timing diagram defines a large class of acceptable signals, one of which, Fig-

4.3. TIMING DIAGRAM MODEL 95

70ms 1.6ms 2ms

0.1ms 0.1ms

Figure 4.4: Sensor test signal [Sha97]

ure 4.4, is given as part of a test circuit in the specification. This signal shows how a

device might trigger the sensor and acquire a reading without any event-based feed-

back from the vout line.

Although not perfect, the timing diagram is adequate for interfacing with the sensor

once its ambiguities have been resolved. The inadequacies that may annoy engineers

prove to be points of interest in the formalisation of the next section, where they de-

mand more interpretation than transcription. Converting such an informal description

into a precise notation quickly reveals what is clear and what is not, which is an impor-

tant benefit for applications where accuracy is important.

4.3 Timing diagram model

In this section a timed automaton model of the timing diagram is described. The sensor

timing diagram is ordinarily read as the specification for a device driver—a circuit or

program for triggering the sensor and extracting a reading. It could also be taken as a

template for creating different types of compatible sensors. In either case, one would

classify events and constraints within the diagram from the perspective of one side

or the other, as inputs or outputs, or as assumptions or guarantees. In this section

sensor is not distinguished from driver. The focus is instead on the timing diagram

as an artefact in itself. It is modelled as a timed automaton, thus providing a precise

interpretation. Alternative modelling choices and possible variations are discussed.

There are four subsections. In the first §4.3.1, some benefits of producing such a

formal model and some of the philosophies that guide its creation are discussed. In the

second §4.3.2, the choice of alphabet for the model is described. The third subsection

is the longest and contains a detailed description of the timing diagram model. Lastly,

in §4.3.4, liveness requirements and the reasons they are not modelled are described.

4.3.1 Rationale and guiding philosophy

Timing diagrams are usually understood through convention, culture, and practical

experimentation rather than in formal terms, although much research in this direction

exists (refer to Appendix F for details). There are at least four reasons for translating

a timing diagram into a formal framework:

1. Detailed questions are asked of the specification. Its meaning is clarified and

ambiguities or omissions may be discovered and noted.

2. A formal specification defines a notion of correctness against which other arte-

facts, such as sensor and driver implementations, might be validated.

3. Tools for validating and transforming some types of models exist, synthesis being

a special case of transformation into an executable form.

4. It helps to distill and better understand features of a system in a precise way.

Implementation in a specific programming language is effectively a translation to a

formal, or at least semi-formal, notation. There are, however, important differences:

1. While implementation also requires attention to technical details, certain lan-

guage features may behave differently across compilers and platforms. Signifi-

cantly, issues of timing detail may become difficult to properly express.

96 CHAPTER 4. AN INFRARED SENSOR

2. At best a program is a reference implementation. It gives one specific notion of

correctness. It may be a practical aid to development, but usually cannot reflect

the full range of permitted behaviours.

3. Automatic synthesis is the key advantage of using a specific programming lan-

guage. But the choice of language may limit the range of application. For exam-

ple, compiled programs may be too large and features like garbage collection may

be too slow or unpredictable. Programming language abstractions need not come

at the cost of performance and predictability though. For instance, those embod-

ied in the synchronous languages explicitly address these issues of embedded

systems programming.

4. There may be confusion between which features of the program are properties

of the object under consideration and which are necessitated by the chosen lan-

guage. Mathematical notations tend to seek a principled blend of property and

notation, and ideally the two are interlocked, whereas programming languages

often involve more pragmatic compromises.

The key difference between a model and an implementation is one of abstraction.

Models will usually ignore details essential to implementations, and conversely, imple-

mentations will typically be too constraining to act as models for all purposes. When

specifying timing, and other behaviours, it is particularly desirable to ignore distracting

implementation details.4 Ideally though, the models and implementations of a system

are interrelated in a precise manner.

The present desire to address the timing diagram in isolation would be obstructed

by a programming language intended to address only one side of the described interac-

tion. Essentially, the focus will be on the modelling process and details in themselves.

The timing diagram, Figure 4.3, defines a partial ordering and relative timing con-

straints on a set of events. The aim is to capture precisely this information, and no

more, in a timed automaton model. Justification will be offered for all compromises.

4.3.2 Choosing an alphabet

Sometimes the alphabet of a formal model is presented as an inevitability, but there is

a choice and it is important because the rest of a model follows from it.

The transitions from one signal level to another are of most importance in this

particular timing diagram. They are the events the model must address.

tR tF

Figure 4.5: Non-instantaneous signal changes

The vin and vout signals can be described in terms of edges and levels. Edges are

characterised by direction of change, rising or falling. Ideally they are instantaneous

with a definite time of occurrence. Levels are characterised by a state, usually high

or low, that persists over an interval between two edges. The sensor timing diagram

depicts ideal signal edges. Other timing diagrams acknowledge the non-instantaneous

nature of edges by using vertical lines with a slight slant. Allowable or expected rise tR
and fall times tF are sometimes given, as in Figure 4.5, when relevant or necessary.

There are at least three different ways to associate events with transitions. The first

associates a distinct event with every change in the value of a signal, and each event

has a unique label: for example, e1, e2, . . . , en. Such detail is tedious and, for the timing

diagram model, unnecessary. The second way is to associate an action with each signal,

for example vin and vout. Different occurrences of the actions are distinguished from

one another by order of relative occurrence. The third way is similar, but associates two

actions with each signal: one for a rising transition on the signal, the other for a falling

4Although, conversely, most real-time programming is characterised by careful attention to such details.

4.3. TIMING DIAGRAM MODEL 97

transition. Fundamentally, this extra detail is not necessary, since rising and falling

actions must alternate strictly, but differentiating the two types of transition clarifies

the relationship between the model and the timing diagram, which makes them easier

to think about and to describe. This third choice is thus adopted. Transitions labelled

vinL and vinH correspond to falling and rising transitions, respectively, on vin. Likewise

for voutL and voutH on vout. Little distinction is made between actions, categories of

what can happen, and events, specific occurrences of actions.

The rising and falling transitions on vin and vout are explicit in the timing diagram,

but the diagram also constrains two other events: powering off and sampling.

A powerOff action is introduced to represent the act of turning the sensor off.

The timing diagram is not explicit about when the level on vout can be sampled,

even though it is an important feature of the protocol. The timing diagram model will

be more precise: a sample action is introduced to represent instants when readings

can be accurately taken from the vout line. This new action is controversial since it

is not explicit in the timing diagram. But, arguably, it would be inferred by engineers

anyway, and should perhaps have been included.

4.3.3 An explanation of the model

The model in Figure 4.6 is the result of many gradual refinements. It is thought to be

an accurate interpretation of the timing diagram of Figure 4.3, which is reproduced in

gray to aid comparison. One small improvement could perhaps be made. The model,

as it stands, only admits powerOff after at least one range-reading cycle has finished.

Adding an extra transition, from s0 to s11 labelled with powerOff, would allow termi-

nation even when no reading has been taken.

The model is expressed as an Uppaal timed automaton so that its relationships

with other models can be verified automatically. As a consequence, transitions must

be labelled as inputs or outputs despite the neutral stance taken on the issue. They

have all been made outputs, simply because this makes validation in §4.4.3 easier.

The model is to be interpreted as an open system, one that defines a set of timed

sequences of allowed actions, rather than as part of a closed system that can only act

when another component is willing to synchronise.

In a valid Uppaal model all timing constants must be integers, thus one unit of

model time is equivalent to 0.1ms in the timing diagram.

There are three main phases in the timing diagram protocol: the initial triggering of

a range reading §4.3.3.1, transferring the resulting value bit-by-bit §4.3.3.2, and finally

deciding whether to power off or to repeat the process §4.3.3.3.

4.3.3.1 Initial triggering

A range reading cycle is triggered from the initial location, s0, by a falling transition on

vin: vinL. According to the timing diagram voutL occurs simultaneously. Conceptually,

vinL causes, or at least precedes, voutL. There are at least four ways to model the

relationship between the two events:

1. A single event composed of two others: vinL · voutL, as in process algebras like

SCCS [Mil83] or ACP [BW90] (refer Appendix A). Such a composite event is the

result of the synchronization of two components, but in this model the event

would later be decomposed into the separate actions of driver and sensor. There

are at least two possible expressions in Uppaal,

(a)

s2s0
vinLvinH!

(b)

s2s0

vinL!vinH!

vinH!vinL!

. (Figure 4.7)

The one at left is direct but makes decomposition clumsy. The one at right tries

to capture the commutativity and atomicity of the event combination operator.

Atomicity is not necessarily guaranteed by the committed locations, marked ,

in models where there are other such locations in parallel. An urgent location

would also be suitable since the automaton is interpreted as an open system.

9
8

C
H

A
P
T

E
R

4
.

A
N

IN
F
R

A
R

E
D

S
E
N

S
O

R

70ms or more

0.2ms or less

1ms or more

1.5 ms or more 1.5ms or more

Po wer OFF

Vin

s7

s0 s2
x<700

s1
x<700

s6s3

s8

s5s4
x<=2

s10 s11s9
x < 15

sample!b > 0 &&
y > minspace
vinH!
y = 0

w==1
voutL!

w=0

vinL!
x=0

voutL! voutH!

w==1 && y<=maxtrans
&& !changed
voutL!
w=0, changed = true

w==0 && y<=maxtrans
&& !changed
voutH!
w=1, changed = true

vinH! x=0

y > minmark vinL!
y=0, b=b-1, changed = false

y>maxtrans sample!

b>0 &&
y > minspace

vinH! y=0

vinL! x=0, y=0, b=7,w=1,
changed=false

x>=15 vinL! x=0

x>=15
powerOff!b==0 && x >= 10 && y > minspace vinH!

x=0, y=0

w==0
voutH!

w=1

Output

MSB LSB LSB

// 1 unit = 0.1ms

const int maxtrans ;

const int minmark;

const int minspace ;

clock x, y ;

int [0 ,7] b = 0;

int [0 ,1] w = 1;

bool changed = true ;

F
ig

u
re

4
.6

:
T

im
in

g
d

ia
g
ra

m
m

o
d

e
l

4.3. TIMING DIAGRAM MODEL 99

2. One event simply following the other; capturing the causal dependency but not

the implied synchronization.

s1 s2s0
voutL!vinL!

(Figure 4.8)

This choice is adopted for the timing diagram model.

3. One event immediately following the other, that is, like the previous option, but

with an invariant on the middle location, or equivalently with the location marked

urgent, to express simultaneity and necessity of occurrence. Simultaneous but

ordered events are often termed micro-steps in state-diagram languages [HPSS87],

or delta steps in discrete-event simulation languages, like VHDL.

s1
x < 0

s2s0
voutL!vinL!

x = 0 (Figure 4.9)

4. One event following the other within a fixed period, that is, the upper bound on

the second event is relaxed, and a lower bound may be added, giving a model that

treats the physical characteristics of an implementation more accurately.

s1
x < max

s2s0 x > min
voutL!vinL!

x = 0 (Figure 4.10)

The 70ms or more constraint is given between initial vinL and vinH events, but

causal dependencies between vinL and voutL, and voutL and voutH, and voutH and

vinH mean that the intermediate voutL and voutH events are also constrained. The first

of the causal dependencies has been discussed. The second arises because signal levels

must alternate. The third is less explicit, it is divined from some extra knowledge of

the sensor: when it has finished taking a reading it raises the output signal. Thus both

locations s1 and s2 have an invariant label x < 700, which guarantees the occurrence

of voutL and voutH before 70ms passes:

s4
x <= 2

s3s2
x < 700

s1
x < 700

s0
(x >= 700)
vinH! x = 0

voutH!voutL!vinL!
x = 0 . (Figure 4.11)

Strict compliance with the timing diagram would require an x ≥ 700 guard on the vinH

transition between s3 and s4. The model varies on this point: the driver may proceed

as soon as voutH is detected—as, in fact, do some implementations [Gri99, Ram01].

The vinH event must be followed by vinL within 0.2ms or less. This constraint is

modelled by resetting the clock x when the former event occurs and adding an x ≤ 2

invariant to s4, which occurs between the two. The vinL transition sets the clocks x
and y , and the variables b, w, and changed:

x models the 1ms or more constraint, extending from this occurrence of vinL

to the last vinH in the reading cycle,

y times each of the 15 alternating pulses,

b counts down eight transmitted bits through locations s5, s6, s7, and s8,

· · ·b = 0)[b = 7)[b = 6)[b = 5)[b = 4)[b = 3)[b = 2)[b = 1)[b = 0 · · · (Figure 4.12)

w tracks vout to ensure strict alternation of voutL and voutH events,

changed ensures that at most one output event occurs for each sampled bit.

The effect of the binary-valued w and changed variables, and even the bounded

integer variable b, could be instead made explicit in the structure of the automaton,

but doing so would obscure the essential feature of the model.

100 CHAPTER 4. AN INFRARED SENSOR

s7

s6

s8

s5 b==0 && x>= 10
&& y > minspace
vinH! x=0, y=0

vinL! X=0,y=0,b=7,w=1,
changed=false

sample!b > 0 &&
y >= minspace
vinH!
y = 0

w==1 && y<=maxtrans
&& !changed
voutL!
w=0, changed = true

w==0 && y<=maxtrans
&& !changed
voutH!
w=1, changed = true

y>=minmark vinL!
y=0, b=b-1, changed = false

y>maxtrans sample!

b>0 &&
y>=minspace

vinH! y=0

(a) Sampling loop from Figure 4.6

samplelsb

()

≤maxtrans sample
()

>minspace >minmark

vinH vinL vinH vinL vinH vinL

(b) Sampling parameters

Figure 4.13: Sampling detail

4.3.3.2 Data transfer

The loop that models serial data transfer is duplicated in Figure 4.13 alongside the

corresponding extract from the timing diagram.

The transmission cycle begins after a falling edge on vin, vinL, prompts the sensor

to transmit the next bit of the range reading. Both the initial vinL, from s4, and the

looping vinL, from s8, lead to s5.

The level of vout is only allowed to change while s5 is active and within maxtrans

of the triggering vinL. The self-loops on s5 express possible changes on vout; they are

discussed in more detail later. The timing constraint is measured by the clock y which

is reset, within the loop, whenever there is a change on vin. The constant maxtrans

combines an assumption on the maximum time the sensor will take to change the

vout level after being triggered by vinL, and the time required to transmit any change

through the wiring and interface electronics. It is not explicit in the timing diagram

but the sampling period is not well defined without it.

From s5 the driver must both sample the vout level and return vin to a high level.5

Both actions, sample and vinH, must happen after the maxtrans delay and before the

next vinL. They are causally-independent for all but the least significant bit, that is

while b > 0. Such a relationship is naturally modelled with parallelism; but such

small-scale parallelism cannot be expressed directly in Uppaal—extra synchroniza-

tions would be needed. For such a small number of actions it is practical to explicitly

model all of their possible interleavings, of which there are two: the path s5–s6–s8 that

samples first and then raises vin, and the path s5–s7–s8 that raises vin first and then

samples. Such an approach quickly becomes untenable as the number of mutually-

independent actions increases. For the case of the least significant bit, when b = 0,

only one of the interleavings is allowed. The sample action occurs first because it is

assumed that vinH signals to the sensor that sampling is complete.

The alternation of vinL and vinH actions within the transmission loop, Figure 4.13a,

gives alternating negative and positive pulses on vin, Figure 4.13b. Both types of pulse

have a minimum width: minspace for the negative pulses and minmark for the positive

ones. This is expressed in the timed automaton by guard expressions on clock y . The

timing diagram is not explicit about minimum pulse widths. It states only that the eight

negative pulses and seven positive pulses that comprise each cycle must take 1ms or

more. Rather than assume minmark = minspace = 1/15ms, the model is validated

with minmark = minspace = 0, which is the most permissive choice. The 1ms or more

lower bound is enforced separately by the x > 10 guard on the vinH transition that

exits the loop.

The current model assumes that maxtrans ≤ minspace, but rather than add an extra

clause to the guards on edges s5–s7 and s6–s8, b>0 && y>minspace && y>maxtrans,

this constraint on the constants is stated separately. Setting minmark = 0 thus implies

that maxtrans = 0. An alternative approach would be to duplicate the voutL and voutH

5Although one could also imagine a model where sampling is optional.

4.3. TIMING DIAGRAM MODEL 101

self-loops on s7 and add the guard y>maxtrans to the transition between s7 and s8; but

it seems less natural to allow the driver to act before the sensor value has stabilised.

The vin signal generated by the sampling loop is shown in Figure 4.13b, where it

is annotated with several parameters. The negative pulse is marked with the constant

minspace; it ends with a vinH action. The positive pulse is marked with the constant

minmark; it ends with a vinL action. There is a period of maxtrans units after the initial

vinL before sampling may occur. Sampling is thereafter allowed until a subsequent vinL

action, but for sampling of the LSB which may not occur after a subsequent vinH.

In the main timing diagram, Figure 4.3, there are several crossed boxes in the vout

signal between MSB and LSB annotations. They represent data non-determinism; the

signal may change or remain constant from one bit to the next depending on the value

being transmitted. The crossed boxes thus abstract over 28 possible data signals, not

counting variations in timing. There are at least five ways to model them:

1. By not modelling them explicitly. This results in a simpler model because there

are fewer transitions and the behaviour of vout after the least significant bit is

easier to model. Whilst sufficient, from the driver’s perspective, to only specify

when sampling may occur, the timing diagram model tries to avoid bias toward

either role.

2. By marking the event with a change label, thereby ignoring the specific value.

change!
. (Figure 4.14)

This, however, would complicate the verification of data transmission in the split

model of §4.4. It is also misleading because the level of vout will not change if

adjacent bits are identical.

3. By non-deterministic choice between both possible transitions.

voutL!

voutH!

(Figure 4.15)

This technique refines the change action into two different actions: rising and

falling transitions. It is more in the spirit of the timing diagram, as a partially

ordered set of transition events, but it incorrectly infers that an update of the

output level is always observable. That depends, rather, on the values of adjacent

bits in a data reading.

4. By modelling both types of transition, but also including the level of vout in

the automaton state. This treats the observability of events more accurately—no

event occurs if the level does not change—and also facilitates the verification of

data transmission (§4.4.4).

This technique was chosen for the timing diagram model of Figure 4.6. Variable w

encodes the level status and variable changed ensures that at most one event

occurs per data bit. In principle, one could write an event-triggered driver that

responds to the presence or absence, in a given period, of transitions on vout.

5. By modelling the possibility that vout may change several times before settling,

within maxtrans units, to a constant value. This approach [VG04] is closer to

physical reality where a signal may, after a change in level, oscillate unpredictably

before stabilising. In this situation a driver triggered by events, rather than one

that samples the signal level, is impractical.

The timing diagram model can be adjusted to use this technique by removing all

references to the changed variable.

After eight transmission cycles, when b is zero, a transition leaves the loop from s6

on vinH. If the last vout level was high (the least significant bit (LSB) was one, w = 1),

it must now be returned to a low level via a voutL event. The timing diagram is not

precise about the occurrence of this event, but it must precede the voutH event, which

in turn must precede the vinH event that exits the sampling loop within 1.5ms. Thus

both the voutL self-loop on s9 and the voutH transition to s10 are constrained by the

invariant x < 15.

102 CHAPTER 4. AN INFRARED SENSOR

4.3.3.3 Power off or repeat

After triggering a range reading and sampling the resulting eight bits, there is a choice

of terminating, the powerOff action to s11, or of requesting another reading, the vinL

action back to s1. Neither can happen until the sensor is ready. The timing diagram

states that the choice may only be made 1.5ms or more after the vinH event that ends

sampling. This constraint is reflected in the model by x ≥ 15 guards on the transitions

leaving s10. An alternative would be to interpret the voutH within this period as an

indication that the sensor is ready; as when waiting for completion of a range reading,

where a driver can either wait for a safe amount of time, 70ms or more, or instead just

until the occurrence of voutH.

4.3.4 Liveness and progress

The location invariants in the timing diagram model specify when actions are necessi-

tated; or equivalently, when unbounded delay is forbidden. Where there is no invariant

the protocol may pause indefinitely. The vinL, vinH, sample, and powerOff actions from

s0, s3, s6, s7, s8, and s10 need never occur. Instead, the protocol may simply stop. Sim-

ilarly for s5 where voutL and voutH may possibly, but need not, occur within bounded

time, and s11 where only unbounded delay is allowed.

The timing diagram contains bounded liveness guarantees on all sensor responses.

These upper timing bounds are modelled as location invariants, on s1, s2, and s4, or

transition guards, on the loops at s5. The sensor must always respond to the driver

within a fixed period of time. A time-bounded response from the driver is only ex-

pected at s4—and even this 0.2ms or less constraint is somewhat dubious.

It is sometimes useful to specify the necessity of progress without stating an explicit

time bound. Some of these more abstract liveness properties may be expressed via an

acceptance criterion, like Büchi or Muller conditions, and a subset of accepting states,

refer §2.2.3.4. Assuming Büchi conditions, liveness constraints could be added to the

timing diagram model in several ways:

• Require eventual termination: make s11 accepting and add a τ-transition self-

loop. Only a finite number of range readings could then be performed before

powerOff inevitably occurs.

• Require complete protocol cycles: make both s10 and s11 accepting and add a

τ-transition self-loop to s11. Range reading cycles must then run to completion—

reading taken and transmitted—once a triggering vinL has occurred. Cycles must

be triggered continually forever, or a finite number of times until powerOff oc-

curs.

• Allow a finite number of complete readings without mandating powerOff : make

s0, s10, and s11 accepting and add τ-transition self-loops to all three. Cycles must

then run to completion once triggered, but neither endless cycles nor eventual

powerOff are required: nothing need occur initially or between readings.

There are a few ways of stating in Uppaal that a model does not delay indefinitely:

by giving a specific upper bound in a location safety invariant or equivalently using an

urgent location,6 committed location, or urgent channels, though these are less appro-

priate for an open model since their behaviour in arbitrary composition is awkward.

Uppaal cannot, however, model more abstract liveness requirements. It does not, for

instance, allow states to be marked as accepting.

Additional liveness constraints will not be specified for the timing diagram model.

They are not really justified by the sensor specification alone, and it would not anyway

be possible to express them with Uppaal. Some liveness properties will be checked,

however, of a later implementation model §4.5.3.

6Urgent locations have an upper bound of zero

4.4. DRIVER/SENSOR SPLIT MODEL 103

4.3.5 Limitations

At least seven factors limit generalizations from this example:

1. The timing diagram represents communications between driver and sensor where

the former is essentially master and interaction is limited. In particular, it is

possible for the driver to operate without any direct feedback from the sensor.

2. Although the communications involve two components running concurrently, the

protocol is essentially sequential. That is, neither component performs many

independent actions between synchronizations with the other.

3. There is almost no branching in the control structure. In particular, when one

component waits for the other, it always expects a specific signal—its actions do

not depend on which signal occurs, they are only delayed until the awaited signal.

4. The driver and sensor essentially form a closed system. That the environment

affects transmitted infrared beams has no bearing on the integration task.

5. Data values do not affect the observable behaviour of either component in a sig-

nificant way.

6. Timing constraints are stated solely between driver events, but never between

sensor and driver events, or between two sensor events, and although there are

sometimes implications for sensor events no constraints are stated directly. The

constraints do not overlap, nor do they depend on the particular values of earlier

delays.

7. Component behaviour does not depend on the measured length of delays.

Limitations 5 and 7 could be removed, but only by considering an unusual version

of the driver that reads data by detecting event occurrence and absence rather than

sampling signal levels.

4.4 Driver/sensor split model

Whereas the different roles of driver and sensor were ignored in the timing diagram

model they are the focus of this section where, by first assigning responsibility for in-

dividual signals in §4.4.1, two variations of a split model are constructed in §4.4.2. The

split models distinguish the contributing roles of driver and sensor. They effectively

add behavioural detail to the structural diagram of Figure 4.2.

The timing diagram model restricts the synchronizations between driver and sen-

sor. These details are made more explicit in the split model. The timing diagram and

split models are related formally, after some abstraction, by timed trace inclusion. This

relation will be shown in §4.4.3 by transforming the timing diagram model into a test-

ing automaton, composing it by turns with augmented versions of the split models and

performing reachability analysis with Uppaal.

Constructing a split model and confirming its relation to the timing diagram model

increases confidence in both. Each corroborates the other. In fact, working with the

split model did result in improvements to earlier versions of the timing diagram model.

In the split model, the separate behaviours of the driver and sensor are isolated

from one another. It becomes possible to express, using an auxiliary automaton and

reachability property, and then to verify transmission correctness—that sensor read-

ings are always transmitted accurately to a driver. Uppaal is again used for the verifica-

tion, §4.4.4. In addition, the submodels are useful for further verifications. This topic

is pursued in the next section, §4.5, where the driver component of the split model

becomes a specification for an implementation in assembly language.

Six models are presented in this section. There are two variations on the split model:

one with paired synchronisations,7 the other with broadcast synchronizations. Trace

7The term ‘rendezvous’ is expressly avoided because it is somewhat ambiguous.

104 CHAPTER 4. AN INFRARED SENSOR

signal driver sensor

vinL output input

vinH output input

voutL input output

voutH input output

sample output not applicable

powerOff output not applicable

Table 4.1: Action directions relative to components.

inclusion with the timing diagram model and transmission correctness are verified for

each. The six constructions are presented over four figures:

paired (pair) broadcast (bcast)

split model Figure 4.16 (upper) Figure 4.16 (lower) §4.4.2

trace inclusion verification Figure 4.19 Figure 4.20 §4.4.3

transmission verification Figure 4.21 (upper) Figure 4.21 (lower) §4.4.4

4.4.1 Action direction and synchronization

The driver and sensor components are extracted from the timing diagram model by

deciding which actions each will control as outputs, and which will serve as inputs.

Action direction was immaterial in the timing diagram model and outputs were used

solely for convenience. But in the split model each of the six actions has a meaningful

direction at each component. An action is an output at a component if its occurrence is

determined by that component. An action is an input at a component if its occurrence

may influence that component’s behaviour. Actions vinL and vinH are sensor inputs

and driver outputs. Actions voutL and voutH are sensor outputs and driver inputs.

These assignments reflect both the reality of connections between driver and sensor

and a desired division of responsibility. The events sample and powerOff are different

in nature. They do not influence the behaviour of the sensor, and are thus driver

outputs but not sensor inputs. The direction assignments are summarised in Table 4.1.

The most direct way of creating a driver model from the timing diagram model is

to change action directions to match the stated assignment. A sensor model could be

created similarly, but the sample and powerOff actions would be dropped, as would

state s11. Additionally, s7 would be merged with s8 and s5 with s6. Such a split model

would faithfully implement the range-reading protocol, but the components would be

coupled too tightly: each would synchronise with every action of the other.

In the interpretation of the original specification, in §4.3, the sensor only synchro-

nises with the driver at the triggering vinL, at the vinL for reading each bit, and at vinH

after the least-significant bit. These synchronizations must be inferred from back-

ground knowledge about the sensor and its operation. Though the predominantly se-

quential behaviour expressed by the timing diagram and the strict alternation of falling

and rising transitions on a signal are already quite limiting.

The driver need not synchronise with the sensor at all: the timing guarantees make

open-loop control possible. Alternatively, the driver may synchronise on the voutH

that indicates a completed range reading. Both possibilities will be modelled.

4.4.2 The split models

A principle of the split model is that the driver alone is responsible for determining

when events on vin occur, and similarly for the sensor on vout.8 That is, output ac-

tions should be non-refusable; they may not be constrained by other components and

the controlling component alone should determine their occurrence. But in Uppaal, by

default, communication on a channel requires the participation of two processes: one

offering an input action, the other an output action. An output from a component is

8The possibility of a component forcing its input line to a low or high level is ignored.

4
.4

.
D

R
IV

E
R

/
S
E
N

S
O

R
S
P
L
IT

M
O

D
E
L

1
0

5

s7

s0 s2
x<700

s1
x<700

s6s3

s8

s5s4
x<=2

s10 s11s9
x < 15

sample!b > 0 &&
y > minspace
vinH!
y = 0

w==1
voutL!

w=0

vinL!
x=0

voutL! voutH!

w==1 && y<=maxtrans
&& !changed
voutL!
w=0, changed = true

w==0 && y<=maxtrans
&& !changed
voutH!
w=1, changed = true

vinH! x=0

y > minmark vinL!
y=0, b=b-1, changed = false

y>maxtrans sample!

b>0 &&
y > minspace

vinH! y=0

vinL! x=0, y=0, b=7,w=1,
changed=false

x>=15 vinL! x=0

x>=15
powerOff!b==0 && x >= 10 && y > minspace vinH!

x=0, y=0

w==0
voutH!

w=1

d1d

d1e

d6

d0 d5d2

d7

d4d3
x<=2

d8

d9

vinL!
x = 0

x>=15 vinL! x = 0

voutH?

voutL?

voutH?voutL?

voutH?voutL?

voutH?
voutL?

voutH?voutL?

voutH?voutL?
voutL?

voutH?voutH?voutL?voutL?

voutH?voutL?

voutH?voutL?

x>=700 vinH! x = 0

voutH?

sample!b>0 &&
y>minspace
vinH!
y = 0

vinL!
x = 0

vinH! x = 0

y>minmark vinL!
y = 0, b = b - 1

y>maxtrans sample!

b>0 &&
y>minspace

vinH! y = 0

vinL!
x = 0,
y = 0,
b = 7

x>=15 vinL! x = 0

x>=15
powerOff!

b==0 && x>=10
&& y>minspace

vinH!
x = 0, y = 0

DRIVERpair

i0 i2
x<700

i1
x<700

i5

i4
x<=maxtrans

i3

i6
x<15

vinH?

vinL?

b<=0
vinL?

b!=0
vinH?

vinL?

vinH?

vinH?vinL? vinH?vinH?vinL?

vinH?
b==0
vinH?
x = 0

wire==1
voutL!
wire = 0

vinL?
x = 0

voutL! voutH!

wire==1
voutL! wire = 0

wire==0
voutH! wire = 1

b>0 vinL?
x = 0, b = b - 1

vinL?
x = 0, b = 7,
wire = 1

wire==0 voutH! wire = 1

SENSORpair

sample? powerOff?

DRIVERAUX

// global

chan vinL , vinH , powerOff , sample ;

chan voutL , voutH ;

// driver

clock x, y ;

int [0 ,7] b = 0;

// sensor

clock x;

bool changed = true ;

int [0 ,7] b = 0;

int [0 ,1] wire = 1;

d1d

d1e

d6

d0 d5d2

d7

d4d3
x<=2

d8

d9

vinL!
x = 0

x>=15 vinL! x = 0

x>=700 vinH! x = 0

voutH?

sample!b>0 &&
y>minspace
vinH!
y = 0

vinL!
x = 0

vinH! x = 0

y>minmark vinL!
y = 0, b = b - 1

y>maxtrans sample!

b>0 &&
y>minspace

vinH! y = 0

vinL!
x = 0,
y = 0,
b = 7

x>=15 vinL! x = 0

x>=15
powerOff!

b==0 && x>=10
&& y>minspace

vinH!
x = 0, y = 0

DRIVERbcast

i0 i2
x<700

i1
x<700

i5

i4

x<=maxtrans

i3

i6
x<15

b==0
vinH?
x = 0

wire==1
voutL!
wire = 0

vinL?
x = 0

voutL! voutH!

wire==1
voutL! wire = 0

wire==0
voutH! wire = 1

b>0 vinL?
x = 0, b = b - 1

vinL?
x = 0, b = 7,
wire = 1

wire==0 voutH! wire = 1

SENSORbcast

// global

broadcast chan vinL , vinH ;

broadcast chan powerOff , sample ;

broadcast chan voutL , voutH ;

// driver

clock x, y ;

int [0 ,7] b = 0;

// sensor

clock x;

bool changed = true ;

int [0 ,7] b = 0;

int [0 ,1] wire = 1;

F
ig

u
re

4
.1

6
:

S
p

lit
m

o
d

e
ls

106 CHAPTER 4. AN INFRARED SENSOR

blocked if no other component is ready to accept it as an input. When each action rep-

resents communication between a pair of processes, it is sufficient to ensure that each

process is input-enabled: in every state, every input action of the process is enabled.9

Timed automata that are free of τ-transitions are made input-enabled, with respect

to a set of actions, by adding self-loops for actions that would otherwise be ignored.

Definition 4.4.1

Given a timed automaton A = (L, l0, K, invK , T) on actions in A and a set of input

actions I ⊆ A, let Aie = (L, l0, K, invK , Tie), be a version of A that is input-enabled with

respect to I, where Tie is the least set such that T ⊆ Tie and,

l ∈ L c? ∈ I {
g1, . . . , gn

} =

g | l

g ·
−−→
c? T ·

l
¬(g1 ∨...∨gn) ∅−−−−−−−−−−−→

c? Tie
l

ie

.

Timed automata with τ-transitions cannot be treated so easily: input actions may be

possible from states reachable by τ-transitions, and delay transitions may need to be

accommodated. Fortunately, the simple definition suffices for this chapter.

A split model based on rendezvous communication is shown in the middle of Fig-

ure 4.16. The model consists of three components in parallel:

DRIVERpair ‖ DRIVERAUX ‖ SENSORpair.

The timing diagram model is repeated in gray at the top of the figure for comparison.

The driver model was created directly from the timing diagram model. All transi-

tions on voutL were removed, as were all but the first, between d1e and d2, for voutH,

whose direction was changed from output to input; states were merged where neces-

sary. The initial triggering sequence was duplicated through d1d, the x < 700 location

invariants were removed and replaced with x ≥ 700 guards. All references to the vari-

ables wire and changed were removed. Finally, the model was input-enabled for voutL

and voutH, which introduced two self-loops on all states except d1e, where the model

reacts to voutH.

The sensor model was also created directly from the timing diagram model. All

transitions on vinH but the one between s6 and s9 were removed; the transition guard

only depends on the value of b, not those of clocks x and y . All transitions on sample

and powerOff were also removed. States were merged where necessary. The variable w

was renamed to wire to avoid confusion. The variable changed was removed, its effect

is represented in the control structure of the sensor model by states i4 (changed = 0)

and i5 (changed = 1). The voutL and voutH self-loops on s5 become transitions between

the two states, and a τ-transition is added for the case where there is no change.

Clock y is no longer needed. The purpose of clock x is changed, it appears in invariants

on i4 and i6 that force the sensor model to meet timing assumptions that are mandated

by the protocol and required by the driver model. Finally, the model was input-enabled

for vinL and vinH, which introduced two self-loops on most states, but not i0 and i3
where the model reacts to vinL. The guard expressions of input-enabling transitions

from i5 depend on b.

Much of the transformation from timing diagram model to each of the driver and

sensor component models was automated using features of the tool described in §5.4

of Chapter 5. Automation was particularly advantageous because several iterations

were required during the development of the timing diagram model.

The DRIVERAUX process is introduced to ensure that sample and powerOff outputs

are never refused. There would have been no technical difference had the sensor model

also been input-enabled for these two actions, but that would have violated the spirit

of the model and also have made it awkward to reuse the model separately.

Most of the input-enabling loop transitions are redundant, they never synchronise

with an output in any trace of the complete model. They are included so that the

9Appendix B discusses a formalism based on this idea.

4.4. DRIVER/SENSOR SPLIT MODEL 107

components are self-contained and may be used alone in different contexts, and also

so that the property of output non-refusal can be verified statically, that is without

considering the reachable state space of the complete (closed) model.

Input-enabling is essential to the paired synchronization split model. But it re-

quires extra effort to maintain and the extra transitions distract from more important

features of the model; these problems only worsen as the number of inputs increase.

Furthermore, input-enabling does not scale well beyond pairs of communicating pro-

cesses. Its two main advantages are that only the default, and relatively simple, paired

communication semantic rules are needed to understand models, and that the timed

trace inclusion validation is readily applicable for verifying an implementation model,

as in §4.5.3.

A split model based on broadcast communication is shown at the bottom of Fig-

ure 4.16, underneath the paired model. It consists of two components in parallel:

DRIVERbcast ‖ SENSORbcast.

The DRIVERAUX process is unnecessary. Removing the input-enabling loops from the

pair components gives the respective bcast components.

Since an output action on a broadcast channel may always occur, non-refusability

is ensured by the semantics. All processes that can react to an output still will.

The broadcast model would seem ideal: no extra effort is required to ensure the

output non-refusal or input enabled properties, the model is less cluttered and more

easily examined and modified, and communications need not be limited to pairs of

processes. It will be shown in subsequent sections, however, that timed trace inclusion

validation of most broadcast models is not currently possible with Uppaal.

The rest of this section describes the progressive interaction between driver and

sensor components in the self-loop split model.

The driver initiates a range-reading from d0 by emitting a vinL output, which the

sensor synchronises on from i0. The driver non-deterministically enters either d1d,

where it waits for 70ms or more before continuing, or d1e, where it can continue as

soon as the sensor emits voutH. A similar arrangement exists from d8. The choice

could be modelled using τ-transitions and an extra state, d0c,

d8d0

d1d

d1ed0c
x<=0

d2 d3
x<=2

x>=15 vinL! x=0

voutL? voutH?voutH?voutL?voutL?

voutH?voutL?

x>=700 vinH! x = 0

voutH?vinL!
x = 0

vinH! x = 0 · · · ,
(Figure 4.17)

which avoids duplicating the vinL transitions, but which makes output non-refusal

difficult to handle—how should d0c respond to voutH?. Furthermore, such a model

would complicate time trace inclusion testing, where τ-transitions are forbidden.

In the original model, under the assumption that the sensor will respond to vinL

with voutH within 70ms, the trace fragments accepted by the top path (d0/d8)–d1d–d3

are also accepted by the bottom path (d0/d8)–d1e–d2–d3. But both paths are included

to make the driver model self-contained when used in isolation from the sensor model

and to make implementation choices explicit; either branch of the choice can be elimi-

nated to produce a more specific specification.

The driver sampling loop d4–(d5/d6)–d7–(d4/d8) is taken directly from the timing

diagram model. The sensor sampling loop is simpler. After receiving a vinL input, the

sensor acts within maxtrans units to transition between i4 and i5, either signalling a

level change by synchronising on voutL or voutH, depending on the local variable wire,

or by not signalling any change, but instead changing state with a τ-transition. Input-

enabling loops can safely be added to both the source location of the τ-transition and

to its destination location, as, according to the protocol, neither vinL nor vinH may

occur until after a delay of maxtrans. There is thus no risk of losing an event that is

required for the protocol to proceed.10

10These kind of intricacies around τ-transitions recommend the benefits of the maximal progress as-

108 CHAPTER 4. AN INFRARED SENSOR

Location invariants are present at d3, i1, i2, i4, and i6. From each of these loca-

tions, there is at least one outgoing transition labelled with an output action. This is

obligatory in the split model because otherwise one component could influence the be-

haviour of another by ‘stopping’ time, either indefinitely, giving a zeno trace, or until

an awaited input action is forced to occur.

Finally, the driver component has, from d8, the choice of delaying indefinitely, trig-

gering another range reading, or powering the sensor off.

4.4.3 Verifying implementation

Both the two split models and the timing diagram model are proposed as formalisa-

tions of the sensor reading and transmission protocol. The split models only differ

from one another in the technicalities of ensuring input-enabledness, but their relation

to the timing diagram model is less certain, even though they were derived from it.

It is, in fact, possible to show that each of the split models implements, in a precise

sense, the protocol described by the timing diagram model. Timed trace inclusion is

proposed as a suitable implementation relation in §4.4.3.1. Its verification between the

timing diagram and each of the split models is described in §4.4.3.2.

4.4.3.1 Which relation?

There are many ways to relate transition systems in general and timed automata in

particular, refer Appendix C. Timed trace inclusion has the advantages of simplicity

and of allowing the inference of safety properties. It can, moreover, often be verified

in Uppaal using a simple construction. Its main drawback is that, by disregarding

branching and completion, liveness properties and deadlock, are ignored and must be

separately addressed. There are also good reasons for requiring the split model to be

as permissive as the timing diagram model, but timed trace equivalence would be, in

this case, more difficult to verify.

Timed trace inclusion is a relatively simple notion of implementation. One timed

automaton implements another timed automaton if the set of all timed traces of the

former are a subset of the set of all timed traces of the latter. To claim that a split

model implements the timing diagram model is to claim that any timed trace of the

split model is also a valid timed trace of the timing diagram model. There are some

technicalities because the split model is a network of timed automata rather than a

single timed automaton. They are discussed later. A more complicated relation, like

timed ready simulation (see §5.3.4), would have been required had the models con-

tained committed locations or interactions through shared variables.

Showing an implementation relation between split and timing diagram models en-

courages faith in the accuracy of both. The correspondence between the pairs of

models is like a form of double-entry bookkeeping. Several modelling discrepancies

were actually found and corrected through repeated comparisons. Alternatively, if the

model of the timing diagram is considered faithful, the relation shows that the split

model is also correct. More technically, the relation means that any safety properties

proved of the timing diagram model may be immediately inferred of the split model.

While safety properties can be inferred from timed trace inclusion, liveness proper-

ties cannot; sets of traces express only what may happen, not what must. This fact is

less limiting for timed models than for untimed models, because bounded liveness, the

necessity of action within a fixed, finite time, is a safety property. The requirements

that the sensor respond within a given period are adequately preserved. Abstract live-

ness properties, like those proposed in §4.3.4, would have to be verified separately.

Timed trace inclusion also ignores deadlock. Again the limitation affects timed

models less than untimed models, provided upper bounds are specified where progress

is important. Moreover, the split models are input-enabled and thus rather than dead-

lock states, which cannot occur in the split model, quiescent states are more relevant

(see §C.3).

sumption made in formalisms like Real Time Calculus of Communicating Systems (RTCCS), see §2.2.3.3.
In the present framework, τ-transitions from urgent locations could be permitted.

4.4. DRIVER/SENSOR SPLIT MODEL 109

The separate verification of liveness and deadlock properties is sufficient for the

models of this chapter, since their branching structures are uncomplicated. It will not

be necessary to introduce a relation that can distinguish delay in quiescent states from

delay in states where further output is still possible. Similarly, separate checks will be

made, using Uppaal, to ensure that time deadlock is not possible.

Timed trace inclusion is undecidable in general [AD94], but when the specifica-

tion model is deterministic, which also effectively means free of τ-transitions, there

are constructions for deciding it via reachability analysis. The basic idea behind one

such construction is outlined in the next section §4.4.3.2, but a detailed explanation

is delayed until Chapter 5, where extended techniques and a software implementation

for manipulating Uppaal models are described. The extensions are not required for

the models in this chapter, but the implementation proved invaluable since both the

timing diagram and split models were improved over several iterations of timed trace

inclusion testing.

Timed trace inclusion is an asymmetric relation. Using it to verify that the split

model implements the timing diagram model only shows that the former never ex-

ceeds the behaviours permitted by the latter. Showing the same relation in the other

direction would imply timed trace equivalence of the models. In fact, there are traces

of the timing diagram model that are not traces of the split model, for example, from

s5 the former allows any number of alternating voutL! actions before the maxtrans

limit, whereas the latter, from i4, allows at most one. Detecting and resolving all such

differences would give a stronger relation between the two models, in particular, that

no valid behaviours are excluded from the split model. The models would be inter-

changeable.11 There are two reasons why such a validation has not been attempted.

First, the current development works from a protocol specification through to a model

of a driver implementation. Working in one direction is sufficient to verify the driver

against the protocol. Second, the testing transformation would have to be extended

from automaton specifications to those involving a network of automata, which are

inherently non-deterministic due to component interleaving. Although there are tech-

niques that can sometimes allow non-determinism to be handled by the testing con-

struction [Sto02, §A.1.5], and, there cannot anyway be much interleaving in the split

model since its timed traces are included in those of the timing diagram model which

only has one ‘diamond’ of causally-independent actions.

4.4.3.2 Verification

The procedure for testing timed trace inclusion12 within a specification, namely the

timing diagram, has two steps: transforming the specification into a testing automaton,

then performing reachability analysis of the result in parallel with the implementation

automaton, that is with one of the split models. There are slight complications because

each split model is not an open automaton, but rather a closed network of automata.

Different adjustments are required for each of the paired and broadcast split models

but both can be verified against the timing diagram model.

There is nothing fundamentally difficult about transforming the specification au-

tomaton for testing. A new location, called Err, is added. Inputs are made outputs

and vice versa. Then from each location new transitions to Err are added for every

action that cannot occur in that location. Input and output actions are considered as

distinct even when on the same channel. Whether an action can occur or not may de-

pend on the value of clocks and variables, so the guards of outgoing transitions must

be considered. Furthermore, each location invariant is replaced by a τ-transition to Err

that has as a guard the negated invariant. The result is a testing automaton that can

‘observe’ another automaton by running in parallel with it and synchronizing on each

of its actions, hence the inversion of action directions, and decide, based on location,

clocks, and state variables, whether an action is allowed, in which case observation

continues, or forbidden, in which case a transition to the Err state is taken. Should the

11Modulo the limitations of timed trace equivalence.
12Technically, the procedure verifies a timed simulation relation, but timed trace inclusion can then be

inferred because it is a coarser relation.

110 CHAPTER 4. AN INFRARED SENSOR

observed automaton fail to act in sufficient time, thus violating a location invariant of

the original specification, a τ-transition to Err will become enabled. The Err state will

not be reachable if the timed traces of the observed automaton are a subset of those

of the specification automaton, since each action of the former will synchronise with a

valid action of the latter. Reachability analysis, in Uppaal, can determine whether Err is

reachable and hence whether two timed automata are related by timed trace inclusion.

The result of applying the testing transformation to the timing diagram model is

shown at the top in Figure 4.19. The original structure is still present in the nodes

and transitions with black lines, but the actions are now inputs rather than outputs.

The new state, Err, is the hub of a nest of new gray transitions sourced at each of the

other locations. While individual transitions are not legible, the general structure is

clear. Guards, where present, and actions on the error transitions are tabulated above

source locations s7 and s8, in two columns for each, and below the others, in a single

column for each. For instance, the only action permitted from s0 in the timing diagram

automaton is vinL!, so in the testing automaton vinL? leads to s1, and all other actions

lead to Err; none of them have guards. The situation is similar from s1, but since

there is a location invariant x < 700 in the timing diagram model, a τ-transition with

guard x ≥ 700, shown in the figure as an expression with no associated action, is added

to the testing automaton, and the guards of the other transitions are augmented with

the invariant, thus ensuring determinism. The guards on the error transitions are more

complicated at s5. For instance, vinH? is allowed when b > 0 but forbidden otherwise,

similarly, sample? is forbidden when y ≤maxtrans.

specification

model

≤

implementation

model

(a) Normal scenario

timing

diagram

model

≤

driver

model

sensor

model

(b) The split models

Figure 4.18: Deviation from the usual verification of timed trace inclusion

The testing technique is intended for comparing one timed automaton to another,

per Figure 4.18a, but in the present case the implementation model is a network of

timed automata and it is their interactions that are to be verified, per Figure 4.18b. The

two approaches differ from each other, and from Uppaal itself, in their interpretation

of a model as a set of timed traces. The differences have ramifications for verifying

timed trace inclusion.

An Uppaal model U is a parallel composition of N timed automata Ai where all

actions A are restricted at the top-level,

U = (A1 ‖ . . . ‖ AN) \A.

Some details were discussed earlier, in §2.3, and even more precision is required later,

in §5.2.4, but only the broad ideas are necessary at present. The key point is that, due

to the restriction, Uppaal models are closed, they only perform τ-transitions and de-

lay transitions. Input actions cannot occur during simulation and reachability analysis

unless corresponding outputs are also able to occur, and vice versa for non-broadcast

outputs. In typical timed trace inclusion testing, each automaton, whether specifica-

tion or implementation, is given an open interpretation where any action can occur at

any time. An automaton is thus assigned a maximal set of timed traces that subsume

its behaviours in any specific composition. To verify the split models, the timing dia-

gram model is given an open interpretation but the split models themselves must be

4
.4

.
D

R
IV

E
R

/
S
E
N

S
O

R
S
P
L
IT

M
O

D
E
L

1
1

1

x<15 sample?
x<15 sample!
x<15 powerOff?
x<15 powerOff!

x<15 && w!=1 voutL?
x<15 voutL!

x<15 && w!=0 voutH?
x<15 voutH!
x<15 vinL?
x<15 vinL!
x<15 vinH?
x<15 vinH!
x>=15

sample?
sample!
powerOff?
powerOff!
voutL?
voutL!
voutH?
voutH!
vinL?
vinL!
vinH?
vinH!

sample?
sample!

x<15 powerOff?
powerOff!
voutL?
voutL!
voutH?
voutH!

x<15 vinL?
vinL!
vinH?
vinH!

x<=2 sample?
x<=2 sample!
x<=2 powerOff?
x<=2 powerOff!
x<=2 voutL?
x<=2 voutL!
x<=2 voutH?
x<=2 voutH!

x<=2 vinL!
x<=2 vinH?
x<=2 vinH!
x>2

y<=maxtrans sample?
sample!
powerOff?
powerOff!

changed voutL?
y>maxtrans voutL?

w!=1 voutL?
voutL!changed
voutH?y>maxtrans
voutH?w!=0
voutH?
voutH!
vinL?
vinL!

y<=minspace vinH?
b<=0 vinH?

vinH!

sample?
sample!
powerOff?
powerOff!
voutL?
voutL!

voutH?
voutH!

y<=minmark vinL?
vinL!
vinH?
vinH!

sample?
sample!
powerOff?
powerOff!
voutL?
voutL!
voutH?
voutH!
vinL?
vinL!

vinH!

sample?
sample!
powerOff?
powerOff!
voutL?
voutL!
voutH?
voutH!
vinL?
vinL!

y<=minspace vinH?
y<=minspace && b<=0 vinH?
x<10 && y<=minspace vinH?

x<10 && b<=0 vinH?
b!=0 && y<=minspace vinH?

b!=0 && b<=0 vinH?
vinH!

x<700 sample?
x<700 sample!
x<700 powerOff?
x<700 powerOff!

x<700 voutL!
x<700 voutH?
x<700 voutH!
x<700 vinL?
x<700 vinL!
x<700 vinH?
x<700 vinH!
x>=700

x<700 sample?
x<700 sample!
x<700 powerOff?
x<700 powerOff!
x<700 voutL?
x<700 voutL!
x<700 voutH!
x<700 vinL?
x<700 vinL!
x<700 vinH?

x<700 vinH!
x>=700

sample?
sample!
powerOff?
powerOff!
voutL?
voutL!
voutH?
voutH!
vinL!

vinH?
vinH!

sample!
powerOff?
powerOff!
voutL?
voutL!

voutH?
voutH!
vinL?
vinL!
vinH?
vinH!

sample?b>0 &&
y>minspace
vinH?
y = 0

w==1 && x<15
voutL?
w = 0

vinL?
x = 0

x<700
voutL?

x<700
voutH?

w==1 && y<=maxtrans
&& !changed
voutL? w = 0, changed = true

w==0 && y<=maxtrans && !changed
voutH? w = 1, changed = true

vinH? x = 0

y>minmark vinL?
y = 0, b = b - 1, changed = false

y>maxtrans
sample?

b>0 &&
y>minspace
vinH?
y = 0

x<=2 vinL?
x = 0, y = 0, b = 7,
w = 1, changed = false

x>=15 vinL? x = 0

x>=15
powerOff?

b==0 && x>=10 && y>minspace vinH?
x = 0, y = 0

w==0 && x<15
voutH? w = 1

Err

s7

s0 s2s1 s6s3

s8

s5s4 s10 s11s9

d1d

d1e

d6

d0 d5d2

d7

d4d3
x<=2

d8

d9

DvinL!
x = 0

x>=15 DvinL! x = 0

DvoutH?
DvoutL?

DvoutH?
DvoutL?

DvoutH?DvoutL?

DvoutH?
DvoutL?

DvoutH?DvoutL?

DvoutH?DvoutL?
DvoutL?

DvoutH?DvoutH?DvoutL?DvoutL?

DvoutH?DvoutL?

DvoutH?DvoutL?

x>=700 DvinH! x = 0

DvoutH?

sample!b>0 &&
y>minspace
DvinH!
y = 0

DvinL!
x = 0

DvinH!x = 0

y>minmark DvinL!
y = 0, b = b - 1

y>maxtrans sample!

b>0 &&
y>minspace

DvinH! y = 0

DvinL!
x = 0,
y = 0,
b = 7

x>=15 DvinL! x = 0

x>=15
powerOff!

b==0 && x>=10
&& y>minspace

DvinH!
x = 0, y = 0

DRIVER′pair

i0 i2
x<700

i1
x<700

i5

i4
x<=maxtrans

i3

i6
x<15

SvinH?
SvinL?

b<=0 SvinL?
b!=0 SvinH?

SvinL?

SvinH?

SvinH?SvinL? SvinH?SvinH?SvinL?

SvinH?
b==0
SvinH?
x = 0

wire==1
SvoutL!
wire = 0

SvinL?
x = 0

SvoutL! SvoutH!

wire==1
SvoutL! wire = 0

wire==0
SvoutH! wire = 1

b>0 SvinL? x = 0, b = b - 1

SvinL?
x = 0, b = 7,
wire = 1

wire==0 SvoutH! wire = 1

SENSOR′pair

SvinH!

vinH!

DvinH?

SvinL!

vinL!

DvinL?

VINpair

DvoutH!

voutH!

SvoutH?

DvoutL!

voutL!

SvoutL?

VOUTpair

// tester

clock x, y ;

bool changed = true ;

int [0 ,7] b = 0;

int [0 ,1] w = 1;

// global

chan vinL , vinH , voutL , voutH ;

chan DvinL , DvinH , DvoutL , DvoutH;

chan powerOff , sample ;

chan SvinL , SvinH , SvoutL , SvoutH ;

// driver

clock x, y ;

int [0 ,7] b = 0;

// sensor

clock x;

bool changed = true ;

int [0 ,7] b = 0;

int [0 ,1] wire = 1;

F
ig

u
re

4
.1

9
:

T
ra

c
e

in
c
lu

s
io

n
te

stin
g

in
th

e
p

a
ire

d
sy

n
c
h

ro
n

iz
a
tio

n
m

o
d

e
l

1
1

2
C

H
A

P
T

E
R

4
.

A
N

IN
F
R

A
R

E
D

S
E
N

S
O

R

x<15 sample?
x<15 sample!
x<15 powerOff?
x<15 powerOff!

x<15 && w!=1 TvoutL?
x<15 TvoutL!

x<15 && w!=0 TvoutH?
x<15 TvoutH!
x<15 TvinL?
x<15 TvinL!
x<15 TvinH?
x<15 TvinH!
x>=15

sample?
sample!
powerOff?
powerOff!
TvoutL?
TvoutL!
TvoutH?
TvoutH!
TvinL?
TvinL!
TvinH?
TvinH!

sample?
sample!

x<15 powerOff?
powerOff!
TvoutL?
TvoutL!
TvoutH?
TvoutH!

x<15 TvinL?
TvinL!
TvinH?
TvinH!

x<=2 sample?
x<=2 sample!
x<=2 powerOff?
x<=2 powerOff!
x<=2 TvoutL?
x<=2 TvoutL!
x<=2 TvoutH?
x<=2 TvoutH!

x<=2 TvinL!
x<=2 TvinH?
x<=2 TvinH!
x>2

y<=maxtrans sample?
sample!
powerOff?
powerOff!

changed TvoutL?
y>maxtrans TvoutL?

w!=1 TvoutL?
TvoutL!changed
TvoutH?y>maxtrans
TvoutH?w!=0
TvoutH?
TvoutH!
TvinL?
TvinL!

y<=minspace TvinH?
b<=0 TvinH?

TvinH!

sample?
sample!
powerOff?
powerOff!
TvoutL?
TvoutL!

TvoutH?
TvoutH!

y<=minmark TvinL?
TvinL!
TvinH?
TvinH!

sample?
sample!
powerOff?
powerOff!
TvoutL?
TvoutL!
TvoutH?
TvoutH!
TvinL?
TvinL!

TvinH!

sample?
sample!
powerOff?
powerOff!
TvoutL?
TvoutL!
TvoutH?
TvoutH!
TvinL?
TvinL!

y<=minspace TvinH?
y<=minspace && b<=0 TvinH?
x<10 && y<=minspace TvinH?

x<10 && b<=0 TvinH?
b!=0 && y<=minspace TvinH?

b!=0 && b<=0 TvinH?
TvinH!

x<700 sample?
x<700 sample!
x<700 powerOff?
x<700 powerOff!

x<700 TvoutL!
x<700 TvoutH?
x<700 TvoutH!
x<700 TvinL?
x<700 TvinL!
x<700 TvinH?
x<700 TvinH!
x>=700

x<700 sample?
x<700 sample!
x<700 powerOff?
x<700 powerOff!
x<700 TvoutL?
x<700 TvoutL!
x<700 TvoutH!
x<700 TvinL?
x<700 TvinL!
x<700 TvinH?

x<700 TvinH!
x>=700

sample?
sample!
powerOff?
powerOff!
TvoutL?
TvoutL!
TvoutH?
TvoutH!
TvinL!

TvinH?
TvinH!

sample!
powerOff?
powerOff!
TvoutL?
TvoutL!

TvoutH?
TvoutH!
TvinL?
TvinL!
TvinH?
TvinH!

sample?b>0 &&
y>minspace
TvinH?
y = 0

w==1 && x<15
TvoutL?
w = 0

TvinL?
x = 0

x<700
TvoutL?

x<700
TvoutH?

w==1 && y<=maxtrans
&& !changed
TvoutL? w = 0, changed = true

w==0 && y<=maxtrans && !changed
TvoutH? w = 1, changed = true

TvinH? x = 0

y>minmark TvinL?
y = 0, b = b - 1, changed = false

y>maxtrans
sample?

b>0 &&
y>minspace
TvinH?
y = 0

x<=2 TvinL?
x = 0, y = 0, b = 7,
w = 1, changed = false

x>=15 TvinL? x = 0

x>=15
powerOff?

b==0 && x>=10 && y>minspace TvinH?
x = 0, y = 0

w==0 && x<15
TvoutH? w = 1

Err

s7

s0 s2s1 s6s3

s8

s5s4 s10 s11s9

d1d

d1e

d6

d0 d5d2

d7

d4d3
x<=2

d8

d9

vinL!
x = 0

x>=15 vinL! x = 0

x>=700 vinH! x = 0

voutH?

sample!b>0 &&
y>minspace
vinH!
y = 0

vinL!
x = 0

vinH! x = 0

y>minmark vinL!
y = 0, b = b - 1

y>maxtrans sample!

b>0 &&
y>minspace

vinH! y = 0

vinL!
x = 0,
y = 0,
b = 7

x>=15 vinL! x = 0

x>=15
powerOff!

b==0 && x>=10
&& y>minspace

vinH!
x = 0, y = 0

DRIVER′bcast

i0 i2
x<700

i1
x<700

i5

i4

x<=maxtrans

i3

i6
x<15

b==0
vinH?
x = 0

wire==1
voutL!
wire = 0

vinL?
x = 0

voutL! voutH!

wire==1
voutL! wire = 0

wire==0
voutH! wire = 1

b>0 vinL?
x = 0, b = b - 1

vinL?
x = 0, b = 7,
wire = 1

wire==0 voutH! wire = 1

SENSOR′bcast

TvinL!TvinH!

vinH? vinL?

VINbcast

TvoutL!TvoutH!

voutH? voutL?

VOUTbcast

// tester

clock x, y ;

bool changed = true ;

int [0 ,7] b = 0;

int [0 ,1] w = 1;

// global

chan TvinL , TvinH , TvoutL , TvoutH ;

broadcast chan vinL , vinH , powerOff , sample ;

broadcast chan voutL , voutH ;

// driver

clock x, y ;

int [0 ,7] b = 0;

// sensor

clock x;

bool changed = true ;

int [0 ,7] b = 0;

int [0 ,1] wire = 1;

F
ig

u
re

4
.2

0
:

T
ra

c
e

in
c
lu

sio
n

te
stin

g
in

th
e

b
ro

a
d

c
a
st

m
o
d

e
l

4.4. DRIVER/SENSOR SPLIT MODEL 113

interpreted differently. The paired synchronization version is assigned the intersec-

tion of the open trace sets of the driver and sensor components, after mapping all

input actions to corresponding outputs and adjusting the open trace set of the sensor

component so that sample and powerOff actions may occur at any time. The broadcast

version is interpreted as open so far as output actions are concerned and any input

actions they trigger are internalised. The split models are thus assigned the set of

timed traces resulting from their interactions; that is, from the mutual resolution of

their respective constraints.

This interpretation of the split model has two immediate ramifications. First, extra

efforts are required to verify timed trace inclusion using the testing technique. The

paired split model must be augmented to reveal actions exchanged between driver and

sensor, which are normally hidden as τ-steps; the sample and powerOff actions can

be handled normally. The broadcast model can be verified directly, but transitions

labelled with output actions must be pruned from the testing automaton. Second, the

correctness, with respect to the timing diagram model, of individual implementation

components is only guaranteed in composition with a partner that is also correct. This

is particularly important in §4.5.3 when the driver component is used as a specification.

The Uppaal model for verifying timed trace inclusion of the paired split model

against the timing diagram model is shown in Figure 4.19. Several actions in the driver

component are renamed:

vinL! −→ DvinL!

vinH! −→ DvinH!

voutL? −→ DvoutL?

voutH? −→ DvoutH?

As are several actions in the sensor component:

vinL? −→ SvinL?

vinH? −→ SvinH?

voutL! −→ SvoutL!

voutH! −→ SvoutH!

Two new channel automata, VINpair and VOUTpair, are added. They share the same ba-

sic structure—a central location surrounded by two three-transition circuits through

committed locations. They could as well be combined into an equivalent automaton

with four three-transition circuits. When either of the sensor or driver components

performs an output on, respectively, vout or vin, it synchronises with a channel au-

tomaton and then the only possibility, for the whole model, is an output to the testing

automaton followed by an output for the other component. This inevitability is due

both to the use of committed locations, of which only one will ever be active at any

time, and the relative input-enabledness of the components. Certain actions thereby

always occur as part of a fixed subsequence within a timed trace of the model. For

instance, the action DvinL! always occurs in the subsequence DvinL!–vinL!–SvinL!.

The model resulting from these modifications, that is the composition

DRIVER′pair ‖ VINpair ‖ VOUTpair ‖ SENSOR′pair,

can be given an open interpretation and tested against the timing diagram model.

The Uppaal model for verifying timed trace inclusion of the broadcast split model

against the timing diagram model is shown in Figure 4.20. The split model in the figure

is identical to the one presented earlier (Figure 4.16). No modifications are required.

The actions of the testing automaton, though, have been renamed, and two channel au-

tomata have been added. The need for these complications is best understood by first

considering a more ideal version and the reasons why it is not presently acceptable.

Ideally, the broadcast testing automaton could simply be derived from the stan-

dard version by removing all transitions labelled with output actions. In other words,

by forming it from the timing diagram model with respect to an alphabet consisting

solely of output actions (since when inverted they become input actions). This would

be possible because none of the transitions in the timing diagram model are labelled

with input actions. It would be necessary because a broadcast output is not constrained

114 CHAPTER 4. AN INFRARED SENSOR

by the readiness or otherwise of other components to synchronise on the correspond-

ing input, and a testing automaton could thus transition to its error state as soon as

a transition labelled with a broadcast output became active, irrespective of what the

model being tested could actually do at that instant. Unfortunately, however, in Up-

paal13 such an automaton would be rejected because clock guards are not allowed on

broadcast receivers. The restriction seems arbitrary, or at best influenced by implemen-

tation concerns, since clock guards on transitions with broadcast inputs would seem

a natural generalisation of guards without clocks—when the guard is not satisfied the

model behaves as if the transition does not exist.

The model of Figure 4.20 works around the limitation on broadcast inputs by re-

naming signals in the testing automaton,

vinL −→ TvinL

vinH −→ TvinH

voutL −→ TvoutL

voutH −→ TvoutH,

and adding components that catch broadcast actions and then force immediate syn-

chronisations, using committed locations, with the renamed signals. An alternative

solution14 would be to modify the testing automaton to receive broadcast inputs into

a committed location from which outgoing τ-transitions would choose a suitable des-

tination location according to the guards containing clocks. While this alternative is

more complicated than the present solution, it would be easier to implement automat-

ically for the general case.

Figures 4.19 and 4.20 were verified with Uppaal and their respective error locations

are not reachable. This indictes that they are correct implementations of the timing

diagram model of Figure 4.6.

4.4.4 Verifying transmission correctness

The driver and sensor components of the split model interact to request and perform

range-readings, and then to transfer the resulting value bit-by-bit through repeated

signalling and sampling over the vin and vout wires. It has been established in the

previous section that the split model implements the timing diagram model. In this

section, the correctness of data transmission is verified by augmenting the split model

with extra details, which do not affect the communication protocol, then expressing the

transmission property as a separate automaton, and, finally, performing reachability

analysis in Uppaal.

The models for verifying transmission correctness are shown in Figure 4.21. There

are two: one for the paired version,

DRIVER′′pair ‖ SENSOR′′pair ‖ DRIVERAUX ‖ TESTER,

and another for the broadcast version,

DRIVER′′bcast ‖ SENSOR′′bcast ‖ TESTER.

A single TESTER automaton serves for both. The DRIVERAUX automaton exists to allow

DRIVER′′pair to perform sample and powerOff actions at any time. No such provision is

necessary when the actions have broadcast semantics.

The paired and broadcast models are augmented in the same way. An array Sbyte[8]

is added at the sensor component to store the bits representing the most recent

range-reading. The choice at i4 between changing the vout level or leaving it stable

is no longer non-deterministic, but rather depends on the bit value to be sent, that

is on Sbyte[b] where b is successively decremented by the transmission loop. An ar-

ray Dbyte[8] is also added at the driver component to store the bits sampled from the

13Both versions 4.0.6 and 4.0.7.
14Suggested by Marius Mikučionis on the Uppaal mailing list (12 January 2008).

4
.4

.
D

R
IV

E
R

/
S
E
N

S
O

R
S
P
L
IT

M
O

D
E
L

1
1

5

d1d

d1e dT

d6

d0 d5d2

d7

d4d3
x<=2

d8

d9

vinL!
x = 0

x>=15 vinL! x = 0

voutH?
voutL?

voutH?
voutL?

voutL?
voutL?voutH?voutL?

voutH?
voutL?

voutH?voutL?

voutH?voutL?
voutL?

voutH?voutH?voutL?voutL?

voutH?voutL?

voutH?voutL?

done!

x>=700 vinH! x = 0

voutH?

sample!
Dbyte[b] = wire

b>0 &&
y>minspace
vinH!
y = 0

vinL!
x = 0

vinH! x = 0

y>minmark vinL!
y = 0, b = b - 1

y>maxtrans sample!
Dbyte[b] = wire

b>0 &&
y>minspace

vinH! y = 0

vinL!
x = 0,
y = 0,
b = 7

x>=15 vinL! x = 0

x>=15
powerOff!

b==0 && x>=10
&& y>minspace

vinH!
x = 0,
y = 0

DRIVER′′pair

iT
x<700

i0 i2
x<700

i1
x<700

i5

i4
x<=maxtrans

i3

i6
x<15

vinH?
vinL?

b<=0 vinL?
b!=0 vinH?

vinL?
vinH?

vinH?vinL? vinH?vinH?vinL?vinH?vinL?

vinH?

measure!

b==0
vinH?
x = 0

wire==Sbyte[b]

wire==1
voutL!
wire = 0

vinL?
x = 0

voutL! voutH!

wire==1 && Sbyte[b]==0
voutL! wire = 0

wire==0 && Sbyte[b]==1
voutH! wire = 1

b>0 vinL? x = 0, b = b - 1

vinL?
x = 0, b = 7,
wire = 1

wire==0 voutH! wire = 1

SENSOR′′pair

sample? powerOff?

DRIVERAUX

BadReadT1T0

measure?

done?

Sbyte==Dbyte
done?

Sbyte!=Dbytedone?

v : int[0,BITRANGE]

measure?

tobits(Sbyte, v)

TESTER

void tobits (bool& ar [NBITS] , int v)

{

int i ;

int mask = 1;

int resul t [NBITS] ;

for (i = 0; i < NBITS ; ++ i) {

ar [i] = v & mask;

mask<<=1;

}

}

d1d

d1e dT

d6

d0 d5d2

d7

d4d3
x<=2

d8

d9

vinL!
x = 0

x>=15 vinL! x = 0

done!

x>=700 vinH! x = 0

voutH?

sample!
Dbyte[b] = wire

b>0 &&
y>minspace
vinH!
y = 0

vinL!
x = 0

vinH! x = 0

y>minmark vinL!
y = 0, b = b - 1

y>maxtrans sample!
Dbyte[b] = wire

b>0 &&
y>minspace

vinH! y = 0

vinL!
x = 0,
y = 0,
b = 7

x>=15 vinL! x = 0

x>=15
powerOff!

b==0 && x>=10
&& y>minspace

vinH!
x = 0,
y = 0

DRIVER′′bcast

iT
x<700

i0 i2
x<700

i1
x<700

i5

i4
x<=maxtrans

i3

i6
x<15

measure!

b==0
vinH?
x = 0

wire==Sbyte[b]

wire==1
voutL!
wire = 0

vinL?
x = 0

voutL! voutH!

wire==1 && Sbyte[b]==0
voutL! wire = 0

wire==0 && Sbyte[b]==1
voutH! wire = 1

b>0 vinL?
x = 0, b = b - 1

vinL?
x = 0, b = 7,
wire = 1

wire==0 voutH! wire = 1

SENSOR′′bcast

// global (both)

chan measure , done ;

const int NBITS = 8;

const int BITRANGE = 255;

bool Dbyte [NBITS] ;

bool Sbyte [NBITS] ;

// global (bcast only)

broadcast chan vinL , vinH , powerOff , sample ;

broadcast chan voutL , voutH ;

// global (pair only)

chan vinL , vinH , powerOff , sample ;

chan voutL , voutH ;

// driver (both)

clock x, y ;

int [0 ,7] b = 0;

// sensor (both)

clock x;

bool changed = true ;

int [0 ,7] b = 0;

int [0 ,1] wire = 1;

F
ig

u
re

4
.2

1
:

V
a
lid

a
tin

g
tra

n
sm

issio
n

116 CHAPTER 4. AN INFRARED SENSOR

vout line. The value on the shared wire variable, which was previously used only to re-

strict level changes in the sensor component, is copied into Dbyte[b]15 when a sample

action occurs.

The value of Sbyte must be set when a reading occurs and compared with that

of Dbyte when a transmission is complete. These tasks are performed by the TESTER

automaton, but it is important that the sensor itself decides when a reading has been

made and, likewise, that the driver decides when data has been received. These judge-

ments are part of the interaction. New transitions are thus added to both component

models. In the sensor model, a transition labelled measure! is added between loca-

tions i1 and i2. The new location iT has an invariant to preserve the timing properties of

the protocol. In the driver model, a transition labelled with done! is added between d5

and d8. The altered model has a different timed trace set to the original, but the pro-

tocol remains fundamentally unchanged: dropping measure! and done! actions from

every timed trace recovers the original set. The actions could also have been renamed

into τs to give a set that would be equivalent to the original modulo τ-transitions.

The TESTER component synchronises on the measure and done events. It assigns a

value to Sbyte when the former occurs and compares it with the value in Dbyte when

the latter occurs, entering BadRead if there is a discrepancy. A measure or done ac-

tion at the wrong time also causes TESTER to enter BadRead. All possible assignments

to SByte are tested using a selection binding to non-deterministically choose a value

in the range [0,28), before the tobits function converts it into eight separate bits. The

same idea could be modelled using eight separate one-bit selection bindings, which ob-

viates the need for a conversion function but makes parameterisation, over the number

of bits to transmit, impossible. Reachability analysis is performed by Uppaal to verify

A2 (¬TESTER.BadRead) and hence transmission correctness.

Range readings are correctly transmitted in the split model. Unfortunately, this fact

cannot be inferred of the timing diagram model because timed trace inclusion has only

been verified in one direction. The ability to make such inferences would be another

advantage of showing timed trace equivalence.

4.5 Assembly language implementation

Despite the neutral attitude adopted in earlier sections toward the roles of sensor and

driver, the timing diagram typically serves as a specification for writing drivers to inte-

grate the sensor’s functionality into larger designs. In this section, an implementation

in assembly language (MCS51) is first described in §4.5.1 and then modelled using

timed automata in §4.5.2. The model is shown to be an implementation of the driver

component of the split model in §4.5.3. The timing diagram, split, and program models

can thus be related by a short chain of timed trace inclusions:

TIMEDIAG

≤

DRIVER ‖ SENSOR

≤

MCS51.

(§4.4.3)

(§4.5.3)

The assembly language model and verification is interesting for two reasons. First,

it demonstrates the verification of a simple program against a timing diagram specifica-

tion by model checking timed trace inclusion relations. Second, the assembly-language

techniques for meeting timing requirements provide for contrasts with the abstract

approach taken by the synchronous languages and with the expression of behaviour in

timed automata.

The limitations of the assembly program model and the verification are discussed

in §4.5.4 along with some suggestions for further research.

15Note that the b variables are local to the components and hence distinct.

4.5. ASSEMBLY LANGUAGE IMPLEMENTATION 117

1 VIN EQU P1.0
2 VOUT EQU P1.1
3 W100US EQU 50
4
5 RREAD: PUSH IE
6 CLR EA
7 CLR VIN
8 NOP
9 NOP

10 JB VOUT, *
11 JNB VOUT, *
12 MOV R0, #8

13 LOOP: SETB VIN
14 MOV R1, #W100US
15 DJNZ R1, *
16 CLR VIN
17 MOV R1, #W100US
18 DJNZ R1, *
19 MOV VOUT, C
20 RLC A

21 DJNZ R0, LOOP
22 SETB VIN
23 POP IE
24 RET

(a) MCS51 program

DRIVERevt

d1e

d6

d0 d5d2

d7

d4d3
x<=200

d8

d9

x>=1500 vinL! x = 0

voutH?

voutL?

voutH?voutL?

voutH?voutL?

voutH?
voutL?

voutH?voutL?

voutH?voutL?
voutL?

voutH?voutH?voutL?voutL?voutH?voutL?

voutH?

sample!b>0 &&
y>minspace*100

vinH!
y = 0

vinL!
x = 0

vinH! x = 0

y>minmark*100
vinL! y = 0, b = b - 1

y>maxtrans*100
sample!

b>0 &&
y>minspace*100
vinH! y = 0

vinL!
x = 0,
y = 0,
b = 7

x>=1500
powerOff!

b==0 && x>=1000
&& y>minspace*100

vinH!
x = 0, y = 0

MCS51

s17

x<=2*P

s0

x<=2 * P

s1

x<=P

s2

x<=P

s3

x<=P

s4

x<=P

s5

x<=2 * P

s6

x<=2 * P

s7

x<=P

s8

x<=P

s9

x<=P

s10

x<=2 * P

s11

x<=P

s12

x<=P

s13

x<=2 * P

s14

x<=P

s15

x<=P

s16

x<=2 * P

s18

x<=2 * P

s19

x<=2 * P

s20
x>=1500
x=0

x>=P
vinH!
x=0

R0!=1 && x>=2 * P
R0 -= 1, x = 0

R1!=1 &&
x>=2 * P

R1 -= 1,
x = 0

R1!=1 &&
x>=2 * P

R1 -= 1,
x = 0

latch==0
&& x>=2 * P

x = 0

latch==1
&& x>=2 * P

x = 0

x>=2 * P
x = 0

x>=P
x = 0

x>=P
vinL!
x = 0

x>=P
x = 0

x>=P
x = 0

latch==0
&& x>=2 * P
x = 0

latch==1
&& x>=2 * P
x = 0 x>=P

R0 = 8,
x = 0

x>=P
vinH!
x = 0

x>=P
R1 = W100US,
x = 0

R1==1 &&
x>=2 * P
R1 -= 1,
x = 0

x>=P
vinL!
x = 0

x>=P
R1 = W100US,
x = 0

R1==1 &&
x>=2 * P
R1 -= 1,
x = 0

x>=P
sample!
x = 0 x>=P

x = 0

R0==1 &&
x>=2 * P
R0 -= 1,
x = 0

x>=2 * P
x = 0

x>=2 * P
x = 0

POLL

voutH?
latch = 1

voutL?
latch = 0

// 1 unit = 0.001ms

const int P = 1;

const int W100US = 50;

const int minspace = 0;

const int minmark = 0;

const int maxtrans = 0;

clock x;

int [0 ,1] latch = 1;

int [0 ,255] R0 = 0;

int [0 ,255] R1 = 0;

(b) Timed automata model

Figure 4.22: Assembly language driver implementation

118 CHAPTER 4. AN INFRARED SENSOR

4.5.1 MCS51 Program

A driver for the infrared sensor, implemented in MCS51 [Int94] assembly language, is

presented in Figure 4.22a. It was adapted from a version written for a 68HC12 micro-

controller [Gri99]. The MCS51 architecture (8051) is older technology, but it is relatively

simple, well-understood, and typical for the application domain of low-level embedded

controllers. The main reason for targeting the MCS51, however, is because instruction

timing is simple and easy to predict. Instruction cycle counts can be added together

without having to consider instruction pipelining, cache effects, and other such mech-

anisms that are often present in modern microcontrollers. While this characteristic

simplifies the timed automaton model of the next section, it also limits generalization.

In any case, the aim is to examine how timed behaviour is realised by the program, not

to propose a general methodology for verifying assembly language programs.

The assembly program is designed to be called as a subroutine from within a larger

program. When called, it interacts with the sensor before eventually returning with a

range reading in the accumulator register.

1 VIN EQU P1.0

2 VOUT EQU P1.1

3 W100US EQU 50

Lines 1–3 are assembler directives that declare constants. The first two associate

the vin and vout signals with the two lowest pins of I/O port 0. The third defines a

constant W100US for the number of iterations required to delay for 100 microseconds

later in the program. The value depends on the number of cycles taken by certain

decrement and jump instructions and the clock frequency of the target platform.

5 RREAD: PUSH IE

6 CLR EA
...

23 POP IE

The code is intended to execute without interruption on the target device, so it

begins by pushing the Interrupt Enable (IE) register onto the stack and then disabling all

interrupts by clearing the Enable All (EA) bit flag. Interrupt handling is restored, prior

to returning from the subroutine, by popping the original value of the IE register which

contains the EA bit. Disabling interrupts greatly simplifies modelling and reasoning

about program timing, but, again, limits generalization.

7 CLR VIN

8 NOP

9 NOP

Line 7 sets the vin signal to low. The following two NOP, no operation, instructions

cause a brief delay before the status of vout is checked. They have absolutely no

other effect. Pausing in this way between Input/Output (IO) actions is characteristic of

assembly language programming and significant with respect to timing behaviour.

10 JB VOUT, *
11 JNB VOUT, *

The instruction at line 10 either jumps back to itself if vout has a high value, the

assembler replaces the asterisk with a relative offset, or otherwise continues to the next

instruction. It continuously polls the signal state until the desired value is observed.

The next line is similar, it waits for a rising transition on vout by jumping back to itself

while the signal value is low. The two instructions together await the occurrence of

two events in sequence: voutL–voutH.

12 MOV R0, #8

13 LOOP: SETB VIN
...

21 DJNZ R0, LOOP

4.5. ASSEMBLY LANGUAGE IMPLEMENTATION 119

Lines 12–21 implement a loop for receiving a range reading bit-by-bit. The R0 regis-

ter acts as the loop counter, it is initialized with 8 at line 12. Line 13 is labelled LOOP,

so that the instruction at line 21 can jump back to it—the DJNZ, Decrement and Jump

if Not Zero, instruction decrements the given register by one, then jumps to another

location if the new value is not zero, and otherwise continues to the next instruction.

The instruction on line 13 sets vin high, thereby causing a rising transition: vinH.

14 MOV R1, #W100US

15 DJNZ R1, *

Between the rising transition on vin and a subsequent falling transition there is a

delay of approximately 100 microseconds, which is implemented by counting down

from the W100US value in the R1 register. The delay is equal to the amount of time

it takes to execute the DJNZ instruction multiplied by the initial value of the counter

register. Such loops, containing no internal statements, serve only to delay program

execution.

16 CLR VIN

17 MOV R1, #W100US

18 DJNZ R1, *

These lines set vin to low, giving a vinL action, and then delay for another 100

microseconds.

19 MOV VOUT, C

20 RLC A

21 DJNZ R0, LOOP

Lines 19 and 20 together sample the level of vout into the received range reading.

The former copies the bit named VOUT, which tracks the external voltage level, into

the carry flag. The latter shifts the contents of the accumulator to the left, effectively

multiplying the stored value by two, and sets its LSB to the carry flag value.

22 SETB VIN

23 POP IE

24 RET

Finally the driver sets vin high, restores the interrupt enable register, and returns

to the calling program.

4.5.2 Program model

The assembly language program has been modelled as the composition of two timed

automata,

MCS51 ‖ POLL.

The model is presented in Figure 4.22b below a copy of the driver specification, whose

details, apart from the change in time scale, are not discussed until the next subsection.

Most of the program model was generated automatically from the source program. In

particular, the timing constraints were derived directly from the individual assembly

instructions. They capture some aspects of the execution platform, but perhaps over-

simplify others. The automatically-generated automaton was adjusted to model input

and output and an assumption on the minimum delay between repeated executions.

Since only integer timing constants are allowed in Uppaal, the timing diagram and

split models assumed a scale of one unit of model time to 0.1ms of real time (re-

fer §4.3.3). It turns out that even older microcontrollers, like those of the MCS51

family, are much faster and thus require a smaller time scale. One unit of model time

in the program model is equivalent to 0.001ms of real time. The number was chosen

for a device clocked at 12MHz with a machine cycle every 12 clock periods and running

at one cycle per microsecond [Int94, p. 1-18]. All of the constants in the driver model,

shown at the top of Figure 4.22b in gray, have been multiplied by 100 to account for

the increased timing resolution.

120 CHAPTER 4. AN INFRARED SENSOR

The final program model is based on a direct translation from the source program.16

The translation effectively gives a semantics for programs written in the MCS51 instruc-

tion set in terms of timed automata. Close structural similarity between the source

program and its model is important because results obtained for the latter are inferred

of the former. In other words, that the model is a faithful formalisation of the pro-

gram is determined solely by informal argument: a larger gap between them gives

more chances for error. A location sn in the model of Figure 4.22b corresponds to the

instruction at line n− 5 of the program in Figure 4.22a.

Each MCS51 instruction takes a fixed number of cycles to execute. These delays

and the propulsion of execution are expressed in the model by location invariants and

transition guards. The constant P is the time taken for a single execution cycle. It

varies across different MCS51 implementations and oscillator frequencies. The map-

ping, though, from instructions to required number of execution cycles is fixed for the

MCS51 instruction set [Int94, Table 10]—the informal semantics thus describe not only

how instructions transform microcontroller states but also how long those transforma-

tions take, at least nominally. Lower and upper bounds on instruction execution times

in the model are expressed as inequalities between the clock x, which is reset on every

transition, and integer multiples of P. For instance, the 〈PUSH IE〉 instruction takes two

cycles to execute, thus location s0 has the invariant x ≤ 2∗P, which forces progress,

and the outgoing transition has the guard x ≥ 2∗P, which expresses the required exe-

cution time. The invariant on s1, x ≤ P, and the guard on the outgoing transition, x ≥ P,

reflect the fact that it only takes one cycle to execute the 〈CLR EA〉 instruction.

According to the translation, instructions begin and end at precise multiples of P.

While this simplification is adequate for present purposes, since the timing constants

in the program model are two orders of magnitude smaller than those in the timing

diagram model, it ignores two potentially important aspects: oscillator inaccuracies

and processor states within machine cycles.

No oscillator is perfect. At the very least such ‘clocks’ drift with respect to one

another and against an ideal notion of real time [Kop97, Chapter 3]. Such inaccuracies,

although usually small, can be important in certain applications, and, more funda-

mentally, their existence makes the decision to conflate processor time and real time

in the program model doubtful. They could be incorporated into the program model

by increasing the resolution of model time and widening both invariants, for instance

to x ≤ P + ǫ, and guards, x ≥ P − ǫ. In this way, the (idealised) behaviour of the exe-

cution platform is encoded in the program semantics, and any approximations, even

just ǫ = 0, are clearly stated. Rather than blend the different aspects of platform and

program so implicitly, execution platforms could be modelled separately and com-

posed with program models; the models are then not only individually reusable, but

each is likely more comprehensible, the intricacies of their interrelationships being left

to the mechanics of the modelling language. In one approach [VG04], the cycle clock is

modelled as a separate automaton that emits a tick action at intervals. The disadvan-

tage, compared to simply widening the invariants, is that synchronizing with tick on

each instruction transition makes it awkward in Uppaal to also synchronize with other

actions, as will be done for inputs and outputs in the program model.

Aside from oscillator inaccuracies, the program model also abstracts from the de-

tailed timing behaviour of an MCS51 device [Int94, pp. 1-17–1-20]. Each oscillator

period corresponds to a phase, two phases make a state, and six states make a ma-

chine cycle. Instructions are fetched and executed at specific phases within a cycle.

Significantly, values are written or sampled from ports in specific phases [Int94, pp. 3-

33–3-35]. While many applications depend on the time taken to execute individual

instructions, it is doubtful whether the correctness of a system should further depend

on the finer timing details within a cycle; in any case, that is the approach adopted

in this chapter. But such judgements are perhaps best made by engineers for each

specific application. There is definitely a point, though, when abstractions must be

made. The program model stops at the instruction level rather than the circuit level.

Another model may stop at the circuit level rather than the level of classical or quan-

tum physics. It is nonetheless important to justify abstractions, to ensure they are

16It was implemented using libraries developed for the testing construction, see §5.4.

4.5. ASSEMBLY LANGUAGE IMPLEMENTATION 121

congruent in some sense,17 and to understand what approximations have been made.

The program model contains several other interesting features, listed in order of

their appearance: input events, registers, output events, loops for delaying, and as-

sumptions on how frequently range-readings are requested.

The program treats vout as an input line. Sometimes it reacts to changes in the

signal level. Sometimes it samples the signal level. It would not be accurate to label

transitions that represent instructions with voutL? or voutH? actions because their oc-

currence is restricted to particular instants of time, whereas not only may events of

both types occur at any time, but, for the model to be input-enabled, they must be al-

lowed to occur at any time. Instead, a separate automaton POLL is introduced. It effec-

tively models the hardware latches of the IO port connected to vout. It is always ready

to synchronise with voutL?, setting a variable latch to zero, and voutH!, setting latch to

one.18 The assembler instructions that poll vout, for either a high level 〈JB VOUT, *〉
or low level 〈JNB VOUT, *〉, are modelled as loops, at s5 and s6 respectively, that poll

the latch variable within the timing constraints of instruction execution. The assembly

program waits for a rising transition on vout by first blocking until the latched value is

zero and then polling again until it is one.

Processor registers are modelled as variables. Instructions involving registers were

handled by the initial automatic translation, including updates to registers, like the ini-

tialisation of R0 between s7 and s8, and comparisons against them, like the branching

from s16 to either s8 or s17.

Output actions, in contrast to inputs, are justifiably constrained by the program

model. Thus, and because it is assumed that outputs are never refused, the transitions

corresponding to certain instructions can simply be labelled with output actions:

〈SETB VIN〉 −→ vinH!

〈CLR VIN〉 −→ vinL!

〈MOV VOUT, C〉 −→ sample!

The loops at s9/s10 and s12/s13 cause the program to pause between changes to vin.

The register R1 is first initialised and then decremented until it reaches zero, which

accumulates individual 2∗P delays giving a total delay of W100US∗2∗P. The loops

do not change the microcontroller state in any significant way, but yet they cannot

be removed without changing the models observable behaviour. A contrast can thus

be made with program language semantics where such instructions could be shown

equivalent to an instruction that does nothing, for instance to skip or 〈NOP〉.
The last transition from s20 back to s0 was added manually. The guard x ≥ 1500

expresses a required minimum delay between calls to the subroutine, which is neces-

sary to meet the requirements of the timing diagram. As there is no location invariant

on s20, the model allows any finite non-zero number, or even an infinite number, of

repeat executions. There is also a case for modelling the possibility that the routine

is never called. This can be done either by removing the location invariant on s0, or

adding a new initial state with no location invariant.

4.5.3 Verifying the program model

Not only does modelling the program offer insight into the assembly program, ex-

ecution platform, and instruction set semantics, but the model itself can be vali-

dated against the timing diagram and checked for other desired properties. Valida-

tion against the timing diagram occurs indirectly by verifying that the program model

is timed trace included in the driver component of the split model, but some adjust-

ments are first required before the testing construction can be applied and, ultimately,

correctness is contingent on assumptions on the environment. Both data transmission

and liveness properties require extra effort.

17An example, in this regard, is the constructive causality of Esterel, see §2.4.3, where there is a relation-
ship between the class of valid programs and the class of deterministic, stable circuits.

18There are similarities with the execution model of Chapter 3, where input events could occur at any
time despite timing constraints on the occurrence of synchronous reactions.

122 CHAPTER 4. AN INFRARED SENSOR

sample?
sample!
powerOff?
powerOff!
voutL?
voutH?
vinL?
vinL!
vinH?
vinH!

sample?
sample!

x<1500 powerOff?
powerOff!
voutL?
voutH?

x<1500 vinL?
vinL!
vinH?
vinH!

x<=200 sample?
x<=200 sample!
x<=200 powerOff?
x<=200 powerOff!
x<=200 voutL?
x<=200 voutH?

x<=200 vinL!
x<=200 vinH?
x<=200 vinH!
x>200

y<=maxtrans*100 sample?
sample!
powerOff?
powerOff!
voutL?
voutH?
vinL?
vinL!

y<=minspace*100 vinH?
b<=0 vinH?

vinH!

sample?
sample!
powerOff?
powerOff!
voutL?

voutH?
y<=minmark * 100 vinL?

vinL!
vinH?
vinH!

sample?
sample!
powerOff?
powerOff!
voutL?
voutH?
vinL?
vinL!

vinH!

sample?
sample!
powerOff?
powerOff!
voutL?
voutH?
vinL?
vinL!

y<=minspace*100 vinH?
y<=minspace*100 && b<=0 vinH?

x<1000 && y<=minspace*100 vinH?

vinH!
b!=0 && b<=0 vinH?

b!=0 && y<=minspace*100 vinH?
x<1000 && b<=0 vinH?

sample?
sample!
powerOff?
powerOff!
voutL?
voutH?

vinL!
vinH?
vinH!

sample!
powerOff?
powerOff!
voutL?
voutH?
vinL?
vinL!
vinH?
vinH!

sample?
sample!
powerOff?
powerOff!
voutL?
voutH?
vinL?
vinL!
vinH?
vinH!

Err
d1e

d6

d0 d5d2

d7

d4
d3 d8

d9

x>=1500 vinL? x = 0

voutH!

voutL!

voutH!

voutL!

voutH!voutL!

voutH!
voutL!

voutH!voutL!

voutH!voutL!

x<=200
voutL!

x<=200
voutH!voutH!voutL!voutL!voutH!voutL!

voutH!

sample?b>0 &&
y>minspace*100
vinH? y = 0

vinL?
x = 0

vinH? x = 0

y>minmark*100 vinL?
y = 0, b = b - 1

y>maxtrans*100 sample?

b>0 &&
y>minspace*100
vinH? y = 0

x<=200
vinL?
x = 0,
y = 0,
b = 7

x>=1500
powerOff?

b==0 && x>=1000
&& y>minspace*100

vinH?
x = 0, y = 0

Figure 4.23: DRIVERtest: timed trace inclusion tester for DRIVERevt

The driver specification is shown in gray above the program model in Figure 4.22b.

It is essentially the driver component of the split model with constants multiplied by

100, to account for the increased timing resolution, and the top path through d1d

removed to make the model deterministic. Determinism is required by the timed trace

inclusion testing construction. Since the assembler program does not wait for 70ms or

more after requesting a range reading but rather begins clocking data in response to an

initial voutL, the unused possibility is simply removed from the model. This is sound

for timed trace inclusion because it reduces the set of timed traces of the specification.

The driver component from the split model is chosen over that of the broadcast model

due to the issues with guards on broadcast inputs discussed in §4.4.3.2.

The gray lines in Figure 4.22b show the relationship between corresponding events

in the driver specification and in the program model. A formal relation also exists

between the two models. It can be verified by first constructing a testing automaton

for the driver specification, like that shown in Figure 4.23 which was created automati-

cally using the tool described in Chapter 5, and then model checking it in parallel with

MCS51 and POLL to validate the property: A2 (¬DRIVERtest.Err). Uppaal shows that this

property holds, and thus that the timed traces of the program model are included in

those of the driver model. But what about the original timing diagram? Importantly,

it is the composition of driver and sensor models that was verified against the timing

diagram: there is a possibility that the driver model has behaviours which violate the

timing diagram model, but which do not occur in composition with the sensor model.

The verification thus gives only that the program model is correct against the timing

diagram model, and by inference the assembly program against the specification, pro-

vided that it is used with a correct sensor, namely one whose timed traces are a subset

of those of the sensor component of the split model.

The timed trace inclusion verification has at least two inadequacies: it says nothing

about data transmission nor about liveness.

Data transmission is verified with a similar approach to §4.4.4, but some modifi-

cations to MCS51 are first required. A new variable to model the carry flag C must

be updated, C = latch, on the transition between s14 and s15. And a new variable to

model the accumulator A must be updated, A = (A << 1) + C, on the transition between

s15 and s16. Finally, both a done! label and the update Dbyte = A are required on the

transition between s20 and s0. The resulting automaton is analysed in parallel with

SENSOR′pair, DRIVERAUX, and TESTER of Figure 4.21. In a larger program, the effects of

instructions on processor flags would have to be modelled more systematically, possi-

bly as part of the automatic translation.

Timed trace inclusion gives no guarantees about liveness, and such properties must

be checked separately. Both deadlock freedom, A2 (¬deadlock), and that the routine

4.5. ASSEMBLY LANGUAGE IMPLEMENTATION 123

always has the possibility of running to completion, E3 (MCS51.s20), hold when the

program model is placed in parallel with the sensor component,

MCS51 ‖ POLL ‖ SENSORpair.

As does the stronger property that the routine always completes once it has been

called, MCS51.s0 ; MCS51.s20.

4.5.4 Discussion

In this section, an implementation of a driver to control the infrared sensor was pre-

sented, modelled, and verified. The choice of such a relatively uncomplicated execution

platform restricts the number of issues that must be addressed and simplifies both the

approach and exposition. But it also ignores several important issues, notably inter-

rupts and the complex behaviour of more recent processors. Furthermore, the model

itself does not capture all the timing intricacies of the MCS51, and the question of

when such complexities can be ignored completely, or distilled to more abstract prin-

ciples, and whether they must ever be modelled in complete detail is worthy of further

thought. The verification of the program model, especially the assumptions made of

the environment, suggest some avenues for future research. The program model itself

reveals an unexpected feature of the infrared sensor example: the processor is too fast

relative to the timing constants of the specification.

‘MCS51’ is Intel’s name for a family of microcontrollers that implement the 8051 in-

struction set and memory model. Similar devices are available from several other man-

ufacturers. They all faithfully preserve both the register behaviour and the cycles per

instruction of the 8051 instruction set. The period of a cycle varies, but only in a con-

sistent and predictable way. MCS51 assembler programs have, effectively, a tractable

real-time semantics which can be exploited to validate programs against specifications

that include quantitative timing constraints.

The MCS51 architecture is simple and predictable. Rough timing calculations based

on counting instruction clock cycles, for instance on paper or in a spreadsheet, give

reasonably accurate results that do not depend on recent execution paths or the con-

tents of caches. Such advantages have inspired recent proposals for more predictable

embedded microprocessors [EL07] and this line of research may result in a compro-

mise between the predictability of simple processors and the performance offered by

more sophisticated processors. The modelling approach of this section is not ade-

quate for more sophisticated processors. Another limitation of the presented program

model is that it ignores interrupts and their concomitant timing complexities. While

interrupts are also forbidden in other approaches, like the synchronous languages and

the TTA [KB03], they are still used in many applications, either as a lightweight means

of scheduling, as a dynamic and flexible architecture that permits task prioritisation,

or as a way of reducing system latencies.

Detailed timing models of processors and peripherals are possible, and can be made

either through painstaking reconstruction from specification sheets or semi-automatic

translation from actual hardware descriptions [The06]. In the same way that cycle

accurate simulations are used for performance measurements and estimation in hard-

ware design, detailed system timings are one way of arriving at tight WCET bounds.

Their applicability to programming and design is, arguably, not completely clear. Too

much detail can be overwhelming. It obstructs both verification and portability. WCET

requirements are useful abstractions, but they could perhaps be better integrated into

the programming model for applications like the sensor driver, rather than stated in

pragmas, comments, or separate documentation. The sensor driver makes clear, more-

over, that lower timing bounds are in some cases just as important. Chapter 6 contains

further discussion on the topic of specifying timing in programming languages.

The verification in §4.5.3 suggests taking a model, like the program model, and a

liveness property, like any of those stated in that subsection, and then generating a

timed automaton that captures the minimum assumptions required of the environ-

ment to ensure that the properties hold of the model. To, essentially, calculate the

largest timed trace set whose intersection with the timed trace set of the model gives

124 CHAPTER 4. AN INFRARED SENSOR

a third set that satisfies the desired property. Presumably, in the present case, the

calculated set would include the timed traces of the more explicit sensor model. It is

possible that existing research is either readily applicable or can be suitably adapted.

The program model is two orders of magnitude faster than the timing constraints

in the timing diagram. Its essence, therefore, is about creating delays rather than

meeting deadlines, which underscores the importance of programming with time—

a theme reprised in Chapter 6—but also makes meeting the real-time constraints too

easy and avoids the difficulties of using economical hardware to implement challenging

specifications. There is thus less to be gained from rigorous verification. Future case

studies should consider this issue.

4.6 Discussion and future work

The discussion in this section contains a summary and reflection on the results of the

sensor case study in §4.6.1 and a discussion of how the approach could be improved

and extended in §4.6.2.

4.6.1 Summary and contributions

The detailed study presented in this chapter has three main benefits. The case study

is a concrete example of an application of rigorous modelling and analysis methods

to a realistic, if simple, embedded component. The detailed examination exposes the

peculiarities of one specific problem and also offers more general insights into the

application domain. While the chapter makes no pretence of proposing a methodology

for verifying similar embedded systems, it does contribute a specific example to the

growing collection of applied timed verifications.

The infrared sensor exemplifies a particular type of embedded component. Con-

structing a rigorous model clarifies intricate and ambiguous details. It reveals that

there is a surprising amount of detail in even such a simple artefact. The strengths

and weaknesses of formal approaches are, arguably, best revealed by attempting to ap-

ply them to such arbitrary examples from engineering practice. The features of these

examples are induced by both technical and nontechnical forces. They are often ab-

sent in idealised examples; perhaps because they are difficult to concoct artificially, or

because they are deemed unnecessary distractions. Yet these peculiarities are central

to the current practice of embedded development.

It is challenging, however, to extract general insights from the study of such arbi-

trary examples. Some peculiarities may be truly idiosyncratic and others may occur in

many different applications. On the other hand, a device like the infrared sensor may

be studied simply because it exists and research can try to influence the development

of future creations.

Some questions cannot be answered from a single case study, but it does seem rea-

sonable to make four general observations. First, time is integral to some behavioural

specifications and not simply a nonfunctional requirement to be considered in a later

design stage. While timing constraints can rule out sequential behaviours, as exempli-

fied in the correctness argument for Fischer’s Protocol [AL94, §3.4], this is not their

only purpose. Second, behaviour in time is important, and not always just that dead-

lines be met but also to determine precisely when an action must occur. Some com-

mands are only given for their effect on the timings of events. Third, timing behaviour

results from an interaction of programming language semantics and platform limita-

tions and inaccuracies. Creating models involves making choices about abstraction

and separating concerns. Last, even a seemingly simple timing diagram can express

quite complex relations between events and present difficulties of interpretation.

The case study is a concrete example of modelling a timing diagram and assem-

bly language program, and applying techniques for timed trace inclusion to verify a

formal relation between the two models in Uppaal. Techniques for modelling timing

diagrams exist in the literature, though usually at the bus-level rather than for compo-

nent interfacing. Nor is the verification technique new, other applications have been

4.6. DISCUSSION AND FUTURE WORK 125

verified with it [JLS00, Sto02]. The sensor example, though, has its own peculiarities

and its details have been treated with more attention than is perhaps usual. A specific

example of embedded software verification has been presented rather than a general

methodology for verifying assembly language programs against timing diagrams. Ver-

ifying assembly language programs of realistic size requires specific abstractions and

techniques [Sch08], even when real-time behaviours are ignored.

4.6.2 Possible extensions and improvements

The work described in this chapter could be improved or extended in several ways.

Full equivalence of the timing diagram model with each of the split models could be

achieved and verified. It is also worth questioning whether a single automaton timing

diagram model is really necessary. Moreover, whether and when it is better to manually

model a timing diagram or to transcribe it into a formalized notation is not clear: more

comparison and exploration of the various formal notations is required, as is better

tool support. There are many ways of implementing drivers for the infrared sensor, but

only one has been examined in this chapter. Modelling different implementations can

offer insights into programming techniques and several other issues that are central to

the design and implementation of embedded systems.

The timing diagram has been thoroughly formalised as a timed automaton. One or

two small adjustments would be possible but the basic model is complete. The split

models could be improved by ensuring that their timed traces include those of the

timing diagram model; that is, inclusion in the other direction and hence timed trace

equivalence. This would require, for a general solution, that the testing technique be

adjusted to handle specifications comprising more than one automaton, which would

mean coping with non-determinism, when possible, using step refinements [Sto02,

§A.1.5] and possibly other techniques to handle non-determinism from interleavings.

It could be said that the timing diagram model is unnecessary: modelling and ver-

ification could just start from a split model. There is some force to this argument.

The biggest advantage of a single automaton model, at least for the sensor example,

is simplicity: it is easier to argue that it correctly models the timing diagram. A sec-

ond advantage is that several flaws were discovered and corrected by the process of

constructing two models and validating one against the other.

Several ways of improving the assembly language model have already been sug-

gested in §4.5.4, but perhaps the greatest omission is the lack of alternative implemen-

tations and associated models. For instance, interrupt-driven and timer-driven assem-

bly language routines, similar versions in C, and a circuit or Field Programmable Gate

Array (FPGA) implementation. More importantly, the driver could be implemented in

Esterel and given real-time semantics using the two-parameter approach of Chapter 3.

Each implementation would present new modelling problems. Together they would

catalog some of the different ways that engineers use to express timing behaviours.

More generally, studying different implementation approaches and corresponding

models offers insight into the mix of ideal semantics, platform imperfections, and de-

tails of triggering that are an important, but sometimes overlooked facet of rigorous

approaches to embedded systems development. These issues are important, and par-

ticularly challenging because several timing models are involved. They have already

been approached from one perspective in Chapter 3, and they will be taken up again in

Chapter 6. But first the timed trace inclusion testing technique used in this chapter is

described in more detail and extended in the next.

126 CHAPTER 4. AN INFRARED SENSOR

Chapter 5

Validating timed trace inclusion in

Uppaal†

5.1 Introduction

Models help to design, simulate, verify, and synthesise embedded systems. Multiple

models may be constructed for a system describing it from different perspectives and

at different abstraction levels. Details may be added to specify an implementation, or

removed to make analysis practicable. The correctness of a design may depend on the

relations between models, which in turn may require validation.

In Chapter 4, multiple models were constructed to analyse a simple embedded sys-

tems application from different perspectives and at differing levels of detail. Two

models were considered related when the timed traces of one were included in the

timed traces of the other. Each relationship was verified by constructing a validation

automaton and performing reachability analysis.

Constructing a validation automaton manually is straightforward but can be tedious

and error prone. There is thus motivation for developing a tool to do it automatically.

Automation is particularly beneficial because insights gained while experimenting with

timed trace inclusion can lead to improved specifications which in turn require new

constructions for repeated validations.

The Uppaal1 modelling language [LPW97, BDL04, BW04] contains several features

for creating succinct models: channel arrays, selection bindings, and quantifiers within

expressions. It turns out that these features make model transformations, such as

the validation construction, more challenging, even though they are not fundamentally

more expressive. Many of these extended features are demonstrated in §5.1.1 where an

extension to the standard railway controller example is presented. Unlike the models

of the previous chapter, this example cannot be addressed directly by the standard

validation technique.

In §5.2, many of the extended Uppaal features are formalised in a process model.

Processes are transformed into timed automata by expanding the extended features.

The formalisation is sufficient to explain and justify the extended construction. Unlike

other formalisations [BV08], the aim is not to study semantic issues.

The main contribution of this chapter is contained in §5.3. It shows how, when

possible, the existing validation construction can be extended to incorporate advanced

Uppaal features while preserving concision and parameterisation. The extensions ren-

der timed trace inclusion techniques applicable for a wide class of embedded systems

models, including the extended railway controller. The explanation and justification of

the extended technique necessitates a formalisation of Uppaal that is more concrete

than usual. The technique provides insights into the automatic manipulation of Uppaal

models that may apply to other types of transformations.

†This chapter is based on a published paper [BS08b].
1(Classic) version 4.0.6

128 CHAPTER 5. VALIDATING TIMED TRACE INCLUSION IN UPPAAL

An implementation of the extended technique is described in §5.4. The result of

applying it to the railway case study is presented in §5.5.

5.1.1 A flexible railway controller

The case study presented in the previous chapter involved details typical of embedded

systems development. There the aim was to preserve and treat such concrete charac-

teristics accurately. In this section an existing and more abstract case study is adapted.

Here the aim is to illustrate features of Uppaal that were not needed in the previous

chapter, and to motivate extensions to the standard validation technique.

Many formal methods case-studies are idealised versions of industrial systems. Ex-

amples include a mine pump system [KMSL83], a manufacturing production cell [LL95],

and the railway crossing controller [LS85] discussed in this section. These case-studies

have the flavour of real-world scenarios but typically ignore the sort of small details

that were considered for the infrared sensor. They aim instead to embody features

that researchers believe are important and common to a class of systems, or otherwise

necessary for formalisms and methodologies to address.

5.1.1.1 Background

Railroad crossings are frequently used to demonstrate timed and hybrid system mod-

elling and verification techniques.

(a) Scenario

Approach P1

t1

Before
Crossing

P2

t2

Within P3

t3

Past P4

Train

P5

t4

P9P6

P7

t5 P10
P8

Computer

P11 Up

t6 t7

P12 Down

Railroad

Crossing

Gate

(b) Petri net model [LS85]

Figure 5.1: Basic railway crossing

The original version [LS85] models a single one-way track, a controller, and a cross-

ing gate as a Petri net, Figure 5.1.2 An approaching train triggers transition t1 which

signals the controller. The controller lowers the gates by triggering t7. Meanwhile the

train enters, t2, then leaves, t3, the crossing. The computer lifts the gates, t5, when the

train is gone. The gates must be down when the train is in the crossing; if P3 is marked

then P12 must be too. This is only true of the model in Figure 5.1b if its reachable

state-space is restricted by assigning minimum and maximum firing times to transi-

tions such that min(t2) > max(t4) and min(t2) > max(t7) +max(4). Time is used in

this example to constrain events that are otherwise causally independent.

This example has been adapted to demonstrate other approaches for analysing

timed models [JS88]. It has also been generalised [HLJ93] to a version where the cross-

ing spans multiple tracks that carry trains in both directions. Solutions must satisfy

both a safety property, that the gate is down whenever one or more trains are within

2Petri nets are directed bipartite graphs; nodes are either places, drawn as unfilled circles, or transitions,
drawn as bars. Places may contain tokens, each indicated by a filled circle drawn within the place. A
transition may be the destination of arcs from input places, and the source of arcs to output places. A
transition can fire when each of its input places contains at least one token; doing so removes a token
from each input place and adds a token to each output place. Multiple transitions may fire together if
sufficient tokens are available. Several references [Pet81, Rei85] describe Petri Nets.

5.1. INTRODUCTION 129

(a) Scenario for N = 3

Safe

Stop

Cross
x<=5

Appr
x<=20

Start
x<= 15

x>=10
x=0

x<=10
stop[id]?

x>=3
leave[id]!

appr[id]!
x=0

x>=7
x=0

go[id]?
x=0

(b) Model of train [WPD94]

Figure 5.2: Simple railway control system

the crossing, and a utility property: the gate is up as often as possible. One such

solution is given in terms of timed automata [HL94].3

Uppaal is distributed with a different railway control model [WPD94] consisting of

a junction where several lines converge temporarily to a single track, as, for example,

at a bridge or station. The case of three convergent tracks is illustrated in Figure 5.2a.

Rather than guarding a path that crosses the railway by raising and lowering a gate, a

controller commands trains to stop and start as they approach the junction.

Trains are modelled as timed automata, Figure 5.2b. Each is assigned a unique id

from the type id_t which contains all integers between 0 and N − 1 inclusive. Trains

communicate with the controller by synchronising on four channel arrays:

appr[N] signals when trains approach

leave[N] signals as trains leave

stop[N] commands trains to stop

go[N] commands trains to resume

The id value selects a particular channel from an array. An approaching train sends

appr[id]!, or triggers a sensor with the same effect, and resets a local clock x. It will

then begin to cross the junction between 10 and 20 time units later unless the con-

troller synchronises on stop[id]?, in which case the train stops and waits for another

synchronisation on go[id]? before continuing through the junction. Trains take be-

tween 3 and 5 units to cross and they synchronise on leave[id]! when they have.

Controllers must coordinate N trains and satisfy two properties. Safety: only one

train tries to cross at a time, and liveness: all trains that approach eventually leave.

An example controller is provided with the Uppaal distribution. The automaton is

shown in Figure 5.3a and its subroutines, in Uppaal’s C-like description language, in

Figure 5.3c. The controller begins in the Free state. The middle transition from Free to

Occ is labelled with all four types of transition label:

e : id_t selection bindings: e may take any value from the type id_t.

len==0 transition guard: a condition on the local variable len.

appr[e]? synchronising action: an input action on the eth channel of appr.

enqueue(e) update statement: this procedure is called when the transition fires.

Selection bindings are effectively a macro notation for parameterized transitions, each

valuation giving a separate transition between the source and destination states. In

this case the controller is willing to accept an approach signal from any of the train

models, and when it does the id of that model is queued in a local array. When the train

passes through the crossing it triggers the transition from Occ back to Free and the id

is removed from the queue. Any trains that arrive before an earlier one has left the

crossing are added to the queue and commanded to stop. The two transitions, to queue

3There are also other timed automaton railway gate models [AD94, p. 42].

130 CHAPTER 5. VALIDATING TIMED TRACE INCLUSION IN UPPAAL

Occ

Free

e : id_t
appr[e]?
enqueue(e)

e : id_t
e == front()
leave[e]?
dequeue()

stop[tail()]!

len > 0
go[front()]!

e : id_t
len == 0
appr[e]?
enqueue(e)

(a) Original controller [WPD94]

NoneWait

Allow

StopTrain

Occ

Free

len == 0

allow_approach[front()]!

e : id_t
not inqueue(e)
appr[e]?
enqueue(e)

e : id_t
e == front()
leave[e]?
dequeue()

stop[tail()]!

len > 0
go[front()]!

e : id_t
appr[e]?
enqueue(e)

i : id_t
allow_approach[i]?

(b) Modified controller

id_t l i s t [N+1];
int [0 ,N] len ;

void enqueue (id_t ele)
{

l i s t [len++] = ele ;
}

id_t front ()
{

return l i s t [0] ;
}

void dequeue ()
{

int i = 0;
len −= 1;
while (i < len)
{

l i s t [i] = l i s t [i +1];
i ++;

}
l i s t [i] = 0;

}

id_t t a i l ()
{

return l i s t [len−1];
}

// additional function
bool inqueue (id_t i)
{

return exists (j : id_t)
j < len &&
l i s t [j] == i ;

}

(c) Controller procedures and functions [WPD94]

Figure 5.3: Original and modified controllers

the id and issue the stop command, are linked through a committed location which

ensures that neither may time pass, nor transitions from non-committed locations in

parallel occur, between them.

In the original controller the go channel is marked urgent. Since time may not pass

when a synchronisation is enabled on an urgent channel, the next queued train will be

commanded to go as soon as the last train has left the junction.

The original controller is now altered to remove features that cannot be addressed

by the technique described in this chapter. The resulting model is presented in Fig-

ure 5.3b, where four changes have been made:

1. The go channel is no longer urgent. Instead the Free location is made urgent to

ensure that go[front()]! may only occur without delay. This relies on the train

model always being ready to synchronise on go[id] after having been stopped.

It necessitates the addition of an extra state NoneWait because inputs on appr

cannot be rushed. Although the extended validation technique can handle urgent

channels, combining them with invariants, as will be required, can give validation

automata with guards containing clocks in a form that Uppaal rejects, see §5.3.4.

2. Committed locations are not addressed by the tool and have been replaced by

urgent locations. This does not affect the model because no other transitions can

occur anyway since the trains only communicate with the controller and not with

one another.

3. The allow_approach[front()]! action was added to make observable the decision

to let an approaching train pass. The reason for this is discussed in the next

section. A single location automaton is added in parallel to ensure that this action

is never blocked. A broadcast channel cannot be used for reasons that will be

discussed in §5.2. The source state of this transition, Allow, is urgent to ensure

that the action happens without delay.

5
.1

.
IN

T
R

O
D

U
C

T
IO

N
1

3
1

const int M = 3;
const int DEADLINE = 10;
int [0 ,M] status [N] [N] ;
clock timer [N] ;

const int AWAY = 0;
const int APPR = 1;
const int STOP = 2;
const int GO = 3;

(a) Internal declarations

Restart Occ forall (i : id_t)
 get_status(i) == APPR
 imply timer[i] < DEADLINE

Free forall (i : id_t)
 get_status(i) == APPR
 imply timer[i] < DEADLINE

i : id_t

appr[i]?
set_status(i, APPR),
timer[i] = 0

i : int[0, N-1]
get_status(i) == STOP &&
forall (j : id_t)
 (j != i && get_status(j) != AWAY) imply status[j][i] < M
go[i]! train_goes(i), set_status(i, GO)

i : id_t
exists (j : id_t)
 get_status(j) == APPR
||
forall (k : id_t)
 get_status(k) != STOP
leave[i]?
set_status(i, AWAY)

i : id_t
forall (j : id_t) get_status(j) != APPR &&
exists (k : id_t) k != i && get_status(k) == STOP
leave[i]? set_status(i, AWAY)

i : id_t
get_status(i) == APPR
&&
forall (j : id_t)
 (j != i && get_status(j) != AWAY)
 imply status[j][i] < M
allow_approach[i]!
train_goes(i), set_status(i, GO)

i : id_t
get_status(i) == APPR
stop[i]!
set_status(i, STOP)

i : id_t
get_status(i) == STOP
&&
forall (j : id_t)
 (j != i && get_status(j) == STOP)
 imply status[j][i] < M
go[i]!
train_goes(i), set_status(i, GO)

i : id_t
appr[i]?
set_status(i, APPR), timer[i] = 0

(b) Automaton

int [0 ,3] get_status (id_t t)
{

return status [t] [t] ;
}

void set_status (id_t t ,
int [0 ,3] s)

{
i f (s==APPR imply

status [t] [t]==AWAY)
status [t] [t] = s ;

}

void train_goes (id_t t) {
int i ;
for (i =0; i <N; ++i)
{

i f (i != t)
{

i f (get_status (i)==STOP
&& status [i] [t]<M)

status [i] [t]++;

status [t] [i] = 0;
}

}
}

(c) Functions and
procedures

Figure 5.4: Flexible railway controller

132 CHAPTER 5. VALIDATING TIMED TRACE INCLUSION IN UPPAAL

4. In the closed model, no train may ever send two consecutive approach signals.

This assumption is made explicit by adding an extra guard on the appr[e]? tran-

sition. A self-loop transition is added to Occ to preserve the property that syn-

chronisation on appr is never delayed by the controller.

5.1.1.2 A flexible controller

The original railway controller manages the junction in a rigid way. Trains are only

allowed to pass in the same order that they arrive. It is, nevertheless, a good imple-

mentation because it is deterministic and straightforward. Queueing trains is effective

and fair. It also ensures the required liveness property. But suppose that a more

flexible specification is desired, one that allows controllers to favour trains already in

motion, or to prioritise certain tracks, or to delay decisions for longer.

A candidate solution is presented in Figure 5.4. The controller there maintains a

two-dimensional array, Figure 5.5, with, for each train, a status—AWAY, APPR, STOP, or

GO—and, if it is stopped, the number of times trains on other tracks have gone through

ahead of it. The routines in Figure 5.4c read and update the array. The set_status()

procedure only changes a status value to APPR if it is currently AWAY; while this behaviour

is inherent to the train model, it is made explicit because timed trace inclusion will be

validated without making any assumptions on the occurrence of inputs. When a train

crosses the junction, train_goes() is called to increment the counters of all stopped

trains and to clear the counters for the departing train.

0 1 2 · · · N − 1

0

1

2

...

N − 1

...
...

...
. . .

...

· · ·
· · ·
· · ·

· · ·
Status of train i at status[i][i].

Count of times train i
has passed other stopped

trains.

Figure 5.5: Status array

The controller also maintains an array of timers, one for each train. A timer is

reset when the corresponding train approaches and monitors the deadline for sending

a stop signal. By not sending stop signals immediately, the controller may wait for

another train to leave the junction, or for a train with higher priority to arrive. But it

also increases dependence on train speed and reduces safety margins.

The controller begins in the Free location, Figure 5.4b, which has an invariant to

force an outgoing transition when any of the approaching trains require action before

it is too late to request a stop. The invariant contains a universal quantifier binding,

forall (i :id_t), over a clock variable, timer[i].

The self-loop on Free synchronises with notifications from approaching trains; it

sets the appropriate internal status variable and timer. Both of the two other outgoing

transitions let a train go through the junction. The innermost signals a stopped train

to resume its journey, the other grants the crossing to a moving train—that train will

not receive a stop signal. Both transitions have a nesting of selection and universal

bindings to ensure that trains on one track cannot pass before a train stopped on

another more thanM consecutive times. This mechanism ensures the liveness property

with finite control state. The transition that grants the crossing to a moving train

would normally be a τ-transition since it is a decision internal to the controller, but

the validation construction can only be applied to a deterministic controller; hence the

need to differentiate which train is allowed to approach. The original controller was

also modified so that the validation automaton would know when the same decision

had been made.

The controller is in the Occ location when it considers that a train has been sched-

uled to cross. Trains that subsequently approach are treated as in the Free location; the

relevant status is set to APPR and the corresponding timer is reset. Trains with a status

5.2. UPPAAL 133

of APPR may be told to stop at any time, via the other self-loop transition. A location

invariant again ensures that this happens quickly enough.

One of two actions occur when a train leaves the crossing. If another train is moving,

tested with existential quantification exists (j :id_t) get_status(j)==APPR, or no trains

have been stopped, the controller returns to Free. This guard removes the possibil-

ity of a train being stopped forever if no other trains arrive. Alternatively, a stopped

train is resumed without delay by taking the transition to the urgent Restart loca-

tion. Removing the first conjunct of the guard on the transition between Occ and

Restart, forall (j :id_t) get_status(j) != APPR, gives a controller that satisfies the safety

and liveness properties but that has a non-deterministic choice between entering Free

or Restart on leave[i]? when there are both stopped and approaching trains. Non-

determinism, however, complicates or precludes the validation technique.

Model checking succeeds for values of N between 1 and 4 inclusive, larger values

exceeded the available computing capacity. It can be shown that the flexible controller

satisfies the same properties as the original and modified controllers,4 including the

main safety property:

A2 foral l (i : id_t)

foral l (j : id_t)

Train (i) . Cross and Train (j) . Cross imply i == j ,

and a liveness property for every i in id_t: Train(i).Appr −−> Train(i).Cross

Are the behaviours of the original controller included in those of the more liberal

controller? To apply the basic validation technique, the channel arrays, selection bind-

ings, and quantifiers would have to be unravelled for each fixed value of N . The re-

sulting model would likely be difficult to examine, due to the loss of original structure

and the increased number of transitions, reducing confidence in the result and making

counter-example traces difficult to follow. The underlying structure would also be ob-

scured and difficult for a model-checking engine to exploit. Instead, the remainder of

this chapter will describe how the validation construction can be extended to address

more Uppaal features. The technique is applied to the liberal controller model in §5.5.

5.2 Uppaal

An Uppaal model comprises multiple communicating components. Each component is

typically presented as a (timed safety) automaton, but a more concrete formalisation

is required to describe and understand the extended validation technique. This sec-

tion contains the presentation of a novel process model for Uppaal components with

explicit variable valuations, selection bindings, and channel arrays.

Several Uppaal features are excluded from the process model.

Urgent nodes are those where delays cannot occur. A model without urgent nodes

that satisfies precisely the same properties can be produced by adding a clock

xu, which is reset on every edge. Urgent nodes are then replaced with normal

nodes whose invariants include the additional conjunct xu ≤ 0, see Figure 2.8.

Urgent channels and shared variables are not formalised in the process model but

they are treated in §5.3.4 and addressed by the implementation.

Committed nodes are used to express the atomicity of action sequences. The edges

leaving committed nodes have priority over those leaving other nodes. They are

not addressed.

Broadcast channels provide one-to-many synchronisations. An output action on a

broadcast channel triggers all input actions that are enabled on the same channel.

A broadcast output can occur even when no inputs are enabled on its channel.

Models with broadcast inputs cannot be transformed into validation automata be-

cause they become broadcast outputs that may always occur irrespective of how

4These properties are taken directly from the original example.

134 CHAPTER 5. VALIDATING TIMED TRACE INCLUSION IN UPPAAL

the model being validated behaves. Broadcast outputs, however, become inputs

in the validation automaton and may be treated normally, at least in principle.

Broadcast outputs are potentially useful for validating whether a pattern of syn-

chronisations between two input-enabled automata, each relying on assumptions

embodied in the other, is timed trace included in a protocol model; as was done

in §4.4. Unfortunately, as is there discussed, Uppaal rejects transitions on broad-

cast inputs when they have clock variables in their guards. This occurs when

clock variables are used in the guards of transitions on broadcast outputs, which

is allowed, or in location invariants, since the transformation includes them in

validation automaton transition guards. The technique is thus of limited use un-

til Uppaal is modified to lift the restriction.

The standard validation construction for a model with no broadcast inputs may

have transitions to the error state on broadcast outputs. They can be removed

provided no model containing reachable transitions on broadcast inputs is ever

tested; it would not anyway be timed trace included in the original model.

Priority ordering gives preference to some edges over others when a model is vali-

dated or simulated. The enabled edges of a process, respectively on a channel,

will occur before those of lower priority processes, respectively channels. Priority

orderings effectively prune transitions from the timed transition system implic-

itly defined by a model. They are not addressed.

5.2.1 Variables, expressions, and valuations

Some preliminary definitions and notation are required before an Uppaal process can

be defined. They are presented in this subsection.

Uppaal models may contain clock variables, which express timing constraints, and

data variables, which facilitate concise and flexible process models.

Most data types can be ignored, without loss of generality, including boolean vari-

ables, record types, and arrays of anything but channels. The set of all variables Vars

encompasses the two remaining categories of types: bounded sets of integers, written

[l,u] where l ≤ u and ∀i ∈ Z. l ≤ i ≤ u implies i ∈ [l,u], and finite scalar sets, written

[S]. Both integer and scalar types can index arrays, and be bound by quantifiers in

expressions and by selection bindings over process edges. Scalar variables may only

be directly assigned to one another and compared for equality, so as to permit optimi-

sation during model checking. Each scalar declaration, for example, scalar[5] ids, gives

a new disjoint set. Type aliases, stated with typedef, preserve set identity.

Expressions are built from variables, constants, function calls, operators, relations,

and quantifiers. They are treated as members of a set Exprs. The set of unbound

variables in e ∈ Exprs is written freevars(e). Each expression e denotes either a truth

value, an integer, or a value from a scalar set. Its value depends on the values assigned

to variables in freevars(e). A valuation valV gives a value valV (v) of appropriate type

for each variable v in the finite set V. The set of all valuations for a given set V is

written ValsV. Valuations may be composed:

valV1 ⊲ valV2(v) = valV2(v) if v ∈ V2, and otherwise valV1(v).

The value of expression e with respect to valuation valV is written JeKvalV . It is only

defined if freevars(e) ⊆ V.

Given a set of clock variables K, let val0K be the valuation that maps each k ∈ K to 0,

and val+dK for the valuation mapping each k ∈ K to valK(k)+ d.

An update function δV ∈ ∆V maps one valuation valV to another val′V . Clock vari-

ables must either remain unchanged, or be set to 0; arbitrary values cannot be assigned.

The set of clock variables reset by an update δV is written resets(δV).

5.2.2 Channels and actions

Channel arrays are convenient for specifying a parameterisable number of channels;

a sequence of expressions can select a specific channel for synchronisation. The con-

5.2. UPPAAL 135

trollers of Figure 5.3 use channel arrays to communicate with N trains. A precise

notation is necessary to define transformations involving channel arrays.

Let Chansets be a finite collection of channel sets. Every C ∈ Chansets is asso-

ciated with a sequence of nC types, each either of the form [l,u], or [S]. A single

element C〈i1,...,inC〉 of the set C is designated by a sequence of values 〈i1, . . . , inC〉 of

appropriate types. Non-array channels are denoted by singleton channel sets, for ex-

ample Cǫ. Two actions are associated with each channel. To each channel set C are

associated sets of input and output actions,

C? = {C〈i1...inC〉? | for all 〈i1, . . . , inC〉 }, and,

C ! = {C〈i1...inC〉! | for all 〈i1, . . . , inC〉 }

Let ?/! stand for either direction, used consistently in a rule, and !/? for its complement.

For C ⊆ Chansets, let C? = ⋃C∈C C? and C! = ⋃C∈C C !.

Let Acts = Chansets? ∪̇Chansets! be the set of possible actions on Chansets. The set

Actsτ = Acts ∪̇{τ} also includes the silent action τ . The complement of an action a ≠
τ , is written a, that is if a = c? then a = c! and vice versa, and similarly for action sets.

Subsets of a channel set C are designated by a sequence of expressions 〈e1, . . . , enC〉.
Evaluation is lifted to such designations to specify a single channel from the subset,

JC[e1, . . . , enC] KvalV
= C〈Je1KvalV ,...,JenC KvalV〉.

5.2.3 Processes

Guard expressions in Uppaal are restricted in form for efficient manipulation as sym-

bolic zones, refer §2.2.3.2. They are built from clock terms.

Definition 5.2.1

For predicates pnclk ∈ Pnclk, the set of clock terms Tclk(K,V), where K ∩ V =∅, is the

smallest containing

1. pnclk where freevars(pnclk) ⊆ V,

2. k R e where k ∈ K, R∈{<,≤,=,≥, >}, freevars(e) ⊆ V, and,

3. k1 − k2 R e where k1, k2 ∈ K and freevars(e) ⊆ V.

Form 1 permits boolean-valued, clock-free expressions. In form 2 a clock variable is

compared with an integer-valued, clock-free expression, in form 3 the difference of two

clock variables is compared similarly. Pnclk is a set of predicates over terms that do not

contain clock variables.

Definition 5.2.2

The guard expressions on K and V, Eg(K,V), where K and V are disjoint sets of clock

and non-clock variables respectively, is the smallest set allowed by the rules:

p ∈ Tclk(K,V)

p ∈ Eg(K,V)

p, q ∈ Eg(K,V)

p∧q ∈ Eg(K,V)

p ∈ Eg(K,V) v ∈ Vars

(∀v.p) ∈ Eg(K,V)

Uninterpreted clock-free expressions pnclk may contain existential quantifiers and

disjunctive sub-terms, but guard expressions may not. Invariant expressions Einv(K,V)
are the subset of guard expressions where comparisons in clock terms are restricted

to R ∈ {<,≤}.
There is now sufficient background to formalise processes as they are modelled

within Uppaal.

Definition 5.2.3

A process P = (N,n0, K, V, valinit
V , invV∪K , E) over Actsτ comprises finite sets of nodesN,

clocks K, variables V, and edges E; an initial node n0 and valuation valinit
V ; and invV∪K ,

a mapping from N to expressions in Einv(K,V). The labelled edges connect pairs of

nodes, where S ⊆ Vars,

E ⊆ N × S × Eg(K,V ∪ S)× 2Acts ×∆V∪K(V , S)×N.

136 CHAPTER 5. VALIDATING TIMED TRACE INCLUSION IN UPPAAL

An edge (n, S, e, C[e1, . . . , enC]
?/!, δ

(V ,S)
V∪K , n

′) ∈ E is written

n
S e δ

(V ,S)
V∪K−−−−−−−−−→

C[e1,...,enC]
?/!
E n

′,

(and similarly for τ-transitions) where n and n′ are, respectively, source and destina-

tion nodes; S is a finite set of selection bindings, S ∩V=∅; freevars(e) ⊆ V∪ S; δ
(V ,S)
V∪K is

an update for valuations over Vand K that depends on a valuation of Vand S; and the

action set is either {τ}, or consistent in name and direction, that is, it has either of the

forms C[e1, . . . , enC]? or C[e1, . . . , enC]! where freevars(C[e1, . . . , enC]) ⊆ V ∪ S.

5.2.4 Automata

Timed automata were presented in §2.2.3. Definition 2.2.17 is adopted in this chapter

with alphabet A = Actsτ , guard expressions EK = Eg(K,∅), and invariant expres-

sions IK = Einv(K,∅). In contrast to processes, the only variables in timed automata

are clock variables.

The semantics of processes are given by defining a function ΓV that maps processes

to automata by expanding references to non-clock variables. The notation VeWvalV

stands for a partial evaluation that maps one expression to another such that

J VeWvalV KvalV ′ = JeKvalV ′⊲valV if freevars(e) \ V ⊆ V ′.

Definition 5.2.4

Given a process P = (N,n0, K, V , valinit
V , invV∪K , E), let ΓV (P) = (L, l0, K, invK , T), where

L = N ×ValsV , l0 =
(
n0, valinit

V

)
, invK ((n, valV)) = V invV∪K(n)WvalV , and T is the small-

est relation satisfying:

n
S e δ

(V ,S)
V∪K−−−−−−−−→

C[e1,...,e2]
?/!
E n

′ valV ∈ ValsV valS∈ ValsS

(n, valV)
VeWvalV ⊲valS

resets
(
δ
(V ,S)
V∪K

)

−−−−−−−−−−−−−−−−−→JC[e1,...,enC]
?/!KvalV ⊲valS

T

(
n′, δ(V ,S)V∪K (valV)

) ?, !

n
S e δ

(V ,S)
V∪K−−−−−−→
τ E n

′ valV ∈ ValsV valS∈ ValsS

(n, valV)
VeWvalV ⊲valS

resets
(
δ
(V ,S)
V∪K

)

−−−−−−−−−−−−−−−−−→
τ T

(
n′, δ(V ,S)V∪K (valV)

) τ

The three rules in Definition 5.2.4 differ from each other only in action type. Au-

tomata locations are formed of process nodes paired with non-clock variable valua-

tions. After fixing a variable valuation, each process edge may still expand to multiple

transitions, one for every valuation valS of the selection bindings S. The original guard

is partially evaluated against binding and variable values, the resulting guard may still

depend on clock variables. The combined binding and variable values affect the update

of the destination valuation, and, in the rules for ? and !, select an element from the

channel set. Updates to clocks remain on the result transitions.

Later manipulations work from the observation that every edge in the automaton

corresponds to a set of transitions in the process determined by the combination of

control node and data valuation, and all possible assignments to S.

An Uppaal model of n processes P1, . . . ,Pn over Actsτ and variables V can be

mapped to a closed system automaton containing only τ-transitions,

Aτ = (ΓV (P1) ‖ . . . ‖ ΓV (Pn)) \ Acts.

Definitions 2.3.1 and 2.3.2 describe, respectively, parallel composition and restriction.

5.2.5 Validation automata

The standard definition of the validation construction [Sto02, §A.1.5] for automata is

included here. It will be lifted to processes in §5.3.

5.3. TRANSFORMING UPPAAL MODELS 137

Definition 5.2.5

For deterministic A = (L, l0, K, invK , T) over Acts let AErr = (L ∪̇{Err}, l0, K, invErr
K , T

Err)

where invErr
K (l ∈ L) = true, and T Err is the least relation such that

l
¬invK(l) ∅−−−−−−−→

τ TErr Err
1

a ∈ Acts

Err
true ∅−−−−→
a TErr Err

2

l
g R−−→
a T l

′

l
(g ∧ invK(l)) R−−−−−−−−−−→

a TErr l
′

3

g(a,l) = ¬
∨
{g | ∃l′. l g R−−→

a T l
′ }

l
(g(a,l) ∧ invK(l)) ∅−−−−−−−−−−−−→

a TErr Err
4

If there are no transitions for a pairing of action and location (a, l) the upper part of

rule 4 becomes ¬∨∅ = true, giving a transition directly to the Err state.

The validation construction only applies to deterministic automata, which implies

the absence of τ-transitions. Timed trace inclusion is undecidable in general [AD94,

Corollary 5.3], but PSPACE-complete for deterministic specification automata [AD94,

Theorem 6.6].5

Although timed trace inclusion of a non-deterministic specification S and an imple-

mentation I cannot be verified directly using the validation technique, an alternative

approach is sometimes possible. It involves showing timed trace inclusion of two prox-

ies: a deterministic specification Sp and a proposed implementation Ip, where channel

names can be renamed or changed to τ such that relabelling actions in Sp gives S and

relabelling those in Ip gives I [Sto02, Appendix A]. Appropriate relabellings do not

always exist, even when timed trace inclusion holds.

As an example of the relabelling technique, the allow_approach[i]! actions in the

railway controller of Figure 5.3b and the specification of Figure 5.4b could be replaced

with τ actions to give more natural models. Showing timed trace inclusion of the orig-

inal models implies timed trace inclusion of the relabelled ones. Direct verification

without the allow_approach[i]! actions would fail because a gate being validated could

silently enter Occ—while the validation automaton remained in Free—and then per-

form an action that triggered a transition to Err. Even a single allow_approach! action

is not sufficient because the model would still be nondeterministic. Although initially

both it and the validation automaton would be synchronized, they could assign dif-

ferent values to their variables when synchronizing on allow_approach!, and thereby

permit later transitions into Err.

5.3 Transforming Uppaal models

The basic validation construction for automata was given in Definition 5.2.5. Given a

process P the aim is now to construct another process PErr such that

ΓV (PErr) ≈ ΓV (P)Err,

P Definition 5.3.1−−−−−−−−−−→ PErr

yΓV
yΓV (Definition 5.2.4)

A Definition 5.2.5−−−−−−−−−−→ [AErr
]

where A1 ≈ A2 iff 1) A1 contains a location Err, 2) A2 contains a location Err, and 3)

∀A . ((A1 ‖ A ⊨ A2¬A1.Err)⇔ (A2 ‖ A ⊨ A2¬A2.Err)). Commutativity only holds

to within an equivalence class because the transformation of P into PErr requires ad-

ditional states and transitions to handle unexpanded process features. In pragmatic

terms, a correct extension of the original error construction allows direct validation of

more models, leaving explicit expansion, ΓV, to Uppaal.

5The undecidability and complexity results are obtained for timed language inclusion of timed automata
without location invariants.

138 CHAPTER 5. VALIDATING TIMED TRACE INCLUSION IN UPPAAL

Definition 5.3.1

Let P = (N,n0, K, V , valinit
V , invV∪K , E) where the underlying automaton ΓV (P) is deter-

ministic and τ-free, then

PErr = (N ∪̇{Err}, n0, K, V , valinit
V , invErr

V∪K , E
Err),

where invErr
V∪K(l ∈ L) = true and EErr is the least relation such that,

n
∅ ¬invV∪K(n) ·−−−−−−−−−−→

τ EErr Err
1

a ∈ Acts

Err
∅ true ·−−−−−−→

a EErr Err
2

n
S g λ−−−−−−−−−→

C[e1,...,enC]
?/!
E n

′

n
S (g ∧ invV∪K(n)) λ−−−−−−−−−−−−−→
C[e1,...,enC]

!/?
EErr n

′
3

n ∈ N C ∈ Chansets (S′, g′, 〈e′1, . . ., e′nC〉) ∈ flip(C, T)

where T =
{
(S, g, 〈e1, . . ., enC 〉) | n

S g ·−−−−−−−−−→
C[e1,...,enC]

?/!
E ·
}

n
S′ (g′ ∧ invV∪K(n)) ·−−−−−−−−−−−−−−→

C[e′1,...,e
′
nC
] !/?

EErr Err
4

The function flip maps a set of triples—selection bindings, guards, and subscript

expressions—of edges for a fixed location l and channel set C , to another set of triples

so as to satisfy ΓV (PErr) ≈ ΓV (P)Err.

Each of the four rules for constructing validation processes corresponds with one

of those for constructing validation automata in Definition 5.2.5. Rule 4 applies to

node/action set pairs, mapping, via the flip function, all associated edges to another

set of edges to the Err state. The flip function encapsulates the treatment of selection

bindings and channel arrays. It is presented incrementally in the following, beginning

with singleton channel sets in §5.3.1, the simplest form first in §5.3.1.1, then with se-

lection bindings in §5.3.1.2, and then with quantifiers in §5.3.1.3. More general channel

sets are addressed in §5.3.2 using two different techniques. A partitioning technique

works for subscripts over state variables in §5.3.2.1 and limited combinations of se-

lection binding subscripts in §5.3.2.2. The insights gained lead to an improved and

more general technique in §5.3.2.3. The presentation includes details that, while not

required for the abstract definition, are important to implement the transformation.

5.3.1 Elementary channels

Only edges labelled with singleton channel sets are considered in this section; selection

bindings are thus limited to guards. Channel arrays are treated in the next subsection.

5.3.1.1 No selection bindings or quantifiers

In the absence of selection bindings and quantifiers over expressions containing clocks,

the challenge is to produce guard expressions that meet the syntactic restrictions of

Uppaal. Ideally, expressions must be simplified when possible.

Clock expressions represent the intermediate results of manipulations. They must

be converted to guard expressions, Eg(K,V) ⊆ Eclk(K,V), for acceptance by Uppaal.

Definition 5.3.2

The set of clock expressions Eclk(K,V) over clock K and non-clock variables V is the

smallest such that

p ∈ Tclk(K,V)

p ∈ Eclk(K,V)
1

p,q ∈ Eclk(K,V)

p∧q ∈ Eclk(K,V)
2

p,q ∈ Eclk(K,V)

p∨q ∈ Eclk(K,V)
3

p ∈Eclk(K,V) v ∈ Vars

(∀v.p) ∈ Eclk(K,V)
4
p ∈Eclk(K,V) v ∈ Vars

(∃v.p) ∈ Eclk(K,V)
5

5.3. TRANSFORMING UPPAAL MODELS 139

Proposition 2

For any sets of clocks K and variables V , Eg(K,V) ⊆ Eclk(K,V).
6

For now, the focus is limited to quantifier-free clock expressions, that is to those

formed without using rules 4 and 5. Quantifiers may nonetheless appear in clock

terms p ∈ Tclk(K,V) where they do not encompass clock variables.

Quantifier-free clock expressions are closed under negation. The function neg is

defined over the structure of expressions, after the pattern:

neg(c < e) = c ≥ e, neg(c = e) = c < e∨ c > e,
neg(pnclk) = negnclk(pnclk), neg(p∨q) = neg(p)∧neg(q).

where negnclk(pnclk) negates clock-free expressions pnclk.

Proposition 3

The function neg is closed over the set of quantifier-free clock expressions.

Proposition 4

For a quantifier-free clock expression e and valV ∈ ValsV , ¬ JeKvalV = Jneg eKvalV .

The set of m edges to flip can be written as E = {g1, . . . , gm}, since each edge has

the same source node, none have selection bindings, each synchronises on the same

action, and neither updates nor destination nodes are relevant.

The set of edges E = flip(E) should contain guards such that at least one is true

when all of the guards in E are false. The premise of rule 4 in Definition 5.2.5 is

mimicked by forming neg(g1∨· · ·∨gm). To ensure that the resulting expression

conforms to the syntactic restrictions of Uppaal, it must first be converted into DNF,

g1∨· · ·∨gm′ , before separating the clauses to give E = {g1, . . . , gm′}.
In practice it is often possible to simplify the resulting guard terms. For example,

c > 2∧ c ≤ 2 may be omitted completely, and c < 2∧ c < 4 may be replaced with c < 2.

Simplification is not strictly necessary, but it improves readability which, in turn, in-

creases confidence in the results, and makes counter-example traces easier to follow.

The current implementation uses simple syntactic criteria to assess, for a pair of terms

in a conjunctive clause, whether one implies or contradicts the other. A possible im-

provement would be to exploit a heavy-duty simplifier, like those employed in theorem

proving tools.

Figure 5.6 shows both a process P5.6, which has one clock x and synchronises on

channels c and d, and the corresponding validation process PErr
5.6. The two transitions

from s1 of PErr
5.6 to Err are labelled with complements of the actions that do not leave

that state. Transitions from s2 of PErr
5.6 have more complicated guards

c?, c!, d? x < 4 the node invariant

τ x ≥ 4 the negated invariant

d! x > 1∧x < 3 the original guard

d! x < 4∧x ≥ 3 invariant and half of the negated guard

d! x ≤ 1 the other half of the negated guard

In the third and fifth lines above, simplification has removed the redundant invariant

conjunct. The negated guard of d! is split over two transitions to avoid disjunction

over clock variables.

5.3.1.2 With selection bindings

A selection binding pairs a variable name with a bounded integer or scalar type. A

set of selection bindings may be associated with an edge.7 The bound variables on

an edge may occur in the guard expression, update statement, and action subscript

expressions. This last possibility is ignored until §§5.3.2.2 and 5.3.2.3 where arrays of

actions are considered.

6Clock terms and guard expressions are defined in Definitions 5.2.1 and 5.2.2 respectively.
7It is a list in Uppaal, but the last of multiple identical names overrides the others.

140 CHAPTER 5. VALIDATING TIMED TRACE INCLUSION IN UPPAAL

s3

s2 x<4s1

x>1 && x < 3
d?d!

c?P5.6 :

Err

s3

s2s1

x>=4

c! c? d!d?

x<4 c!
x<4 c?

x<=1 d!

x<4 && x>=3
d!x<4

d?c?
d!

x>1 && x<3
d!d?

c!PErr
5.6 :

//process

clock x;

Figure 5.6: No selection bindings or quantifiers

An edge with selection bindings may represent multiple transitions in the under-

lying automaton, even after fixing the values of state variables, as is apparent in Def-

inition 5.2.4. Any choice of values for the selection bindings that satisfies the guard

represents a possible transition.

The set of m edges to be flipped is now written E = {(S1, g1), . . . , (Sm, gm)}, where

each Si is a set of selection variables, bound over the corresponding guard gi. There

is no loss of generality in assuming that the selection sets are pairwise disjoint since

elements may be renamed if necessary. Only quantifier-free gi are considered for now.

A transition for a fixed location and action is enabled when

(∃s11, . . . , s1n1
. g1)∨· · ·∨(∃sm1, . . . , smnm . gm),

where Si = {si1, . . . , sini}, which can be rewritten

∃s11, . . . , s1n1
, . . . , sm1, . . . , smnm . g1∨· · ·∨gm.

Thus, no transitions are enabled when

∀s11, . . . , s1n1
, . . . , sm1, . . . , smnm .neg(g1∨· · ·∨gm),

that is, when no guard is satisfied for any valuation of the selection bindings. The result

of neg(g0∨· · ·∨gm) can be converted to DNF, g0∨· · ·∨gm, but it is only possible

to assign each clause to a separate transition if the scope of each universally bound

variable can be reduced to a single disjunct. One solution is to eliminate problematic

quantified variables by creating a new edge for each of their possible values and every

disjunct in scope. This is not possible for variables that take values from a scalar set,

or from bounded integers where either of the bounds is an expression that cannot be

reduced to a concrete value, for instance those involving template arguments.

5.3. TRANSFORMING UPPAAL MODELS 141

The construction in Figure 5.7 shows another solution, applicable when all the se-

lection bindings are of bounded integer type. A local meta variable si is introduced

for each binding, taking care to avoid naming conflicts. A τ-transition from the origi-

nal location to a new committed location resets each variable si to its lower bound Li.
The self-loop transitions on the committed location loop through all possible values of

the variables. Other τ-transitions return to the original location if any of the guards

are true for a variable valuation. If this is not the case for any valuation, one of the

τ-transitions to Err will be taken.

Err

. . .

. . .

s11= L11, ..., smnm = Lmnm

g1(s11, ..., smnm)

gm(s11, ..., smnm)

... s11==U11 && · · ·&& smnm==Umnm && ϕ1(s11, ..., smnm)

s11==U11 && · · ·&& smnm==Umnm && ϕm′ (s11, ..., smnm)

...

c?/!

c?/!

si ∈ {s12 , . . . , smnm }

s11==U11 && · · ·&& si−1==Ui−1
&& si < Ui && ϕ1(s11, ..., smnm)

s11= L11, ..., si−1= Li−1, si= si + 1

s11==U11 && · · ·&& si−1==Ui−1
&& si < Ui && ϕm′ (s11, ..., smnm)
s11= L11, ..., si−1= Li−1, si= si + 1

· · ·

s11 < U11 && ϕ1(s11, ..., smnm)
s11= s11 + 1

s11 < U11 && ϕm′ (s11, ..., smnm)
s11= s11 + 1

. . .
where ϕ1∨ . . .∨ϕm′ = neg(g1∨· · ·∨gm)

// process
meta int [L11 , U11] s11 ;

meta int [Lmnm , Umnm] smnm ;

...

Figure 5.7: Construction for ∀s11, . . . , s1n1
, . . . , sm1, . . . , smnm .neg(g1∨· · ·∨gm)

The current implementation does not attempt the construction of Figure 5.7, rather

it simply warns when a negated expression cannot be split into separate transitions

and is thus likely to be rejected by Uppaal.

Two examples where selection bindings are addressed by introducing universal

quantification into the validation process are shown in Figures 5.8 and 5.9. The first

gives a valid Uppaal process. The second does not.

In PErr
5.8 of Figure 5.8 a transition from s0 to Err occurs on c? when the negated guard

is true for all possible values of i.

P5.8:

s0

i : int[0,n-1]

x[i]<=i

c!

PErr
5.8:

Err s0

c!

forall (i : int[0,n - 1]) x[i]>i
c?

i : int[0,n - 1]

x[i]<=i

c?

//process

clock x[n];

Figure 5.8: Selection bindings but no quantifiers

Another process and corresponding validation process are shown in Figure 5.9. The

guard disjuncts of PErr
5.9 cannot be split into separate transitions because of the forall

(without using the construction defined above); this process is rejected by Uppaal.

P5.9:

s1s0

i:int[0,N] x<a[i] && y>b[i] c?

PErr
5.9:

Err
s1s0

c!
c?

forall (i : int[0,N])
 x>=a[i] || y<=b[i] c!

c?

i : int[0,N] x<a[i] && y>b[i] c!
//process

clock x, y;

int a[N], b[N];

Figure 5.9: Selection bindings/negated guard clash

142 CHAPTER 5. VALIDATING TIMED TRACE INCLUSION IN UPPAAL

5.3.1.3 With universal quantifiers

The previous section showed how universal quantifiers are introduced when negating

transitions with selection bindings. Now guards that already contain universal quanti-

fiers (rule 5 of Definition 5.3.2) are considered. Guards with existential quantifiers are

rejected by Uppaal,8 and hence they are not considered.

Quantifier bindings, like selection bindings, bind a name and finite type over a

subexpression. A universally quantified expression ∀i ∈ [l,u]. e(i) is equivalent to

a sequence of conjunctions e(l)∧ . . .∧ e(u), and similarly for scalar types.

As it is possible to convert guard expressions into prenex normal form where all the

quantifiers are universal, and thus order is irrelevant, a set of m edges is now written

E = {(S1, A1, g1), . . . , (Sm, Am, gm)},

where each Ai is a set of universally quantified variables binding over the correspond-

ing gi. Assume that all selection and quantifier sets are pairwise disjoint and further

that quantified variables only occur in corresponding guard expressions, that is, for all

1 ≤ i, j ≤m, Si∩Aj =∅, and if i ≠ j then Si∩Sj =∅, Ai∩Aj =∅, Ai∩freevars(gj) =∅,
and Si ∩ freevars(gj) =∅. These assumptions can be met by renaming as required.

A transition for a given action is enabled whenever

∃s11, . . . , smnm .∀a11, . . . , amn′m . g1∨· · ·∨gm.

Thus, there are no transitions enabled for the action when

∀s11, . . . , smnm .∃a11, . . . , amn′m .neg(g1∨ . . .∨gm), (ψ1)

which is problematic because Uppaal will reject it if any of the guards contain clock

variables. One solution is to rearrange the expression, if possible, into the form

∃a11, . . . , amn′m .∀s11, . . . , smnm .neg(g1∨· · ·∨gm), (ψ2)

where existential bindings in the prefix could then be converted into selection bindings,

and the remainder of the expression would have the form discussed in §5.3.1.2 and

would be subject to the same limitations and treatment.

Doing so requires some condition(ψ1) such that

condition(ψ1) =⇒ ∀ valV ∈ ValsV . Jψ1KvalV = Jψ2KvalV .

The minimal condition is false which rejects all processes with guards that mix selec-

tions and quantifiers over clock variables. Logical equivalence ofψ1 andψ2 is the most

accepting. It would, for example, be possible to emit constraints and proof obligations

for treatment in a theorem prover or a model checker. The current implementation

uses an approximate condition.

Definition 5.3.3

The canswap predicate is defined on formulas of the form

∀a1, . . . , an.∃e1, . . . , em.ϕ1∨ . . .∨ϕl,

where each ϕi is a conjunction of clock terms, p1
i ∧ . . .∧p

ni
i . Let

A = {a1, . . . , an}, E = {e1, . . . , em},
Ai = freevars(ϕi)∩A, and, Ei = freevars(ϕi)∩ E.

Then canswap is true iff for all 1 ≤ i ≤ l either 1. Ai = ∅∨Ei = ∅, or 2. For

1 ≤ j ≠ i ≤ l, Ai ∩Aj =∅, Ei ∩ Ej =∅, and for all 1 < k < ni, freevars(pki)∩Ai =∅ or

freevars(pki)∩ Ei =∅.

8The disjunctive quality of existential quantification splits clock zones.

5.3. TRANSFORMING UPPAAL MODELS 143

Proposition 5

For a quantifier-free formula ψ in DNF,

canswap(∀a1, . . . , an.∃e1, . . . , em.ψ) =⇒
∀a1, . . . , an.∃e1, . . . , em.ψ ≡ ∃e1, . . . , em.∀a1, . . . , an.ψ

Proof Assume that ψ is in disjunctive normal form. It is possible, through associa-

tivity and commutativity of disjunction, to juxtapose clauses that do not contain any

universally bound variables. The scope of each existential quantifier can be reduced to

either the juxtaposed group or a single clause; the clauses of canswap guarantee the

side condition of ∃x. (φ1∨φ2) = (∃x.φ1)∨φ2 (x 6∈ freevars(φ2)). The scope of the

universal quantifiers can be similarly reduced.

The scope of existential quantifiers in clauses of the form ∀Ai.∃Ei. p1
i ∧ . . .∧p

ni
i

can be reduced to a subset of the terms. Likewise for the scopes of universal quanti-

fiers. The second clause of canswap guarantees that no existential quantifier overlaps

with any universal quantifier on a term.

The scope of existential bindings in a formula with reduced scopes can be widened

to cover all clauses, and similarly for universal bindings. 2

The canswap predicate is no panacea, but it does address several useful cases, for

example, sets of transitions where no single transition employs both selection bindings

and universal quantifiers and where each guard is a single term.

The construction of Figure 5.7 can be generalized to provide an alternative to re-

arranging formulas, if none of the universal quantifiers are of scalar type, as shown

in Figure 5.10. The basic idea is the same, looping through all possible valuations of

the universal quantifiers, but the existential quantifiers are accounted for as selection

bindings on loop and error transitions, and as forall bindings on the transitions back

to the original location.

Err

. . .

. . .
s11= L11, ..., smnm = Lmnm

forall(a11 : int[L11, U11]) , ...,
forall(amn′m : int[Lmn′m , Umn′m])

g1(s11, ..., smnm)

forall(a11 : int[L11, U11]) , ...,
forall(amn′m : int[Lmn′m , Umn′m])

gm(s11, ..., smnm)

...
a11 : int[L11, U11] , ..., amn′m : int[Lmn′m , Umn′m]

s11==U11 && · · ·&& smnm==Umnm && ϕ1(s11, ..., smnm)

a11 : int[L11, U11] , ..., amn′m : int[Lmn′m , Umn′m]

s11==U11 && · · ·&& smnm==Umnm && ϕm′ (s11, ..., smnm)

...

c?/!

c?/!

si ∈ {s12 , . . . , smnm }

a11 : int[L11, U11] , ...,
amn′m : int[Lmn′m , Umn′m]

s11==U11 && · · ·&& si−1==Ui−1
&& si < Ui && ϕ1(s11, ..., smnm)

s11= L11, ..., si−1= Li−1, si= si + 1

a11 : int[L11, U11] , ...,
amn′m : int[Lmn′m , Umn′m]

s11==U11 && · · ·&& si−1==Ui−1
&& si < Ui && ϕm′ (s11, ..., smnm)

s11= L11, ..., si−1= Li−1, si= si + 1

· · ·

a11 : int[L11, U11] , ...,
amn′m : int[Lmn′m , Umn′m]

s11 < U11 && ϕ1(s11, ..., smnm)

s11= s11 + 1

a11 : int[L11, U11] , ..., amn′m : int[Lmn′m , Umn′m]

s11 < U11 && ϕm′ (s11, ..., smnm)

s11= s11 + 1

. . .

where ϕ1∨ . . .∨ϕm′ = neg(g1∨· · ·∨gm)

// process
meta int [L11 , U11] s11 ;

meta int [Lmnm , Umnm] smnm ;

...

Figure 5.10: Construction for ∀s11, . . . , smnm .∃a11, . . . , amn′m .neg(g1∨ . . .∨gm)

5.3.2 Channel arrays

The techniques of the previous section are now generalised to edges labelled with

actions on elements of channel arrays.

For basic automata actions were grouped by name and direction, and then the

negated disjunction of their guards was formed, see rule 4 of Definition 5.2.5. The

144 CHAPTER 5. VALIDATING TIMED TRACE INCLUSION IN UPPAAL

guards of processes with elementary channels, that is singleton channel sets, are ef-

fectively grouped together in the same way. Channel arrays introduce additional com-

plexity. Transitions may be grouped by channel array name and direction, rule 4 of

Definition 5.3.1, but whether two transitions refer to the same element within the ar-

ray, that is the same element within the channel set, depends on the valuation of their

respective index sequences relative to the process state and selection bindings.

Initially only array index expressions that do not contain selection bindings are con-

sidered, that is all variables in these expressions are state variables. Two techniques

to group channels are developed. The first was used in an earlier version of the imple-

mentation. It offers insight into the problem, but the number of transitions required

in the validation automaton grows exponentially and it is difficult to incorporate se-

lection bindings. The second technique, used in the current implementation, is more

effective. It is readily extended to incorporate selection bindings in a restricted way.

In Uppaal, channel arrays may be passed by reference as template parameters.

Aliasing of such parameters is not detectable because reference values cannot be com-

pared for equality. The implementation detects this possibility and warns about it; but

the burden of correctness rests with modellers.

5.3.2.1 Partitioning: state expressions

Rather than collecting edges on a single action, they must now be grouped by channel

set and direction.

The set of m edges to be flipped is now written

E =
{(
S1, A1, g1, 〈e1

1, . . . , e
1
nC 〉

)
, . . . ,

(
Sm, Am, gm, 〈em1 , . . . , emnC 〉

)}
,

where the added expression sequences specify an element of the channel set. Disjoint-

ness assumptions are made as in the previous section, with the additional assumption

that quantifier bindings are restricted to guards, and likewise, until the next section,

so are selection bindings, that is,

∀1 ≤ i, j ≤m,1 ≤ k ≤ nC . (Ai ∪ Si)∩ freevars(e
j
k) =∅.

The edges within E must be grouped by channel and allowance made for channels

not represented by any edge. For example, given a set of two channels C = {c[1], c[2]},
and,

E = {(S1, A1, g1, e
1), (S2, A2, g2, e

2)},
there are two possibilities, for a fixed valuation valV , if Je1KvalV

= Je2KvalV
the previous

techniques can be applied to the edges (S1 ∪ S2, A1 ∪A2, g1∨g2) on action c[Je1KvalV
]

and (∅,∅, false) on action c[i] where i ≠
q
e1

y
valV
. Otherwise, if Je1KvalV

≠ Je2KvalV
there

is one edge (S1, A1, g1) on c
[Je1KvalV

]
, and another (S2, A2, g2) on c

[Je2KvalV

]
.

In general, every possible partitioning of the m edges must be considered. Unfor-

tunately, this (Bell) number Bi grows very quickly: B1 = 1, B2 = 2, B3 = 5, B4 = 15,

B5 = 52, B6 = 203, B7 = 877, . . . , which limits the size of models that can be addressed,

based on the maximum number of edges leaving a single node, on the same channel

array, in the same direction, and with unique index expressions. Most models that can

be effectively checked in Uppaal, however, would not test this limit. Before partition-

ing, the implementation merges edges that have sequences of syntactically identical

index expressions by forming unions of their selection binding sets and disjunctions

of their guards.

Each partition is characterised throughout by a predicate pb that equates index

expressions in the same block and differentiates those in other blocks. For example,

for three edge labels on a two dimensional array: 〈e1
1, e

1
2〉, 〈e2

1, e
2
2〉, and 〈e3

1, e
3
2〉, there

are five partitions and associated predicates:

[1,2,3] (e1
1 = e2

1∧ e1
2 = e2

2∧ e1
1 = e3

1∧ e1
2 = e3

2)

[1,2] [3] (e1
1 = e2

1∧ e1
2 = e2

2)∧(e1
1 ≠ e

3
1∨ e1

2 ≠ e
3
2)

[1] [2,3] (e2
1 = e3

1∧ e2
2 = e3

2)∧(e1
1 ≠ e

2
1∨ e1

2 ≠ e
2
2)

[1,3] [2] (e1
1 = e3

1∧ e1
2 = e3

2)∧(e1
1 ≠ e

2
1∨ e1

2 ≠ e
2
2)

[1] [2] [3] (e1
1 ≠ e

2
1∨ e1

2 ≠ e
2
2)∧(e1

1 ≠ e
3
1∨ e1

2 ≠ e
3
2)∧(e2

1 ≠ e
3
1∨ e2

2 ≠ e
3
2)

5.3. TRANSFORMING UPPAAL MODELS 145

P5.11:

s0
x<=3 && (head<tail || head==N1-1)

c[head][j]!
head = (head+1) % N1

x>=5
c[tail][i]! tail = (tail+1) % N1, x=0

PErr
5.11:

Err

s0

s : int[0,N1 - 1], s1 : int[0,N2 - 1]
c[s][s1]!

s : int[0,N1 - 1], s1 : int[0,N2 - 1]
(s!=tail || s1!=i) && (s!=head || s1!=j)
c[s][s1]?

tail==head && i==j && (x>3 && x<5)
c[head][j]?

tail==head && i==j && head>=tail
 && head!=N1 - 1 && x<5
c[head][j]?

(tail!=head || i!=j) && x<5
c[tail][i]?

(tail!=head || i!=j) && x>3
c[head][j]?

(tail!=head || i!=j) && head>=tail
 && head!=N1 - 1
c[head][j]?

x<=3 && (head<tail || head==N1 - 1)
c[head][j]?

head = (head + 1) % N1

x>=5
c[tail][i]? tail = (tail + 1) % N1, x = 0

//global

const int N1=3, N2=2;

chan c[N1][N2];

//process

clock x;

int[0,N1−1] head=0;

int[0,N1−1] tail=0;

int[0,N2−1] i=0;

int[0,N2−1] j=1;

Figure 5.11: Channel selections without bindings (partitioned)

Any given valuation will satisfy exactly one predicate. In practice, predicates may,

like guard terms, be simplified. Some subexpressions can be replaced with true, for

example when a variable is compared with itself x = x, others with false, as when

comparing two different constants 1 = 2. Such changes may in turn lead to further

simplifications.

The techniques of previous sections apply to edges within a single partition pro-

vided the predicate is added after negating the guard: ∀ . . .∃ . . . pb∧neg(g∨ . . .∨g).
After partitioning, channel subscripts are irrelevant: while the exact action groupings

may depend on variable values, the predicates guarantee that all possibilities are prop-

erly taken into account.

It is possible that some channel set elements are never enabled. These are directed

to the Err state by creating an edge with a selection binding for each dimension and a

guard that is true whenever at least one of the selection bindings differs from all other

expressions in the same dimension. For the previous three transitions this sweep edge

would be:
(
{i1, i2},∅,

(
(i1 ≠ e

1
1∨ i2 ≠ e1

2)∧(i1 ≠ e2
1∨ i2 ≠ e2

2)∧(i1 ≠ e3
1∨ i2 ≠ e3

2)
))
.

In the PErr
5.11 process of Figure 5.11 seven transitions connect the original state to

the Err state, from top to bottom: two for state valuations where both original transi-

tions have the same input action, three for when both transitions have different input

actions, another to cover any outputs on c not present on the other edges, and one to

cover all inputs on channels in c. The constants N1 and N2 are declared globally, but

they could be template parameters. The validation automaton is correct regardless of

their exact values.

5.3.2.2 Partitioning: selection bindings

The restriction that selection bindings may not occur in channel array subscripts is

now partially relaxed. The set of m edges to be flipped is written as in the previous

146 CHAPTER 5. VALIDATING TIMED TRACE INCLUSION IN UPPAAL

subsection, and disjointness per §5.3.1.3 is assumed. Quantifiers are restricted to

guards, ∀1 ≤ i, j ≤ m,1 ≤ k ≤ nC . Ai ∩ freevars(e
j
k) = ∅. Subscript indices are

partitioned into two classes: free If and bound Ib. These classes are used to limit the

use of selection bindings in channel expressions. For each eik, of each edge i in the set,

either k ∈ If or k ∈ Ib. There are two cases for each index expression. Either it has

no selection variables, ∀1 ≤ i ≤ m,k ∈ If. Si ∩ freevars(eik) =∅; or it is a selection

variable that spans the array dimension, ∀1 ≤ i ≤ m,k ∈ Ib.∃s ∈ Si. eik = s. No

selection variable is allowed in two different positions, if ∀1 ≤ i ≤m k, l ∈ Ib. eik = eil
then k = l, and it is assumed, renaming as necessary, that the same variable name is

used consistently across such bound positions, ∀1 ≤ i, j ≤ m k ∈ Ib. eik = e
j
k = sk,

writing sel(i ∈ Ib) for that variable. Let Ssub = {sel(i) | i ∈ Ib}.
As an example, consider If = {1,3}, Ib = {2,4}, and,

E = {
({s, t}, ∅, l > 0, 〈2, s,2l− 1, t〉) ,
({s, t,u}, ∅, u ≠ s∧ou > 0, 〈1, s,2l, t〉)},

where s and t range over their entire respective dimensions. The guard expressions

contain a free variable l, which is not bound by the selection set. The variables s and t
appear in the same index position. The second transition has a third selection binding,

but it is only used in the guard.

The restrictions ensure that no two assignments to the selection variables specify

the same channel. The transition set is changed slightly before applying the basic

technique:

E′ =
{(
S1 \ Ssub, A1, g1, 〈e1

1, . . . , e
1
nC 〉

x
If

)
, . . . ,

(
Sm \ Ssub, Am, gm, 〈em1 , . . . , emnC 〉

x
If

)}
.

where 〈i1, . . . , in〉
x
If

is a new sequence of, in the same order, those elements occurring

at indices in If in the original 〈i1, . . . , in〉. As E′ satisfies the assumptions of §5.3.2.1,

the technique of that section applies to give m′ transitions,

E′ =
{(
S1, A1, g1, 〈e1

1, . . . , e
1
|If|〉

)
,

. . . ,
(
Sm′ , Am′ , gm′ , 〈em′

1 , . . . , e
m′
|If|〉

)}
,

to which the elements of Ssub may be returned,

E =
{(
S1 ∪ Ssub, A1, g1, injectsel

(
〈e1

1, . . . , e
1
|If|〉

))
, . . . ,

(
Sm′ ∪ Ssub, Am′ , gm′ , injectsel

(
〈em′

1 , . . . , e
m′
|If|〉

))}
,

where the inject function inserts variables from Ssub back into their original positions

within the sequence.

The assumptions that a selection variable is used in at most one subscript dimen-

sion and that its type spans the entire array dimension are easily circumvented by

augmenting guards with additional constraints; as will be shown in the next section.

The restriction that subscript dimensions be partitioned into those that may only

contain selection bindings and those that may not is more difficult to dispatch. In fact,

this challenge motivated the development of the more general technique presented in

the next subsection.

5.3.2.3 Generalised technique

The partitioning technique was implemented, but the potential for generating a great

many partitions and the difficulty in extending it to selection bindings prompted the

creation of an improved technique, which turns out to be simpler and more effective.

5.3. TRANSFORMING UPPAAL MODELS 147

Beginning with the sweep edge from the previous section, a new selection binding

is introduced for each array dimension; each having a type that spans the entire di-

mension. Each valuation of these selection bindings specifies a different element of

the channel set. All elements of the channel set are considered.

For a given valuation of the new selection bindings, the aim is to form the negated

disjunction of all applicable guards, as done explicitly by the partitioning method. So,

to each sequence of index expressions is associated a clause, satisfied only when every

sweep binding matches the corresponding expression. The conjunctions of each clause

and guard may then be combined in disjunction, and the entirety negated as required.

The clauses ensure that guards are partitioned appropriately by the model checking

algorithm as it evaluates the entire expression for every possible valuation.

The set of m edges to be flipped is written as in §5.3.2.1, and with the same as-

sumptions, selection bindings as channel array subscripts are not yet considered,

E =
{(
S1, A1, g1, 〈e1

1, . . . , e
1
nC 〉

)
, . . . ,

(
Sm, Am, gm, 〈em1 , . . . , emnC 〉

)}
.

Let Sw = {z1, . . . , znC} be a fresh set of nC sweep bindings. Each corresponds with

the channel array index of the same subscript and has the same type. They are disjoint

from one another and from the other selection and quantifier bindings.

The m edges can then be merged into a single edge:

ǫ =
(
Sw ∪ S1 ∪ · · · ∪ Sm, A1 ∪ · · · ∪Am,

(z1 = e1
1 ∧ · · · ∧ znC = e1

nC ∧ g1)

∨ (z1 = e2
1 ∧ · · · ∧ znC = e2

nC ∧ g2)
...

∨ (z1 = em1 ∧ · · · ∧ znC = emnC ∧ gm), 〈z1, . . . , znC 〉
)
.

For a valuation of the sweep bindings, each conjunct (z1 = e1∧· · ·∧znC = enC ∧g)
is either equivalent to g and remains in the disjunction, or equivalent to false and

drops from the disjunction, depending on whether the guard applies to an edge on a

channel set element identified by 〈z1, . . . , znC 〉. The sets of universal bindings Ai may

be grouped into the union because the scope of each applies only to a single guard

expression gi and is disjoint from the set of free variables in the array index expres-

sions ei1, . . . , e
i
nC . Similarly for the selection bindings Si. The (z1 = e1∧· · ·∧znC = enC)

subexpressions do not contain clocks since they are formed by equating selection bind-

ings and array index expressions. Every assignment to Sw selects a different channel,

and a separate sweep edge is not necessary since all channels are taken into account.

The edge ǫ represents multiple transitions, one for each valuation of Sw. Thus, there

are no transitions enabled for an action when

∀s11, . . . , smnm .∃a11, . . . , amn′m . (z1 6= e1
1 ∨ · · · ∨ znC 6= e1

nC ∨ neg(g1))

∧ (z1 6= e2
1 ∨ · · · ∨ znC 6= e2

nC ∨ neg(g2))
...

∧ (z1 6= em1 ∨ · · · ∨ znC 6= emnC ∨ neg(gm)).

(ψ3)

The sweep bindings are not negated into universal quantifiers since their role is only

to choose elements from the channel set. For an element the quantifier free part is

equivalent to a conjunction of l negated guards gi1 ∧· · ·∧gil , which is equivalent to

the corresponding form for elementary channels, §5.3.1.3.

Formula ψ3 must be manipulated to form a set of valid Uppaal transitions. One ap-

proach is to swap the universal and existential quantifiers and transform the quantifier-

free subexpression into DNF before splitting the resulting clauses over multiple transi-

tions. The previously presented techniques remain applicable. The sweep variables are

treated as state variables during the manipulations and then reintroduced on each sep-

arate transition afterward. The set of transitions to the error state can be considered

as a set of sets, each element corresponding to the transitions for a valuation of the

sweep bindings, and, equivalently, to a distinct action from the channel set. In the con-

struction for formulas with unswappable quantifiers, Figure 5.10, the sweep binding

148 CHAPTER 5. VALIDATING TIMED TRACE INCLUSION IN UPPAAL

values must remain constant while testing the range of universal quantifier valuations.

Thus a meta variable must also be introduced for each sweep binding. Variable values

are selected non-deterministically and assigned on initial entry to the committed state.

The variables select a specific channel on the transitions into Err. They may also occur

in guard expressions.

P5.12:

s0
x<=3 && (head<tail || head==N1-1)

c[head][j]!
head = (head+1) % N1

x>=5
c[tail][i]! tail = (tail+1) % N1, x=0

PErr
5.12:

Err

s0

s0 : int[0,N1 - 1], s1 : int[0,N2 - 1]
s0!=tail && (head>=tail && head!=N1 - 1)
|| s0!=tail && s0!=head
|| s0!=tail && s1!=j
|| s1!=i && (head>=tail && head!=N1 - 1)
|| s1!=i && s0!=head || s1!=i && s1!=j
c[s0][s1]?

s0 : int[0,N1 - 1], s1 : int[0,N2 - 1]
x<5 && x>3
c[s0][s1]?

s0 : int[0,N1 - 1], s1 : int[0,N2 - 1]
x<5 && (head>=tail && head!=N1 - 1)
c[s0][s1]?

s0 : int[0,N1 - 1], s1 : int[0,N2 - 1]
x<5 && s0!=head
c[s0][s1]?

s0 : int[0,N1 - 1], s1 : int[0,N2 - 1]
x<5 && s1!=j
c[s0][s1]?

s0 : int[0,N1 - 1], s1 : int[0,N2 - 1]
s0!=tail && x>3
c[s0][s1]?

s0 : int[0,N1 - 1], s1 : int[0,N2 - 1]
s1!=i && x>3
c[s0][s1]?

s0 : int[0,N1 - 1], s1 : int[0,N2 - 1]
c[s0][s1]!

x<=3 && (head<tail || head==N1 - 1)
c[head][j]?

head = (head + 1) % N1

x>=5
c[tail][i]? tail = (tail + 1) % N1, x = 0

//global

const int N1=3, N2=2;

chan c[N1][N2];

//process

clock x;

int[0,N1−1] head=0;

int[0,N1−1] tail=0;

int[0,N2−1] i=0;

int[0,N2−1] j=1;

Figure 5.12: Channel selections without bindings (generalised)

Process P5.12 of Figure 5.12, is identical to P5.11 of Figure 5.11. There are two

transitions on a two dimensional channel array. Both use state variables to choose a

channel from the array: one uses tail and i, the other uses head and j. In this instance

the generalised technique introduces seven transitions to check output actions on c,

which compares well with the six generated by the partitioning technique. But an extra

simplification step is required to avoid the twelve transitions that would result from a

naive conversion to DNF, since the negated combination of the two original guards is

(s0 ≠ tail∨ s1 ≠ i∨x < 5)

∧ (s0 ≠ head∨ s1 ≠ j∨x > 3∨ (head ≥ tail∧head ≠ N− 1)
)
.

And, in the conversion to DNF each of the three upper disjunctive subclauses is com-

bined with each of the four lower disjunctive subclauses. The number of conjunctive

clauses is in proportion to the number of array dimensions. But it is evident that the

conjuncts that do not contain clocks can be collected together onto a single transition.

The partitioning algorithm, on the other hand, gives three transitions for the case when

the subscript variables are equal, two for the case when they are not, and another to

sweep other elements. The results are proportional to the number of source transitions

that differ in at least one subscript state expression.

The earlier exclusion of selection bindings from subscript expressions can now be

relaxed to allow subscript expressions that consist of a simple selection binding, that

is the expression may not contain operators. It is briefly assumed that each selection

binding indexes at most one dimension of a channel array.

5.3. TRANSFORMING UPPAAL MODELS 149

Ideally each selection binding has the same type as the channel array dimension

where it appears. Scalar types always meet this requirement, but it is possible for an

integer binding s of type [l,u] to index a dimension of greater extent.9 In such cases,

the type of the selection binding can safely be made to match the array dimension if the

guard is further constrained by the clause l ≤ s ≤ u. It can thus be assumed, without

loss of generality, that all selection bindings that index a channel array dimension span

all possible values.

When merging transitions a selection binding s that indexes array dimension i will

be replaced by the sweep binding zi, as for a state expression. But rather than in-

clude the restriction zi = s in the new guard conjunct, observe that of all the possible

valuations that include zi and s, only those where the two are equal need actually

be considered. Since both variables have the same type, s can be replaced with zi in

both the set of selection bindings, effectively removing s, and the guard, where the

restriction zi = zi would have anyway become redundant.

This optimisation results in simpler edges. It reduces the number of clauses and

potentially, as discussed, the number of transitions after conversion to DNF.

The restriction of selection variables to a single dimension, which, for example,

excludes the expression
({s}, A, g, 〈s, s〉), is not limiting; additional constraints can

always be added to the guard, for example, given Sw = {z1, z2}, the example would

become
(
Sw, A, z2 = z1∧g, 〈z1, z2〉

)
. This manipulation can be combined with the one

for matching types. Care is required, but there are no fundamental problems.

Figure 5.13 is an example of channel selection involving selection bindings. The

two edges leaving s0 are combined and negated to give an edge to Err. The selection

bindings in the first dimension are conflated to a sweep binding. The state variables,

m and n, are replaced by a sweep binding and new guard constraints. Note that integer

subscript types must be written as inclusive intervals, for example int[0,4], whereas

array declarations may specify the size of an interval, chan c[N][5]. The two edges

leaving s1 on c are handled similarly, even though one specifies the first dimension

with a state variable curr and the other with a selection binding s. The resulting guards

are not converted to DNF because they do not contain clock variables.

Another example is given in Figure 5.14. The selection binding on the lower tran-

sition is of type int[2,N], whereas the channel array dimension is of type int[0,9]. The

merged guard thus becomes (x > 1∧ i ≠ 3)∨(x < 8∧ i ≠ 4∧ i ≥ 2∧ i ≤ N), which

is negated, then converted to the five transitions in the figure. The current simplifier

does not eliminate the transition labelled i1 = 3 ∧ i1 = 4.

Allowing selection variables in state variable expressions makes it difficult to de-

termine which valuations resolve to the same channel and thus how to group edges

for negation. Certain expression forms preserve the property that each valuation gives

a different channel, for instance addition and multiplication shift the range, whereas

others, like the modulo and shift operators, division, and function calls (for exam-

ple, f(x) = 1) do not. While those expressions where the mapping is injective could be

accomodated by a more sophisticated grouping algorithm, the additional complexity

does not seem to be justified.

5.3.3 Inverting invariants

The validation construction produces τ-transitions for locations with non-trivial invari-

ants (rule 1 of Definition 5.3.1). It is sometimes necessary to split negated invariants

over transitions per §5.3.1.1, and to treat quantifiers per §5.3.1.3. Invariants are oth-

erwise treated without any especial problems.

5.3.4 Urgent Channels and shared variables

A process is not usually obliged to synchronise on enabled channels if its location

invariant permits further delay, but synchronisation on urgent channels has priority

over delay.

9Indexing dimensions of smaller extent gives a range error.

150 CHAPTER 5. VALIDATING TIMED TRACE INCLUSION IN UPPAAL

P5.13:

s2
forall(t:int[0,N-1]) v[t]<10

s1s0

s:int[0,N-1]
s!=curr && s<N/2 c[s][m]!

v[curr]<10
inc?

v[curr]++

c[curr][m]!

s:int[0,N-1]
s<=protected
c[s][n]?

s:int[0,N-1]
s>protected c[s][m]? curr=s

PErr
5.13:

Err

s2

s1s0

inc?
inc!

s0 : int[0,N - 1], s1 : int[0,4] c[s0][s1]?

s : int[0,N - 1], s1 : int[0,4]
(s<=protected || s1!=m)
&& (s>protected || s1!=n)

c[s][s1]!

inc?
v[curr]>=10 inc!

s : int[0,N - 1], s1 : int[0,4]
(s!=curr || s1!=m) &&
(s==curr || s>=N / 2 || s1!=m)

c[s][s1]?

s0 : int[0,N - 1], s1 : int[0,4] c[s0][s1]!

forall (t : int[0,N - 1]) v[t]<10 inc?
forall (t : int[0,N - 1]) v[t]<10 inc!

s0 : int[0,N - 1], s1 : int[0,4] forall (t : int[0,N - 1]) v[t]<10 c[s0][s1]?
s0 : int[0,N - 1], s1 : int[0,4] forall (t : int[0,N - 1]) v[t]<10 c[s0][s1]!

exists (t : int[0,N - 1]) v[t]>=10

s : int[0,N - 1]
s!=curr && s<N / 2 c[s][m]?

v[curr]<10
inc!

v[curr]++

c[curr][m]?

s : int[0,N - 1]
s<=protected
c[s][n]!

s : int[0,N - 1]
s>protected c[s][m]! curr = s

//global

const int N=12;

const int protected=5;

chan c[N][5];

chan inc;

//process

typedef int[0,4] Sub;

Sub m,n;

int curr;

int v[N];

Figure 5.13: Channel selections with selection bindings

Basic timed trace inclusion does not suffice for models with urgent channels, in-

stead timed ready simulation and an extended validation construction, that can also

handle shared variables, have been proposed [JLS00]. This technique can be extended

and implemented for the processes considered here. Arrays of urgent channels are

handled by storing index values in a variable across the two-transition check for imme-

diate synchronisation, as in the example of Figure 5.15. Uppaal supports direct array

comparison, so shared variable arrays present no special challenges.

Uppaal does not allow clock variables in the guards of transitions that synchronise

on urgent channels. But they may be introduced when transforming models where

clock variables are used in location invariants10 (and Uppaal rejects such models).

5.4 Implementation

The techniques described in this chapter have been implemented in a tool called urpal

that parses Uppaal models and generates validation automata when possible. It im-

plements the standard techniques [JLS00, Sto02] and the extensions described in this

chapter.

10Unless the negated disjunction of guards simplifies to false.

5.4. IMPLEMENTATION 151

P5.14:

s1s0

i : int[2,N] x<8 && i != 4 C[i]?

i : int[0,9] x>1 && i != 3 C[i]?

PErr
5.14:

Err

s1s0

s0 : int[0,9] C[s0]?
i : int[0,9] i==3 && (i<2 || i>N) C[i]!
i : int[0,9] i==3 && i==4 C[i]!
i : int[0,9] i==3 && x>=8 C[i]!
i : int[0,9] x<=1 && (i<2 || i>N) C[i]!
i : int[0,9] x<=1 && i==4 C[i]!

s0 : int[0,9] C[s0]?
s0 : int[0,9] C[s0]!

i : int[2,N] x<8 && i!=4 C[i]!

i : int[0,9] x>1 && i!=3 C[i]!

//global

chan c[10];

const int N = 8;

//process

clock x;

Figure 5.14: Channel selections with differing ranges

Urpal is written in SML, which is ideal for complex symbol manipulation. The expe-

rience of implementing urpal in SML, and some alternative implementation choices are

discussed in §5.4.1.

The five major subsystems of the tool are shown in Figure 5.16: a parser for the Up-

paal Extensible Markup Language (XML) format; a parser for the description language

used in declarations, expressions and actions; algorithms for transforming models; an

interface to Graphviz for placing nodes and routing edges; and a pretty printer back to

an Uppaal file.

Uppaal is distributed with a C++ library (libutap) for parsing the file format and

description language, and for performing type checking. Using the library potentially

saves implementation effort and provides some insulation from changes to the XML file

format, but it was decided that integrating the object-oriented library into SML would

involve as much work as writing a custom parser. It would also make the tool depen-

dent on updates from the Uppaal developers, and it would complicate its compilation

and installation.

Thus a custom parser was implemented. It allows access to type information, but

otherwise assumes that input files have already been validated by Uppaal. Uppaal XML

files are first parsed by FXP [Neu99], giving unparsed declarations and templates which

are then processed by an ml-lex/ml-yacc [AMT94, TA00] parser for the description

language. The result is an Uppaal model expressed as an SML data type. Extensive use

is made of the SML Basis [GR04] and SML/NJ libraries.

The manipulations performed by the tool can introduce many new transitions. A

custom interface to the Graphviz [GN00] fdp and neato tools attempts to untangle

introduced states and transitions while preserving the original layout of a model. Pro-

ducing readable models is essential for manual inspection, which increases confidence

in the results and aids debugging of both the tool and models, and for understanding

152 CHAPTER 5. VALIDATING TIMED TRACE INCLUSION IN UPPAAL

P5.15:

s2

s1s0

j : int[0,4]
w < 2

u[j][w+1]?

i : int[0,4] w>4 u[i][w-1]?

PErr
5.15:

l_ul_u_out

s2

s1

s0_u

s0

Err

s0 : int[0,4], s1 : int[0,9]
u[s0][s1]?

j : int[0,4], s1 : int[0,9]
(w<=4 || s1!=w - 1) && (w>=2 || s1!=w + 1)
u[j][s1]!

s0 : int[0,4], s1 : int[0,9] u[s0][s1]?
s0 : int[0,4], s1 : int[0,9] u[s0][s1]!

s0 : int[0,4], s1 : int[0,9] u[s0][s1]?
s0 : int[0,4], s1 : int[0,9] u[s0][s1]!

x_u>0

u[i1][i2]!

j : int[0,4] w<2 x_u = 0, i1 = j, i2 = w + 1
i : int[0,4] w>4 x_u = 0, i1 = i, i2 = w - 1

j : int[0,4]
w<2

u[j][w + 1]!

i : int[0,4] w>4 u[i][w - 1]!

//global

urgent chan u[5][10];

//process

int w;

//added to Perr only

int[0,4] i3;

int[0,9] i2;

clock x_u;

Figure 5.15: Validating an array of urgent channels

XML parse XML parse desc. manipulate layout pretty print XML

Figure 5.16: High-level structure of Urpal

counter-example traces when timed trace inclusion validation fails. The SML/NJ pretty

printing library is used, for similar reasons, to output updated declarations and expres-

sions. Most of the validation automata figures in this paper were produced directly by

the tool, though edge labels were occasionally adjusted to improve readability. Some

of the nodes and transitions in Figure 5.15 were placed manually.

Although the tool focuses on the validation construction, its subsystems are suit-

able for implementing other model transformations. It includes, for instance, an

expression language for pruning transitions, and merging, dropping, and renaming

nodes. The driver model of §4.5 was initially generated directly from the assembler

source using the tool.

5.4.1 Experience and implementation language

The implementation has two main tasks: to parse and represent Uppaal models, and

to perform symbolic manipulations on transitions and expressions. Performance and

efficiency are not major concerns as the tool need only transform models of a size for

which model checking is feasible. Correctness and robustness are more important.

SML was chosen because it is garbage-collected, statically typed, and mostly func-

tional. The module system, which includes functors and support for abstract data

5.4. IMPLEMENTATION 153

types, helped increasingly as the implementation grew in size.

There is no reason not to use garbage collection and it greatly simplifies the imple-

mentation.

The static typing did not cause any major problems or require any significant com-

promises. On the contrary, the type system made it easier to write and understand

the required higher-order functions, and the SML type checking found many potential

errors at compile time. Type checking was especially invaluable in finding errors intro-

duced as data structures were revised during development. Programs written in SML

never have segmentation faults although they may still raise exceptions and suffer

from programming flaws and incorrect algorithms. The Uppaal expression language

was modelled with algebraic data types; writing pattern-matched functions over these

types helped to understand many subtleties of manipulating Uppaal models.

Most of the implementation is purely functional. Preferring recursive functions

and avoiding mutable state encouraged a focus on correctness rather than speed and

seemed to reduce the time spent debugging, relative to previous experiences with other

programming languages.

The formal semantics of Standard ML [MTHM97, MT90] were not required directly.

But having a stable definition means that programs are unambiguous, barring flaws in

the definition, and likely to be usable in the future, subject to tool-chain availability. It

also aids portability between compilers and interpreters. The program has been tested

with SML/NJ,11 MLton,12 and Poly/ML.13 The biggest challenges are the differences

between build systems, which are not standardised, and missing support for features

of the SML Basis Library [GR04]. Different build files are required for each. A lack

of functional I/O routines prevented compilation with SML.NET14 and Moscow ML15

(whose build system is also obstructive). Builds with the ML Kit,16 Alice,17 TILT,18

HaMLet,19 SML#20 or Poplog21 were not attempted, but the availability of so many

compilers is encouraging.

Several alternative languages were considered:

Lisp/Scheme: The flexibility of dynamic types was not required and there was no ad-

vantage to using the minimalist s-expression syntax.

OCaml: Active development of this language means that more libraries are available,

but they are arguably less stable than those of SML. There are fewer compilers

and interpreters. But, for the most part, OCaml would also have been a suitable

choice for implementing the tool.

Haskell: The more modern syntax, including list comprehensions, where clauses, and

indentation for nesting, is attractive. Haskell cannot yet match the module system

of SML, but its type classes have their own advantages. Many libraries are avail-

able for Haskell but the interfaces are subject to change, and many, specifically

the XML parsers, require a mastery of concepts like monads and arrows. There

are fewer compilers for Haskell. Lazy evaluation was not especially advantageous

for this implementation.

Java, C++: An object-oriented style for this type of program would likely decompose

the transformation algorithm into separate parts such that the function of the

whole would be difficult to reason about, without offering many advantages. Nei-

ther language has strong static typing or algebraic data types.

11http://www.smlnj.org
12http://mlton.org
13http://www.polyml.org
14http://www.cl.cam.ac.uk/research/tsg/SMLNET
15http://www.itu.dk/~sestoft/mosml.html
16http://www.it-c.dk/research/mlkit/index.php/Main_Page
17http://www.ps.uni-sb.de/alice
18http://www.tilt.cs.cmu.edu
19http://www.mpi-sws.org/~rossberg/hamlet
20http://www.pllab.riec.tohoku.ac.jp/smlsharp
21http://www.cs.bham.ac.uk/research/projects/poplog/freepoplog.html

http://www.smlnj.org
http://www.polyml.org
http://www.cl.cam.ac.uk/research/tsg/SMLNET
http://www.itu.dk/~sestoft/mosml.html
http://www.it-c.dk/research/mlkit/index.php/Main_Page
http://www.ps.uni-sb.de/alice
http://www.tilt.cs.cmu.edu
http://www.mpi-sws.org/~rossberg/hamlet
http://www.pllab.riec.tohoku.ac.jp/smlsharp
http://www.cs.bham.ac.uk/research/projects/poplog/freepoplog.html

154 CHAPTER 5. VALIDATING TIMED TRACE INCLUSION IN UPPAAL

Python, Perl: Dynamic languages offer few specific advantages for this task. The class

of errors that are only detectable at runtime is larger in these languages than for

statically typed languages.

Nearly all of these languages have more comprehensive libraries than does SML. Fortu-

nately, the SML Basis Library [GR04], SML/NJ Library,22 and FXP parsing library [Neu99]

covered most needs. In other languages, however, it may have been possible to avoid

writing an interface to Graphviz.

The transformation discussed in this chapter is implemented directly. Many of the

minor details in the description require careful programming to implement. For exam-

ple, routines are required to validate and maintain the assumption of disjoint variable

binding names. Care is needed to avoid unintended variable capture and to handle

type abbreviations (typedef) and the identities of scalar types, since each declaration

gives a new set.

5.4.2 Ensuring determinism

The tool does not provide any support for validating the assumption of determinism.

To decide whether a process is deterministic would involve checking at each location l,
for all reachable valuations of state variables valV , whether, given a pair i = {1,2} of

edges on the same channel set and direction (Si, Ai, gi, 〈ei1, . . . , einC 〉),

∀S1, S2.
((

inv(l)∧ e1
1 = e2

1∧ . . .∧ e1
nC = e2

nC

)
=⇒ ¬ (g1∧g2

))
.

An over approximation could be used to warn if a model might be non-deterministic.

Fortunately there is a better way. Since timed trace inclusion is reflexive, verification

of P ‖ P′ ⊨ A2¬Err should succeed. A failure indicates a model that does not satisfy

the assumption of determinism, or that there is a fault in the transformation software

or in Uppaal.

Unfortunately the converse is not necessarily true. For example, a P′ consisting of a

single state with unconstrained self-loop transitions for every action will always satisfy

the formula in parallel with a more restricted P, and in fact with any other process,

including those having traces that P does not.

It should be possible to augment the tool with features to help find suitable renam-

ing functions [Sto02, Appendix A], for making some automata deterministic for the

purposes of testing timed trace inclusion. Such a feature could require automatically

executing the Uppaal verification engine and analysing its counter-example traces.

5.5 Validation automaton for the railway controller

The extended timed trace inclusion validation technique can be applied to the railway

controller of Figure 5.4, here called P. The required validation automaton, here called

P′, is presented in Figure 5.17.

There are four nodes in P′. A new Err’ node, and three others transferred with

changes from the original automaton: Free’, Occ’, and Restart’.

P contains an urgent node Restart, which is expanded before constructing P′ by

adding both a new clock c_u, which is reset on all incoming edges, c_u = 0, and the

invariant c_u ≤ 0. This invariant and those on Free and Occ are not carried over onto

the nodes of P′, rather they influence the edges at each node in two ways. First, the

original invariant is added as a conjunct to the guards of all outgoing edges. Second, a

τ-transition to Err’ is added with the negated invariant as a guard. These new transi-

tions are listed at the bottom of each of the three grey clusters from the original state.

For instance, the τ-transition from Restart to Err has the guard c_u > 0. The negated

invariant for Occ would be ∃i ∈ idt .get_status(i) = APPR∧ timer[i] ≥ DEADLINE, but since

this expression would be rejected by Uppaal, because timer is an array of clocks, a

selection binding is used instead of an existential one. And similarly for Free.

22http://www.smlnj.org/doc/smlnj-lib

http://www.smlnj.org/doc/smlnj-lib

5
.5

.
V

A
L
ID

A
T

IO
N

A
U

T
O

M
A

T
O

N
F
O

R
T

H
E

R
A

IL
W

A
Y

C
O

N
T

R
O

L
L
E
R

1
5

5

Restart’
Occ’

Free’

s0 : int[0,N - 1] forall (i : id_t) get_status(i)!=APPR || timer[i]<DEADLINE leave[s0]?
s0 : int[0,N - 1] forall (i : id_t) get_status(i)!=APPR || timer[i]<DEADLINE leave[s0]!

i : int[0,N - 1] forall (i1 : id_t)
 (get_status(i1)!=APPR || timer[i1]<DEADLINE) &&
 (get_status(i)!=APPR ||
 (exists (j : id_t) j!=i && get_status(j)!=AWAY && status[j][i]>=M))

allow_approach[i]?
s0 : int[0,N - 1] forall (i : id_t) get_status(i)!=APPR || timer[i]<DEADLINE allow_approach[s0]!

s0 : int[0,N - 1] forall (i : id_t) get_status(i)!=APPR || timer[i]<DEADLINE stop[s0]?
s0 : int[0,N - 1] forall (i : id_t) get_status(i)!=APPR || timer[i]<DEADLINE stop[s0]!

s0 : int[0,N - 1] forall (i : id_t) get_status(i)!=APPR || timer[i]<DEADLINE appr[s0]?

i : int[0,N - 1] forall (i1 : id_t)
 (get_status(i1)!=APPR || timer[i1]<DEADLINE) &&
 (get_status(i)!=STOP ||
 (exists (j : id_t) j!=i && get_status(j)==STOP && status[j][i]>=M))

go[i]?
s0 : int[0,N - 1] forall (i : id_t) get_status(i)!=APPR || timer[i]<DEADLINE go[s0]!

i : id_t get_status(i)==APPR && timer[i]>=DEADLINE

s0 : int[0,N - 1] forall (i : id_t) get_status(i)!=APPR || timer[i]<DEADLINE leave[s0]?

i : int[0,N - 1] forall (i1 : id_t)
 (get_status(i1)!=APPR || timer[i1]<DEADLINE) &&
 ((exists (j : id_t)
 get_status(j)==APPR ||
 (forall (k : id_t) k==i || get_status(k)!=STOP)) &&
 (forall (j : id_t)
 get_status(j)!=APPR &&
 (exists (k : id_t) get_status(k)==STOP)))

leave[i]!

s0 : int[0,N - 1] forall (i : id_t) get_status(i)!=APPR || timer[i]<DEADLINE allow_approach[s0]?
s0 : int[0,N - 1] forall (i : id_t) get_status(i)!=APPR || timer[i]<DEADLINE allow_approach[s0]!

i : int[0,N - 1] forall (i1 : id_t)
 (get_status(i1)!=APPR || timer[i1]<DEADLINE) &&
 get_status(i)!=APPR

stop[i]?

s0 : int[0,N - 1] forall (i : id_t) get_status(i)!=APPR || timer[i]<DEADLINE stop[s0]!

s0 : int[0,N - 1] forall (i : id_t) get_status(i)!=APPR || timer[i]<DEADLINE appr[s0]?

s0 : int[0,N - 1] forall (i : id_t) get_status(i)!=APPR || timer[i]<DEADLINE go[s0]?
s0 : int[0,N - 1] forall (i : id_t) get_status(i)!=APPR || timer[i]<DEADLINE go[s0]!

i : id_t get_status(i)==APPR && timer[i]>=DEADLINE

s0 : int[0,N - 1] c_u<=0 leave[s0]?
s0 : int[0,N - 1] c_u<=0 leave[s0]!

s0 : int[0,N - 1] c_u<=0 allow_approach[s0]?
s0 : int[0,N - 1] c_u<=0 allow_approach[s0]!

s0 : int[0,N - 1] c_u<=0 stop[s0]?
s0 : int[0,N - 1] c_u<=0 stop[s0]!

s0 : int[0,N - 1] c_u<=0 appr[s0]?
s0 : int[0,N - 1] c_u<=0 appr[s0]!

i : int[0,N - 1] c_u<=0 &&
(get_status(i)!=STOP ||
 (exists (j : id_t) j!=i
 && get_status(j)!=AWAY
 && status[j][i]>=M)) go[i]?

s0 : int[0,N - 1] c_u<=0 go[s0]!

c_u>0

i : id_t
forall (i : id_t)
 get_status(i)==APPR
 imply timer[i]<DEADLINE
appr[i]!
set_status(i, APPR), timer[i] = 0

i : int[0,N - 1] get_status(i)==STOP &&
(forall (j : id_t) j!=i && get_status(j)!=AWAY imply status[j][i]<M) && c_u<=0

go[i]? train_goes(i), set_status(i, GO)

i : id_t

forall (i1 : id_t)
 (exists (j : id_t)
 get_status(j)==APPR ||
 (forall (k : id_t) get_status(k)!=STOP)) &&
 get_status(i1)!=APPR ||
 (exists (j : id_t)
 get_status(j)==APPR ||
 (forall (k : id_t) get_status(k)!=STOP)) &&
 timer[i1]<DEADLINE

leave[i]!
set_status(i, AWAY)

i : id_t
forall (i1 : id_t)
 (forall (j : id_t)
 get_status(j)!=APPR &&
 (exists (k : id_t) k!=i && get_status(k)==STOP)) &&
 get_status(i1)!=APPR ||
 (forall (j : id_t)
 get_status(j)!=APPR &&
 (exists (k : id_t) k!=i && get_status(k)==STOP)) &&
 timer[i1]<DEADLINE
leave[i]! c_u = 0, set_status(i, AWAY)

i : id_t

forall (i1 : id_t)
 get_status(i)==APPR &&
 (forall (j : id_t)
 j!=i && get_status(j)!=AWAY imply status[j][i]<M) &&
 get_status(i1)!=APPR ||
 get_status(i)==APPR &&
 (forall (j : id_t)
 j!=i && get_status(j)!=AWAY imply status[j][i]<M) &&
 timer[i1]<DEADLINE

allow_approach[i]?
train_goes(i), set_status(i, GO)

i : id_t
forall (i1 : id_t)
 get_status(i)==APPR && get_status(i1)!=APPR ||
 get_status(i)==APPR && timer[i1]<DEADLINE
stop[i]?
set_status(i, STOP)

i : id_t

forall (i1 : id_t)
 get_status(i)==STOP &&
 (forall (j : id_t)
 j!=i && get_status(j)==STOP imply status[j][i]<M) &&
 get_status(i1)!=APPR ||
 get_status(i)==STOP &&
 (forall (j : id_t)
 j!=i && get_status(j)==STOP imply status[j][i]<M) &&
 timer[i1]<DEADLINE

go[i]?
train_goes(i), set_status(i, GO)

i : id_t
forall (i : id_t)
 get_status(i)==APPR
 imply timer[i]<DEADLINE
appr[i]! set_status(i, APPR), timer[i] = 0

Err’

// additional declarations
clock c_u ;

Figure 5.17: Validation automaton for Railway controller

156 CHAPTER 5. VALIDATING TIMED TRACE INCLUSION IN UPPAAL

Besides the addition of invariant conjuncts and the inversion of the direction of syn-

chronisation on channels, the edges replicated from the original, and coloured black

in Figure 5.17, keep the same assignment expressions and essentially the same guards

(though they are rearranged into DNF).

The new edges to the Err’ state are coloured gray in Figure 5.17. Their labels are

tabulated near their respective source nodes.

Most of the edges in P′ from Free’ to Err’ are on the complements23 of action sets

that cannot occur from Free in P: stop?/!, allow_approach!, appr?, go!, leave?/!. Each of

them employs a selection binding to cover all elements, and has the original invariant

of Free as the guard expression. Since actions in appr? are always enabled in P, there

are no corresponding edges to Err’ on appr!. The guards of the complements of the

other two action sets that can occur from Free, allow_approach? and go?, have the

same form: a conjunction of the original invariant and the negation of the original

guard. Quantifier nesting is permitted in these guards because the bound clauses do

not contain clock variables.

The edges from Occ’ and Restart’ are similar to those from Free’. The only ad-

ditional complication is that in P there are two edges on leave? from Occ. So, their

guards are first combined with disjunction:

∀j ∈ idt .get_status(j) ≠ APPR∧∃k ∈ idT .
(
k ≠ i∧get_status(k) = STOP

)

∨ ∃j ∈ idt .get_status(j) = APPR

∨ ∀k ∈ idt .get_status(k) ≠ STOP,

before the complement is formed:

∃j ∈ idt .get_status(j) = APPR∨∀k ∈ idT .
(
k = i∨get_status(k) ≠ STOP

)

∧ ∀j ∈ idt .get_status(j) ≠ APPR

∧ ∃k ∈ idt .get_status(k) = STOP,

which, along with the node invariant, forms the guard on an edge from Occ’ to Err’.24

Uppaal verifies that the modified original controller O, Figure 5.3b, is timed trace

included in the flexible version P, by model checking: O ‖ P′ ⊨ A2¬Err’.

While the railway example contains several of the features addressed by the ex-

tended validation technique, it does not require handling of mixed quantifiers over

clock variables, splitting to eliminate disjunctions with clocks, or channel array sub-

scripts with state variables, duplicated selection bindings, or bindings that do not span

the entire subscript.

5.6 Discussion

Uppaal contains features that increase both modelling convenience and the complexity

of model transformations. Many of these features have been formalised in this chap-

ter, and a standard technique for timed trace inclusion testing has been extended to

address them.

The implementation works well but would be improved by more sophisticated term

rewriting, (semi-)automatic validation of the assumption of determinism, features for

relabelling to eliminate non-determinism, and better support for multi-process speci-

fications. It allows validation automata to be created automatically for a large class of

Uppaal models without having to expand Uppaal features to lower level primitives. The

efficacy of the tool has been demonstrated on an example adapted from the literature.

The model of Uppaal processes of §5.2 was developed with the sole intent of extend-

ing and describing the validation construction. A semantics for Uppaal with a careful

treatment of shared variables and committed locations has been developed and pub-

lished contemporaneously [BV08]. It does not explicitly address selection bindings,

quantifiers, or channel arrays.

23The directions are reversed.
24The expression in Figure 5.17 is slightly different but equivalent.

5.6. DISCUSSION 157

There are a number of motivations for developing a theory of Uppaal models in a

theorem prover like Isabelle [NPW02]; possibly based on the aforementioned semantics

with the extensions proposed in this chapter. First, the correctness of the extended val-

idation construction has only been justified informally. Its intricacies would be better

tracked and maintained in a machine-checked development. Second, the implementa-

tion could generate the validation construction simultaneously with a justification of

its correctness in a form that a theorem prover could validate. Third, an implemen-

tation embedded in a theorem prover [WW07] could exploit a more sophisticated and

extensible term rewriting engine, and possibly also present some proof obligations to

users for interactive solution.

The extensions presented in this chapter build on a known technique [Sto02, JLS00]

for testing timed trace inclusion. It seems that an alternative approach using timed

games is also possible [BV08, §§4 and 5] and supported by newer versions of Up-

paal [BCD+07].25 The essential challenge in extending the original technique to handle

selection bindings, quantifiers, and channel arrays is the need to bundle transitions

and negate guards while respecting the syntactic restrictions of Uppaal. These par-

ticular problems may be irrelevant in such alternative approaches, but the individual

manipulations are still of intrinsic interest and much of the implementation would

anyway be reusable.

This chapter grew out of the needs of the last; constructing validation automata

for the sensor models was too tedious and delicate to do manually. The challenges of

addressing various Uppaal features became apparent as the process was automated.

Even though time is not really central to the validation construction, the formaliza-

tion and techniques provide insight into timed automata modelling in Uppaal and the

challenges and practicalities of implementing model transformations for a non-trivial

language. The next chapter returns to the core theme of programming embedded con-

trollers and the focus moves from timed automata back to synchronous languages.

25This possibility was also independently suggested by Frank Cassez.

158 CHAPTER 5. VALIDATING TIMED TRACE INCLUSION IN UPPAAL

Chapter 6

Delays in Esterel

6.1 Introduction

From the Uppaal-specific technicalities of the previous chapter, the focus returns in

this chapter to the problem of specifying and implementing embedded controllers with

complex timing behaviours. The central premise of this thesis is reprised: time is both

a behavioural dimension and a resource.

Time is an integral behavioural dimension in many embedded systems; timing de-

tails cannot always be treated as requirements to be validated independently of other

design stages. They may rather be so intertwined with other behavioural aspects as

to be inseparable from them. For instance, the meaning of an event may depend on

the relative time of its occurrence, and the absence of an event relative to another, or

within a certain period, may have significance to a system.

Time is also a resource; a physical constraint on system design that introduces

limitations and costs. Balancing timing requirements and timing limitations is central

to the design of many embedded systems. Accuracy and simplicity of design must

be weighed and traded against the cost, complexity, and energy use of eventual im-

plementations. Design and implementation choices are often explored and decided

simultaneously, complicating both tasks and encouraging platform-specific programs

which may later be difficult to adapt or to reuse. Behavioural timing details often be-

come tightly bound with the mechanisms of their implementation, making them harder

to later understand and to modify.

The Esterel programming language was designed as a language for real-time pro-

gramming [BMR83, Ber89b]. It is thus well suited for describing timing behaviours. But,

although the synchronous model of discrete time isolates the logic of programs from

many details of their realisation, timing behaviours still cannot be expressed without

making significant implementation choices at early stages of specification and design.

Such early choices can make it difficult to strike a balance between timing requirements

and timing constraints, and they may result in platform-specific programs.

These perceived limitations of Esterel are specific to certain applications and quite

subtle. Discussing them with reference to a specific example will serve both to clarify

the issues and to underscore their practical importance. They do not adversely affect

high-level designs, like the controllers of Chapter 3 or the railway example of Chapter 5,

nor are they especially limiting when programming to specifications with relatively lib-

eral timing constraints, like the infrared sensor of Chapter 4. Rather they arise when a

program must be designed to meet strict and intricate behavioural timing requirements

and when the implementation platform has not yet been chosen; possibly because the

minimum platform requirements cannot be known until after the program has been

written. A good example is to be found in controllers for the microprinters that print

cash register dockets and other transaction logs. The devices themselves are fairly

simple which only makes the required controller more complicated. In addition, the

controller must usually be executed on as inexpensive a microcontroller as possible.

One simple solution, for addressing applications like the microprinter controller, is

to express delays using a macro statement whose expansion into standard Esterel is

160 CHAPTER 6. DELAYS IN ESTEREL

determined by an abstract model of an intended implementation platform. This would

allow designers to state delays directly during specification and then later to tailor

programs to the limitations of particular platforms as more details become available.

While program models are often given in discrete time and implementation models

in continuous time [STY03], the macro statement implies the opposite approach: pro-

grams are stated in continuous time and their implementations in discrete time. Ab-

stract programs are stated in the same terms used in descriptions of the physical

hardware to be controlled. Concrete programs are then derived in the form necessary

for implementation as a digital system. This approach is familiar in traditional control

system design where analytical models are constructed in continuous time and then

later discretized for implementation.

While the motivations and basic idea behind the macro delay statement appear

sound, the solution presented in this chapter is not completely satisfactory. There

remain unresolved questions about the practical utility of the presented transforma-

tions and also about the relation between programs with physical time delays and the

discrete controllers generated from them. Any proposal for the latter would have to

account for the kind of approximations and compromises usually employed when en-

gineering such systems.

The main body of this chapter comprises four sections. In §6.2, the microprinter

example is presented. It is both a motivating, realistic application and a concrete illus-

tration of the issues under discussion. Extracts from the example are used through-

out §6.3 to illustrate deficiencies in the standard techniques for expressing delays in

Esterel. It is argued that each of these techniques either forces engineers to make

implementation choices too early in the design process or otherwise adulterates the

expression of requirements with the mechanisms of their realisation. A possible so-

lution is presented in §6.4 in the form of a macro statement and its expansion to

statements of standard Esterel. Some problems and unfinished aspects of these ideas

are discussed in §6.5.

6.2 Motivating example: a microprinter controller

The microprinter controller example typifies a certain type of embedded systems de-

sign where engineers integrate specialised electro-mechanical devices from various

suppliers into a useful whole. Engineers can sometimes work with suppliers to specify

the components, as in the automotive industry or for highly-specialized applications

like medical devices, but at other times they must select from a range of Commer-

cial Off The Shelf (COTS) components and then work to constraints set out on data

sheets and in timing diagrams. The microprinter specification, like that of the infrared

sensor of Chapter 4, is full of idiosyncratic detail originating in its particular physical

characteristics. Proposals for improved programming and modelling must confront

such detail without compromise, at least if they aim to provide realistic solutions. The

microprinter differs from the infrared sensor in its scale—its interface is much more

complicated—and in the strictness of its timing requirements.

A program for controlling a device like the microprinter is often loosely called a

‘driver’. But this term is best preserved for the glue code that links OSs with peripherals

where the challenge is to interface OS data structures and concurrency with high-level

register-based coordination of a specific type of device or class of devices. On the

contrary, software like the microprinter controller orchestrates the low-level details of

bare components in real-time. It must be much more responsive, and its sequential

and timed behaviour will usually be much more involved. There will usually be more

internal control state.

Microprinters are electro-mechanical components for producing monochrome im-

ages on paper. They are often used in cash registers for printing receipts. A typical

example is sketched in Figure 6.1. The actual device, from which the following details

and delay values are taken, is not named due to licensing sensitivities. Thermal paper

is drawn into the printer from a roll (not shown) by a rubber drum that is rotated by

a stepper motor. The paper passes under a print head comprising a row of tens of

6.2. MOTIVATING EXAMPLE: A MICROPRINTER CONTROLLER 161

stepper motor

print head

head position sensor

paper sensor

temperature sensor

paper-feed path

Figure 6.1: Physical structure of the microprinter example

resistors. Current is applied to the resistors to generate heat which marks the paper;

individual resistors are enabled and disabled through latched transistors. Images are

formed line-by-line by carefully coordinating the movement of the paper, the contents

of the latches, and the application of current to the resistors. There are also micro-

printers that mark normal paper with an impact mechanism, like, for instance, tiny

hammers driven through an ink-impregnated ribbon. The microprinter has sensors

that give the temperature of the print head, whether it is open or closed, and whether

there is paper under it.

The sequential logic required to interface directly with the microprinter is intricate.

A controller must produce a signal pattern for the stepper motor, retrieve then serially

transmit the next line of pixels, apply current to the resistors, and respond to no-paper

and print-head-open events. It must respect the microprinter’s physical and electrical

characteristics. For instance, when the number of active pixels in a line exceeds a

certain threshold, that line must be printed over several phases to avoid drawing too

much current; when paper feeding is temporarily stalled, the stepper motor must be

switched on and off to reduce the average power needed, and thereby reduce the risk

of damaging hardware or circuits.

Furthermore, the relative timing of actions is both important and intricate. The

duration of motor steps changes depending on the number of pixels in the line being

printed, the duration of the previous step, and the operating phase: starting, feeding,

printing, or stopping. The duration of current pulses through the print head depends

on feedback from the temperature sensor, the recent print history, and the battery

level. The lengths of various delays are given in the microprinter specification in phys-

ical time, seconds and milliseconds, not as counts of a digital clock or multiples of a

base period. They are integral to the behavioural specification and as much a part of

the controller requirements as are the discrete events. It is unnatural to consider the

timing constraints and discrete events in isolation from each other.

Expressing the required sequential logic and timing patterns in software is only part

of the problem. A microcontroller must also be chosen and interfaced to the micro-

printer, to a power supply, and to the rest of the system. The choice of microcontroller

is critical to implementing, and—as will be seen—usually even to stating, the timing be-

haviour. Platform selection may thus occur simultaneously with initial design. To give

one scenario, an engineer might identify the tightest timing requirements in the specifi-

cation and then sketch a preliminary implementation in assembly language from which

the minimum required processor speed can be estimated. A suitable platform could

then be chosen, allowing timing behaviours to be expressed in terms of its characteris-

tics and features. Porting the program to a different platform may require considerable

effort. Any detailed verification would have to consider the program and the platform

as a single unit.

Esterel is intended for applications like the microprinter controller. It is certainly

easier to express the sequential logic in Esterel than in assembler, but it is still diffi-

cult to untangle the application timing details from the implementation choices and

162 CHAPTER 6. DELAYS IN ESTEREL

Step Step Step Step Step Step Hold
Hold

Hold
Hold

Hold
Hold

Step Step Step Step

Enable

1.667ms 2.4ms

0.05ms 0.3ms

Coil1

Coil2

Figure 6.2: Typical microprinter motor control signals

constraints, and this has implications on both design flow and portability. As the mi-

croprinter controller is too complicated to present in full, only a subcomponent will be

considered, namely the one responsible for energizing the coils of the stepper motor

to make it rotate.

A sample trace of the motor control signals is presented in Figure 6.2. There are

three outputs: MotorEna, MotorCoil1, and MotorCoil2. The MotorENA signal is asserted

to allow current into the stepper motor coils. The MotorCoil1 and MotorCoil2 signals

determine the direction of current in each of two coils within the stepper motor. At the

lowest level, the coils must be energized according to the pattern of steps in the bottom

half of Figure 6.2. At a higher level, the length of each step and whether current should

flow or not is determined by the length of the previous step and whether the motor

paper must be held in place for one reason or another. The latter condition will be

represented by an input signal Hold, which, it can be assumed, will be emitted by other

system components as required. When printing, each step is normally energized for

1.667ms, but if the motor is held for more than 0.733ms in one step then the next step

must be energized for 2.4ms. The coil directions are not changed while the motor is

being held in place. Since this requires less energy, the coil current must be repeatedly

switched off for 0.05ms and on for 0.3ms until movement restarts. This ‘chopping’

reduces the risk of overheating. Other complications relating to starting the motor,

stopping it, and feeding paper when not printing will be ignored.

Thanks to the synchronous semantics of Esterel, the motor control logic is readily

expressed as two concurrent modules: PrintSteps and Stepper. They are both shown

in Figure 6.3. The PrintSteps module emits a Step signal when the coil energisation

pattern is to change. The Stepper module responds simultaneously to each emission

of Step by changing the direction of current in one of the coils. Other concurrent

components for sequencing feed and print cycles, clocking data into the print head,

and handling exceptional conditions can readily be imagined. For the most part, the

domain specific constructs of Esterel give a convenient and natural specification that

can be simulated, analyzed and compiled into software or hardware. There is, however,

a problem.

How should the various delays in Stepper be stated? At present, they are given as

comments in terms of timing constants from the specification, but the resulting pro-

gram is neither correct nor executable. Several techniques for expressing the delay

are evaluated in the next section, but none of them are ideal. Just as in the assembly

language scenario, each technique requires early decisions about the eventual imple-

mentation platform, or confuses specifications of delay with their implementation.

6.2. MOTIVATING EXAMPLE: A MICROPRINTER CONTROLLER 163

1 module PrintSteps :

2

3 input Hold ;

4 output Step , MotorENA : boolean ;

5

6 signal LongStep in

7 loop

8 emit Step ;

9 present LongStep

10 then % delay 2.4ms

11 else % delay 1.667ms

12 end present ;

13

14 present Hold then

15 trap Sta l l ing in

16 loop

17 emit MotorENA(false) ;

18 % delay 0.05ms;

19 present Hold else

20 exit Sta l l ing

21 end ;

22

23 emit MotorENA(true) ;

24 % delay 0.3ms;

25 present Hold

26 else exit Sta l l ing

27 end

28 end loop

29 | |

30 % delay 0.733ms;

31 sustain LongStep

32 end trap

33 end present

34 end loop

35 end signal

36

37 end module

(a) PrintSteps module

1 module STEPPER :

2 input Step ;

3 output

4 Coil1 := false : boolean ;

5 Coil2 := false : boolean ;

6

7 loop

8 await Step ;

9 emit Coil1 (true) ;

10

11 await Step ;

12 emit Coil2 (true) ;

13

14 await Step ;

15 emit Coil1 (false) ;

16

17 await Step

18 emit Coil2 (false)

19 end loop

20

21 end module

(b) Stepper module

Figure 6.3: Stepper motor controller in Esterel

164 CHAPTER 6. DELAYS IN ESTEREL

6.3 Expressing delays in Esterel

Timing delays can be expressed variously in Esterel. Several techniques from the liter-

ature are reviewed in this section. It will be argued that all of them constrain eventual

implementations, at least if naively compiled, and that several of them either empha-

size mechanism over effect or interact imperfectly with other constructs.

Techniques from published Esterel programs are presented in the first three sub-

sections: pause statements in §6.3.1, signal counting in §6.3.2, and external timers

in §6.3.3. A seemingly novel variation using the exec statement is presented in §6.3.4.

Two techniques proposed in the research literature are discussed: non-deterministic

pause statements in §6.3.5, and quantitative watchdog timers in §6.3.6. Two tech-

niques from other programming languages are described in §6.3.7: instruction delays

and library functions. These techniques are included for completeness and contrast;

they are never applied in orthodox Esterel programs.

6.3.1 Pause statements

In the latest semantics of Esterel [Ber99, PBEB07], pause is the only non-instantaneous

statement. Its meaning in the discrete semantics is clear: it delays execution until the

next reaction. The complication for expressing quantitative delays is that the time of

the next reaction depends on the execution mode and parameters.

In the event-driven execution mode, the physical duration of a pause depends on

external stimuli. For a set of inputs {i1, . . . , in}, a pause could be replaced with:

await [i1 or . . . or in] .

Although, the replacement would have to be adjusted were other inputs added; if, for

instance, other modules were placed in parallel. Any relation between abstract delays

and physical delays must account for times of input occurrence, which is not feasible in

general. In event-driven systems, unadorned pause statements alone are not suitable

for specifying precise physical delays.

The arguments against unadorned pause statements for expressing delay, are sim-

ilar to those against allowing the next operator in temporal logics. In temporal logic,

stutter invariance is an important property because the number of steps required to

complete an operation is not a meaningful concept when one gives an abstract, high-

level specification [Lam83]. A more delicate balance is required in a synchronous lan-

guage like Esterel where semantics and programmer intuitions are based on the precise

interrelationships of program steps. The challenge is rather to treat physical delays at

a higher, more abstract level, without completely losing the character of the language.

It seems that these issues were considered in earlier semantic definitions of Es-

terel [BG92] where the only non-instantaneous statement is not pause but rather halt,

which delays indefinitely, or, more usually, until aborted by an input event. The abil-

ity to detect any reaction is recovered by providing a distinguished tick signal that is

present at every reaction; pause can then be encoded as a macro statement: await tick.

Even with a primitive pause statement, the tick signal is still useful for expressing

n consecutive pauses:

await n t i ck .

In the sample-driven mode of execution, a pause statement specifies a precise phys-

ical delay: the length of one execution cycle. There is thus a direct, though implicit,

relation between the discrete semantics of a program and its physical behaviour. For a

given sample time the relation can be defined precisely; as, for example, the model in

Chapter 3 does. In applications where behaviour in physical time is important, mod-

ules could be specified together with their intended execution period. It is not clear,

however, how modules with different execution periods would be composed. Further-

more, designers would be forced to choose a period before writing a program. They

must make an implementation choice before even beginning a precise specification!

Deciding on an execution period involves compromises between the application

requirements and the execution platform. The timing requirements of the micro-

printer controller example can be summarized by the list of delays: 2.400ms, 1.667ms,

6.3. EXPRESSING DELAYS IN ESTEREL 165

0.050ms, 0.300ms, and 0.733ms. A designer could decide to round 1.667ms down to

1.650ms and 0.733ms down to 0.750ms before choosing 0.05ms, the greatest common

divisor and, in this case, also the smallest delay, as the execution period. The first part

of the program could then be written:

present LongStep

then await 48 t ick

else await 32 t ick

end present .

This technique is effective but not ideal. The program has strayed from the original

specification. If the execution period is changed—for instance, a different microcon-

troller is used, or a faster module is put in parallel—the program must be rewritten.

The original delay values are obscured and the execution period is implicit. Moreover, a

complete list of delays may only become clear as the program is written: the specifica-

tion and important details of the implementation must be decided in tandem. A fixed

execution period limits potential platforms, since the whole program must run at the

speed required for the smallest delay, even though in this case the next smallest delay

is an order of magnitude greater. There is little scope for the sort of optimisations of-

ten applied to embedded controllers; for example, a timer-interrupt-driven routine for

motor chopping that permits the rest of the program to be executed less frequently.

For some applications, for example bus protocols and computer hardware, cycles

are an integral part of the design. The Turbochannel bus controller (tcint) that is

widely used for benchmarking Esterel is a typical example. The class of applications

exemplified by the microprinter controller is different in this respect.

6.3.2 Timing inputs

A natural generalisation of the await tick form of the pause statement is to allow

signals other than tick. The semantic expansion of await s is:

trap T in

loop

pause ;

present s then exit T end

end loop

end trap .

It may be seen as a conditional pause that delays until the next reaction where the

given signal is present. The await n tick form of the pause statement effectively

counts reactions. The generalisation await n s counts the occurrence of particular

signals; its semantic expansion is given in Table 2.2.

Counting specific signals instead of reactions is a partial remedy for some limita-

tions of pause statements: the event being counted is stated explicitly, and it need

not be present at every reaction. Executing signal counting programs more frequently

does not change the fundamental relation between their behaviour and the occurrence

of external events, although the order of external events may be discerned more finely

and the actual discrete traces may vary.

Additional information is still required to relate a signal counting statement to a

physical time delay. Rather than assign an execution period to a program or module, as

for pause statements, certain timing inputs are distinguished and assigned fixed delay

values. The delay values are usually relative to the initial reaction or to system startup.

They are, in other words, absolute. Timing inputs must be provided by the interface

or run-time layer at regular intervals. They are invariably given suggestive names, for

example SECOND or MSEC, and implication relations between them are often declared.

Returning to the microprinter, a controller program could commence with declara-

tions of two timing inputs, TMS for ‘tenths of milliseconds’ and HMS for ‘hundredths

of milliseconds’:

input TMS, % ms/10

HMS; % ms/100

relation TMS => HMS; .

166 CHAPTER 6. DELAYS IN ESTEREL

TMS TMS TMS TMS

HMS HMS

await 5 HMS; emit MotorENA(true); await 3 TMS; emit MotorENA(false);

await 5 HMS; emit MotorENA(true); await 30 HMS; emit MotorENA(false);

Figure 6.4: Granularity of timing inputs

Longer delays would be specified in terms of TMS:

present LongStep

then await 24 TMS

else await 17 TMS

end present .

and shorter ones in terms of HMS:

loop

emit MotorENA(false) ;

await 5 HMS;

emit MotorENA(true) ;

await 30 HMS

end loop .

Timing inputs are employed in several examples [Ber89a, BG89]. They fit superbly

with the idea of multiform time and the abstract synchronous model. They work well

with other Esterel constructs like suspend and abort.

There are, however, at least three disadvantages to counting timing inputs. First,

although the relation between timing inputs and physical time seems intuitive, there

are some subtleties related to granularity and relativity. Second, although signal count-

ing programs are relatively unaffected by changes to execution mode and period, the

choice of signal granularity is effectively an implementation choice and trading accu-

racy for economy afterward may not be trivial. Third, the structure of the state space

of signal counting programs may be difficult for debugging and model checking tools

to exploit.

Regarding granularity and relativity, a signal counting statement synchronizes with

timing inputs foremost and creates a delay in physical time only as a byproduct. Tim-

ing inputs are not relative to the commencement or termination of statements within

a program. For instance, consider these changes to signal granularity in the motor

chopping loop:

loop

emit MotorENA(false) ;

await 5 HMS;

emit MotorENA(true) ;

await 3 TMS % ⇐ was 30 HMS

end loop .

The two fragments are not equivalent but one might naively expect that replacing

await 30 HMS with await 3 TMS would preserve the physical time delays. This is not

so, as evidenced by Figure 6.4. The statement await 3 TMS always gives a logical delay

of 3 TMS events but, in principle, the associated delay in milliseconds could be any-

where in the interval (0.2,0.3]. The precise delay depends on when the statement re-

ceives control and thus on the system execution period and, in the event-driven mode,

when other inputs occur. Consider, for instance, this statement:

await I ; await immediate 2 S .

The start of the second await depends on when the I signal occurs. It effects a delay

greater than one second but strictly less than two seconds, that is, a delay in the

interval [1,2)—assuming that S has a period of one second.

Does it really matter? After all, engineering involves tolerances: perfect measure-

ments are never possible. The point is, rather, to delay such decisions for as long as

6.3. EXPRESSING DELAYS IN ESTEREL 167

possible; to model in ideal terms and then only later to make and evaluate various com-

promises. Fixing timing inputs at an early stage in the specification either renounces

accuracy too soon, perhaps even before the ramifications can be properly understood,

or risks imposing unnecessarily strict demands on eventual implementations.

There is another conflict between abstract specifications and concrete implemen-

tations. In applications like the microprinter controller, data sheets and abstract

designs describe physical models as functions of an ideal t in seconds. But oscil-

lation and execution periods in implementation platforms are often determined by

characteristics of the application and hardware. For instance, an oscillator frequency

of 11.0592MHz may be ideal for serial communication but not for counting millisec-

onds [Pon01, pp. 367–369]. The execution periods of early arcade game systems were

often based around the update frequency of the attached video hardware [ET05, §4].

Moreover, the timing inputs in early stages of a design may be in multiples of seconds,

but those in later versions may not. Discretization is ultimately implementation issue.

Naturally, the standard tools for simulation and verification can handle programs

that count timing inputs. But they do not usually exploit the specific structure of these

programs: the long chains of counting transitions. When debugging, for instance, it

may be necessary to cycle through long runs of timing events before anything inter-

esting happens. In tools like Uppaal, by contrast, such traces can be explored symbol-

ically. Verification tools might also be more effective were they to identify and exploit

the additional structure. For instance, by supporting the expression and validation of

quantitative timing properties in terms of physical rather than discrete time, and by

summarising information about delays in counter-example traces.

6.3.3 External timers

One-shot timers are commonly used in embedded programs to implement delays and

timeouts. The same idea is readily expressed in Esterel, as demonstrated by several

published examples [CDO96, JPO95, MS92].

Such programs initiate a delay by emitting an event that starts a timer, for instance

emit START_TIMER. The event may be parameterised by the required number of ticks,

for instance emit START_TIMER(100). The program then waits for an event that indi-

cates timer expiry: for instance, await TIMER.

Timers need not necessarily be provided by an implementation platform. They may

themselves be implemented in Esterel, as, for example, in the POLIS seatbelt alarm

controller [BCG+97, §1.3.2], shown in Figure 6.5, where a timer module counts timing

inputs. The POLIS approach is special because the two modules may be executed on

different asynchronous processes, each with a different execution period. The timer

module may even later be refined to a hardware timer.

There are several advantages to using timers. They give relative rather than absolute

delays. They separate, at least to some degree, issues of behavioural delay from those

of program execution. Timers can, for instance, run at a finer granularity than the

rest of the program; though any benefit is lost if the ratio between the timer and

execution periods is too great. They are perhaps most appropriate for event-driven

implementations where reactions can be triggered by timer interrupts.

There are four main disadvantages to using timers: a sacrifice of program concision

and clarity, an early introduction of implementation detail, an imperfect interaction

with other Esterel constructs, and a lack of support in simulation and analysis tools.

The loss of concision and clarity is evident in this fragment of the microprinter

controller example, now expressed with timers:

loop

emit MotorENA(false) ;

emit START_HMSTIMER01(5) ; await HMSTIMER01;

emit MotorENA(true) ;

emit START_HMSTIMER01(30) ; await HMSTIMER01

end loop .

Not only are two instructions required to express each delay, but the emphasis has

shifted from meaning to mechanism. Nothing prevents the emission that starts the

168 CHAPTER 6. DELAYS IN ESTEREL

1 module belt_control :

2

3 input reset , belt_on ,

4 key_on , key_off ,

5 end_5 , end_10 ;

6 output alarm (boolean) ,

7 start_t imer ;

8

9 loop

10 abort

11 emit alarm (false) ;

12 every key_on do

13 abort

14 emit start_t imer ;

15 await end_5 ;

16 emit alarm (true) ;

17 await end_10

18 when [key_off or belt_on] ;

19 emit alarm (false)

20 end every

21 when reset

22 end loop

(a) belt_control module

1 module timer :

2 constant count_5 ,

3 count_10 : integer ;

4 input start_timer , msec;

5 output end_5 , end_10 ;

6

7 every start_t imer do

8 await count_5 msec;

9 emit end_5 ;

10 await count_10 msec;

11 emit end_10

12 end every

(b) timer module

Figure 6.5: POLIS seatbelt alarm controller [BCG+97, §1.3.2]

delay being placed apart from the statement that detects its end. This may sometimes

be an advantage, but it surely also complicates potential analysis and compilation tech-

niques.

Timers introduce implementation details. Each has a granularity and a maximum

value. Timers must be allocated and named. An implementation platform must ei-

ther provide enough timers, or provide extra routines for queuing and managing timer

requests. Care must be taken when interfacing timers to ensure that they react appro-

priately with features of Esterel. Consider this program fragment for example:

abort

emit START_TIMER(10) ; await TIMER ;

emit O1

when I ;

emit START_TIMER(20) ; await TIMER ;

emit O2.

Assume that it is executed in the event-driven mode and that it has been waiting at the

first await TIMER statement for almost 10 units when the I input triggers a reaction.

The I input will abort the first delay and start the second one. But if the timer expires

while the reaction is being processed it may set an interrupt flag or other latch, and,

if the latch is not properly cleared by the interface layer, the second delay may be

terminated prematurely in the next reaction. Such bad interactions with abortion can

be avoided, but only with care.

Interactions with the suspend statement are not as easily solved. The problem is

that timers essentially sit apart from the lexical scope of the statements that start and

await them. Two examples will illustrate the issues.

First, indefinite delays are easily introduced when timers are combined with sus-

pension, as in this program fragment:

suspend

emit START_TIMER(10) ; await TIMER ;

emit O1

when HOLD.

6.3. EXPRESSING DELAYS IN ESTEREL 169

TMS TMS

O OSOTP P P P P P P P P P P

Figure 6.6: Effect of suspend on delays

If the HOLD and TIMER signals occur simultaneously, the suspend prevents termina-

tion of the await, and, if the timer is not restarted elsewhere, the O1 signal will never

be emitted. One alternative to accepting this behaviour is to declare a conflict relation

between the two signals:

relation TIMER # HOLD;

But this really only shifts the burden to the interface layer. In any case, the combination

of timers with suspension requires care.

The second example compares the effect of suspension on a delay expressed with

an external timer and one expressed by counting timer inputs:

emit O;

suspend

emit START_TMSTIMER01(20) ; await TMSTIMER01;

emit OT

| |

await 20 TMS;

emit OS

when P .

Suppose the P signal indicates when a certain button is held. A run of the system with

the button held for 0.1ms is shown in Figure 6.6. The signal OT is emitted when the

timer in the top branch expires. This emission is completely unaffected by the sus-

pension because the timer is external to the program, even though the statements that

trigger and wait for it are within the scope of the suspend. In contrast, the emission of

the signal OS, which occurs after counting the timing inputs, is delayed by the length

of the suspension, modulo sampling effects. The latter behaviour is the more powerful

but it is not easy to achieve outside the Esterel kernel.

As far as the semantics of Esterel are concerned there is nothing special about the

emit and await statements that comprise a timer delay. This means that standard

simulation and analysis tools will not usually exploit the implied timing constraints.

To verify quantitative timing properties or to eliminate spurious counter-examples, the

timers themselves would have to be modelled or otherwise taken into account.

6.3.4 External intervals

Esterel is extended to Communicating Reactive Processes (CRP) [BRS93] through the

addition of an exec statement, which starts an asynchronous process and waits until

it terminates. This gives another way to implement external timers, for instance:

loop

emit MotorENA(false) ;

exec HMSTIMER01(5) ;

emit MotorENA(true) ;

exec HMSTIMER01(30) ;

end loop .

The HMSTIMER01 process is assumed to sleep for the given number of hundredths of

milliseconds and then terminate.

There do not seem to be any published examples that use this technique. Perhaps

because the exec statement is not always included as a core statement of Esterel.

There are three main advantages over the timers described in the previous subsec-

tion. The delay is expressed as a single statement, which makes programs easier to

170 CHAPTER 6. DELAYS IN ESTEREL

read and simpler to analyze. The semantics of exec precisely defines its interaction

with abort. The semantics also accounts for issues of naming and reincarnation.

Otherwise, timers expressed with exec have similar disadvantages to those ex-

pressed with emit and await. Their use involves the early introduction of implemen-

tation detail: timer names, quantities, granularities, and maximum values. They do

not interact well with suspension, which was introduced contemporaneously [Ber93].

The additional timing information is not explicit in the semantics of programs and it

is difficult to exploit in simulation and analysis tools.

6.3.5 Non-deterministic pause

The TAXYS [BCP+01, STY03] system analyzes the timing behaviour of Esterel programs

with timed automata model-checking. Two techniques account for timing properties.

The first technique addresses deviations from the ideal of instantaneous execution.

External function calls within an Esterel program are annotated with lower and upper

bounds on their execution times. As these are delays that occur within a reaction, this

approach is not suitable for expressing delays in the microprinter controller.

The second technique is for expressing the physical timing properties of a system’s

environment. Environments are modelled in a version of Esterel that includes a non-

deterministic choice statement, for example:

npause %{ 65 ≤ X ≤ 70, X :=0 }% .

The npause keyword is followed by a clock guard expression and a list of clock re-

set commands that are transferred to transitions when the model is compiled into a

timed automaton. In the TAXYS methodology, this statement is not to be used for pro-

gramming the application software [STY03, Section IV-A]. But npause statements with

deterministic clock expressions could be used to express delays in physical time:

% clocks are specif ied in ms/100

loop

emit MotorENA(false) ;

npause %{ X = 5, X :=0 }%;

emit MotorENA(true) ;

npause %{ X = 30, X :=0 }%
end loop .

These delays are not relative to an input signal nor to an eventual execution period.

Rather they are expressed in terms of continuous-time clock variables. The syntax is a

bit clumsy but there are no issues of timer naming and allocation.

There are three other issues to consider: the precision of constants, suspension,

and compilation.

Clocks may only, by default, be compared to integer constants, which means both

that a precision must be selected before any delays can be expressed, and that ad-

ditional information, like the comment in the fragment above, is needed to interpret

their meaning. This is a only a minor issue, though, and one that could be mitigated

by compilers and other tools.

It is not clear how npause statements interact with suspension. Presumably, only

their termination would be suspended. Clocks can be suspended in stopwatch au-

tomata [CL00], which are more expressive than timed automata and many analysis

problems are not decidable in general.1

Non-deterministic choice in TAXYS is intended solely for modelling physical time

delays, not for expressing them in programs. Models that contain npause statements

are transformed into timed automata for reachability analysis, but they are not com-

piled into executables, which would require discretizing the delays and making other

compromises for the constraints of particular implementation platforms. Compilation

techniques and tools would have to be developed or adapted.

1This observation was made by an anonymous reviewer for EMSOFT 2007.

6.3. EXPRESSING DELAYS IN ESTEREL 171

6.3.6 Quantitative watchdogs

The Argos language defines a temporized state macro, described in §2.4.2.8, for ex-

pressing timeouts; delays are stated by pairing an integer value with a signal name.

Physical time delays can be expressed by counting timing inputs as previously de-

scribed. There is an earlier proposal for temporized Argos programs [JMO93] where

delays are written without an explicit signal name; timeout states are labelled with an

integer constant between square brackets and they have a single timeout transition

that is identified by a square box:

[5] 2

Two interpretations are defined for temporized Argos programs [JMO93]. In the

discrete-time semantics, the timeout notation is just a macro that counts a special

input event and an Argos program is interpreted as a BMM. In the continuous-time

semantics, an Argos program is interpreted as a timed automaton2 where the timeout

notation is mapped to clocks, location invariants, and transition guards in a natural

way. The separation of discrete and delay transitions in timed automata is also adopted

for the discrete semantics: the special time input cannot occur synchronously with

other inputs. There are implicit conflict relations.

Temporized Argos overcomes some of the limitations of counting timing inputs.

Namely, quantitative timing properties can be verified by special-purpose tools, in this

case Kronos [Yov97], and there are fewer obstacles to creating simulation and debug-

ging tools that take advantage of the timing parameters.

But the proposal also suffers from the three deficiencies noted for TAXYS in §6.3.5.

First, there are relatively minor issues surrounding the precision of timeout constants

and the unit of measurement that applies in a given program. Second, the interaction

of timeout states and suspension, or, in the case of Argos, with inhibition, is problem-

atic. Third, there is no support for analyzing or making compromises for particular

implementation platforms. There is only one discrete transformation and it does not

allow for changes to the timing input granularity. The separation of timing inputs from

other inputs, however, does allow timers to be treated separately. They could, at least

in principle, run at a higher resolution than the rest of the program.

Essentially, in temporized Argos, statements that count timing inputs are treated

as continuous-time delays. An alternative would be to do the inverse: to specify delays

in continuous time and then to implement them using standard synchronous language

techniques.

6.3.7 Other techniques

In other programming languages delays are often expressed by exploiting execution

delays or using functions from libraries. These techniques are not normally used in

synchronous programs, but they are interesting in comparison with the others and as

another source of ideas.

The non-zero execution times of instructions can be exploited to effect delays in

physical time. For instance, nop instructions may be inserted solely for the delays they

cause; an approach demonstrated in the program of §4.5. The idea is less applicable in

synchronous programs where instantaneous execution is assumed, although inserting

pause statements has a similar effect. Such delays can be made less dependent on im-

plementation details by adding feedback from clock variables or functions. Figure 6.7,

for example, shows a reimplementation of a typical example [Bur95] in Esterel.

While the feedback reduces dependence on the precise length of the pause delay,3

which is essential in the Esterel version, other deficiencies remain. The implementation

must provide a clock input, and the desired effect—a delay of 10 units—is lost in a mass

of mechanism. The relation between the units of the clock and those of physical time

is unknown, or, at best, implicit. Furthermore, a precise delay of 10 units has already

2Technically, a timed graph [ACD90].
3The system must either be sample-driven, or, if event-driven, inputs must occur regularly, otherwise

the pause statement may give an indefinite delay.

172 CHAPTER 6. DELAYS IN ESTEREL

sensor Clock : integer ;
...

trap Waiting in

var star t := Clock : integer in

loop

i f CLOCK − START > 10

then exit Waiting

end i f ;

pause

end loop

end var

end trap .

Figure 6.7: Delaying with feedback from a clock variable (adapted from [Bur95])

been diminished to one of at least 10 units. Such compromises are best left to later

stages of design.

In most programming languages, timing behaviours are expressed using library

functions, or keywords that may as well be library functions due to non-existent, loose,

or varying timing semantics. Two distinct types can be identified: delays and timeouts.

The Portable Operating System Interface (POSIX) sleep function is an example of

a library-based delay function. When called, it suspends a thread for a given number

of seconds, although the suspension time may be longer than requested due to the

scheduling of other activity by the system [IEE04, pp. 1407 and 1408], and a signal may

truncate a delay. The delay keyword of Ada can be used similarly to delay program

execution for a specified period, though not an exact one [Bur95]:

It is important to appreciate that ‘delay’ is an approximate time construct,

the inclusion of which in a task indicates that the task will be delayed by

at least the amount specified. There is no upper bound given on the actual

delay.

Library functions and keywords sometimes also provide timeouts. The Ada delay

keyword can also be used, subject to the caveat above, to express timeouts on inter-

process communications, for example:

select

−−rendezvous commands

or delay 10.0;

−−timeout handler

end select .

Similar functionality is provided by operating system APIs, as in the POSIX select

function or the Windows WaitForMultipleObjects function.

These library functions have several drawbacks. While imprecision because of im-

plementation details is inevitable, it would be better if the relationship between the

delays requested and those delivered could be better determined or influenced as im-

plementation details are clarified. This is particularly important for applications like

the microprinter controller. The two libraries mentioned in the examples above, POSIX

and Windows, are large and complex. The interaction of their many features and the

non-determinism in their descriptions makes them difficult to use and to reason about,

particularly when it comes to timing details. Real-time versions of these libraries con-

tain more features for expressing behaviour in physical time, but at the expense of

abstraction; there is more determinism but also more complexity and less portability.

6.4 An alternative

It has been argued that none of the existing techniques for expressing timing behaviour

are ideal for programming systems like the microprinter controller. In this section,

6.4. AN ALTERNATIVE 173

several characteristics of an ideal programming language are identified, before an ex-

tension to Esterel that aims to meet them is proposed.

The extension has three parts: a macro statement that allows exact delays to be

specified in the program text, a language for describing abstract details of implemen-

tation platforms, and a syntactic transformation that expands macros into standard Es-

terel statements suited to a particular platform. The extension is called Esterel+delay.

The desired characteristics of a language for expressing the timing behaviour of

applications like the microprinter controller are summarised in §6.4.1. The extension

to Esterel that attempts to realise them is presented in §6.4.2, and compared to related

approaches in §6.4.3.

6.4.1 Desired characteristics

Esterel is ideal for specifying the discrete behaviour of applications like the micro-

printer controller, but, arguably, the specification of behaviour in physical time could

be improved. Specifically, three characteristics are desired. First, it should be possible,

at least in the early stages of design, to program in terms of physical time. Second,

expressions of delay should not unduly bias the mechanisms by which they are even-

tually realised. Third, it should be possible to program initially in ideal terms and then

later to make the inevitable compromises for implementations on specific platforms.

While digital implementations are inevitably discrete, early designs usually involve

continuous models of the controller and plant; even if such models are incomplete or

implicit. Engineers think about potential solutions as physical delays and movements

orchestrated by discrete modes and steps. Delays are presented in specification sheets

and described in design documents in physical time units. The details of discretiza-

tion and realisation are worked out later when or after choosing an implementation

platform.

All of the techniques described in §6.3 immediately require or assume information

about the timing behaviour of eventual implementation platforms. It would be better

if controllers could be specified, simulated, and analyzed well before making such

implementation choices. In fact, the controller specifications themselves should guide

choices: hardware or software, minimum processor speed, the number and resolution

of timers, and similar.

An ideal language for applications like the microprinter controller would not only

allow abstract descriptions of discrete behaviour in physical time, but would also fa-

cilitate the inevitable choices and compromises required to implement such programs

on constrained platforms. A program should act as a reference against which possible

implementations may be evaluated. Especially since perfect precision is not possible:

quantitative specifications are given with explicit or implicit error tolerances, and ac-

curacy may be compromised to better meet other constraints and requirements.

6.4.2 Esterel+delay

The program of Figure 6.3 is already an excellent specification. It expresses the de-

sired behaviours in the same terms as the physical model described by the datasheet

and without making too many assumptions about their implementation. Rather than

immediately replace the timing comments with any of the constructions in §§6.3.1–

6.3.7, it may be better to maintain those details for as long as possible, and only later,

when platform details are known, to replace them with more concrete mechanisms, as

automatically as possible. There are three parts to Esterel+delay: a statement for ex-

pressing exact delays, a language for describing relevant platform details, and syntac-

tic transformations that instantiate delay statements. The first two parts are described

below. The syntactic transformations are described in § 6.4.2.1, § 6.4.2.2, and § 6.4.2.3.

The statement for expressing exact delays is written:

delay e

where e is an expression that evaluates statically to a rational number which is inter-

preted as a duration in seconds. The expression may contain units, which are macros

for multiplication by a suitable constant:

174 CHAPTER 6. DELAYS IN ESTEREL

x h = x * 3600

x m = x * 60

x s = x * 1

x ms = x * 10E−3

x us = x * 10E−6

x ns = x * 10E−9

Uncommenting the delay statements in the program of Figure 6.3 gives a valid Es-

terel+delay program.

Insisting on the evaluation of delay expressions at compile time simplifies trans-

formation and analysis but excludes some potential programs. Similar statements in

Esterel, namely repeat e and hence also await e s, are less restrictive; they contain

integer expressions that are evaluated at run time. The delay statement is different be-

cause the accompanying expression gives a rational value that is used in the calculation

of execution parameters, which, in turn, determine how closely the value will actually

be approximated. The restriction to static delay expressions does not preclude condi-

tional or variable delays, but it becomes mandatory to state all possibilities explicitly.

For example, step length in the microprinter controller is determined dynamically, but

there are only two possible values, those at lines 10 and 11 of Figure 6.3a.

The delay statement is essentially a version of pause whose interpretation in physi-

cal time does not depend on implicit execution parameters. Another possible approach

is suggested by the earlier semantics of Esterel [BG92]: an abortion statement for ex-

act delays of the form abort P after e. Given this abortion statement as a primitive,

the delay e statement can be derived as abort halt after e. Conversely, it can itself be

derived from the delay primitive:

signal TO in

abort P when TO

| |

delay e ; emit TO

end signal .

Although it is not yet clear whether such equivalences are truly justified.

At first glance the distinguished role of physical time in delay statements may seem

to violate the doctrine of multiform time [Ber00a, §3.10]. But, on the contrary, there is

no dispute that a discrete controller perceives nothing but sequences of events and that

it may as well count metres or heartbeats as seconds. Rather the approach proposed by

Esterel+delay is to program at a slightly more abstract level that acknowledges the dual

aspects of time as a behavioural dimension and as a computation resource. Whether it

is of any utility to regard other dimensions similarly is a question left open.

The second part of Esterel+delay is a language for describing implementation plat-

forms. Given extra platform details, an Esterel+delay program can be transformed

into an Esterel program without delay statements, which can then be compiled using

standard tools and techniques.

An implementation will be described by a platform statement that provides the

abstract parameters necessary to approximate ideal delays. Three parameters were

used to describe implementation details in the transformation of Chapter 3: execution

mode, (minimum) period, and output lag. The output lag does not seem to be especially

valuable and the Esterel+delay transformations instead rely on the usual assumption of

perfect synchrony. The execution mode is, however, an essential parameter. The period

parameter will be retained for the sample-driven execution mode, but the event-driven

execution mode requires a different treatment.

Platform statements for sample-driven implementations simply state the execution

period in seconds, but the concrete syntax also allows multiplying units, identically to

those of delay statements, for example:

sample 1.4ms

Relating event-driven implementations to physical time is more complicated. Two

types of platform statement are proposed. The first provides the list of the types of

timers available on a platform. Each type of timer is described by four parameters: the

physical time period of each tick, the minimum number of ticks possible, the maximum

6.4. AN ALTERNATIVE 175

〈implstmt〉→ sample 〈ratexpr〉 | event [〈events〉]

〈events〉→ 〈signals〉 | 〈timertys〉
〈signals〉→ 〈signal〉 | 〈signal〉 , 〈signals〉
〈signal〉→ 〈name〉 = 〈ratexpr〉
〈timertys〉→ 〈timerty〉 | 〈timerty〉 , 〈timertys〉
〈timerty〉→ (〈ratexpr〉 , 〈intexpr〉 , 〈intexpr〉 , 〈intexpr〉)

(where ’ratexpr’ and ’intexpr’ are expressions that evaluate to,

respectively, rational and integer values.)

Figure 6.8: Concrete syntax of platform statements

number of ticks possible, and the number of such timers available. For example:

event [(1ms, 10, 65535, 2) , (0.1s , 1 , 255, 1)]

This platform statement describes a system with three timers. Two of them have a

tick resolution of 0.001 seconds for countdowns from between 10 and 65535 ticks

inclusive. The other has a tick resolution of 0.1 seconds for countdowns from between

1 and 255 ticks inclusive. The second type of platform statement lists input signal

names together with their periods of occurrence in physical time, for example:

event [SEC=1, OSC=90.0422ns]

Such statements clarify assumptions that are otherwise at best implicit in the signal

names.

Other platform statements for event-driven implementations can be imagined, for

instance, platforms that provide both regularly occurring inputs and timers. Or regu-

larly occurring inputs with offsets relative to system startup as well as periods; like the

discrete sample time pairs of Simulink. These possibilities are not pursued because

their practical utility is unclear and the two proposed platform statements provide

challenge enough.

The concrete syntax for platform statements is summarised in Figure 6.8. The

abstract definitions are similar in form. (In the following, Q≥0 is the set of non-negative

rationals, Q>0 is the set of strictly positive rationals, N is the set of natural numbers,

and N>0 is the set of natural numbers excluding zero.)

Definition 6.4.1

A timer type is a tuple (τt , l, u,n) ∈ Q>0×N×N×N>0, where 0 < l ≤ u.

In a timer type (τt , l, u,n), τt is the tick resolution in seconds, l and u are, respectively,

the inclusive minimum and maximum values that the timer can provide, and n is the

number of such timers that are available.

Definition 6.4.2

Given a set of signal names S, a timing input is a pair (s, τs) ∈ S ×Q>0.

In a timing input (s, τs), s is the name of a signal and τs is its period of occurrence in

seconds, relative to system startup.

Definition 6.4.3

Given a set of signal names S, a platform statement is an element of the set

P = Q>0 +T +A,

where T is the set of finite sets of timer inputs, andA is the set of finite sets of timing

inputs where (s, τs1), (s, τs2) ∈ A =⇒ τs1 = τs2 .

A timer statement is either a single, non-zero rational number that represents the

sample period of a sample-driven implementation, or a finite set of timer inputs, or a

finite set of timing inputs without duplicates.

The following three subsections describe the transformation of Esterel+delay pro-

grams into Esterel programs for each type of platform statement.

176 CHAPTER 6. DELAYS IN ESTEREL

6.4.2.1 Sample-driven implementations

A platform statement of the form τ ∈ Q>0 specifies a sample-driven implementation

with an execution period of τ seconds. In this case, each delay e statement is es-

sentially replaced by an await n tick statement, where n is chosen to effect the delay

specified by the expression e for the given execution period τ . Three variations are

proposed for approximating delays that are not multiples of the given execution pe-

riod.

The transformations described in this section and the following two only replace

the delay statements in Esterel+delay programs. The common part of their individual

definitions is formalised in an obvious way.

Definition 6.4.4

The carrier function C(p) is defined for every Esterel statement p:

C(nothing) = nothing

C(emit s) = emit s

C(pause) = pause

C(present s then p else q end) = present s then C(p) else C(q) end

C(suspend p when s end) = suspend C(p) when s end

C(p ; q) = C(p) ; C(q)
C(loop p end) = loop C(p) end

C(p || q) = C(p) || C(q)
C(trap T in p end) = trap T in C(p) end

C(exit T) = exit T

C(signal s in p end) = signal s in C(p) end

The carrier function and the identity function coincide for the subset of Esterel+delay

without delay statements.

A program may contain a delay d that is not an exact multiple of the given execution

period τ . An implementation can either underapproximate by waiting for l ticks, or

overapproximate by waiting for u ticks, where

l = max

(⌊
d

τ

⌋
,1

)
(6.1)

u =
⌈
d

τ

⌉
(6.2)

The underapproximation l is not allowed to be zero because the replacement state-

ment, await l tick, would then be instantaneous, which would drastically alter the

meaning of the program and could introduce causality problems. Esterel+delay pro-

grams must always stop at delay statements.

When a delay is repeated, for instance if it occurs within a loop, choosing only one

of the approximations gives a program whose actual timing behaviour drifts steadily

from the ideal timing behaviour. Such cumulative errors are problematic in certain ap-

plications, for example in programs like the sensor driver of Chapter 4 that sample bits

asynchronously. One possibility is to track the cumulative drift and, at each iteration,

to choose whichever of the two approximations minimises it. This approach is only

applicable when l · τ < d.

Some simple calculations show that approximations can be chosen at runtime using

only operations on integers and a small amount of constant memory. The difference

between a specified delay d and its underapproximation is equal to d − l · τ . Since

both d and τ are rationals, this difference can be written as a ratio of two positive

integers:

ln

ld
= d− l · τ , (6.3)

6.4. AN ALTERNATIVE 177

where the subscripts n and d stand for ‘numerator’ and ‘denominator’ respectively.

And similarly for the overapproximation:

un

ud
= u · τ − d. (6.4)

When a single, iterated delay d statement is approximated by m executions of an

await l tick statement and n executions of an await u tick statement, the cumulative

drift will be

c =m · ln
ld
−n · un

ud
, (6.5)

which can be scaled to an integer by multiplying by ld ·ud, giving

c · ld ·ud =m · ln ·ud −n ·un · ld. (6.6)

It can be tracked by an integer variable which is incremented, whenever the underap-

proximation is applied, by

dl = ln ·ud, (6.7)

and decremented, whenever the overapproximation is applied, by

du = un · ld. (6.8)

Any drift due to the approximations is mitigated by making local choices that minimise

a tracking variable. This technique is most suitable for delay statements within loops

whose values are midway between the lower and upper approximations at a given

execution period, that is for d near l+ τ
2 .

The three variations are combined in the translation function for sample-driven

platform statements. It is assumed that each delay statement is annotated with one

of {under,over, avg} that specify one of the approximations to apply; the annotation

will be written as a subscript of the delay statement. The means of making these

annotations is immaterial. This extra information can be provided by any convenient

means. Annotations could, for instance, be given as per-delay pragmas, or they could

be specified globally for an entire program.

Definition 6.4.5

The sample-driven transformation Tτ(p) maps an Esterel+delay statement p to an Es-

terel statement. It extends the carrier function to the delay statement.

if d = n · τ ,

Tτ(delayapprox d) = await n tick ,

otherwise,

Tτ(delayunder d) = await l tick , and

Tτ(delayover d) = await u tick ,

and, when d · τ ≥ 1,

Tτ(delayavg d) = i f abs (d i f f + dl) <= abs (d i f f − du)

then d i f f = d i f f + dl ;
await l t i ck

else d i f f = d i f f − du ;

await u t i ck

end i f ,

where the values of l and u for a given d and τ are as previously defined, and the

variable name diff is unique within the module and declared as an integer variable.

178 CHAPTER 6. DELAYS IN ESTEREL

As the avg translations introduce new variables they should be performed before

any other source-code transformations, such as loop unrolling, which might otherwise

affect the timing behaviour of the resulting system. This brittleness is an unfortu-

nate side-effect of distinguishing the multiple dynamic occurrences of delays that are

identified statically.

6.4.2.2 Event-driven with timers

A platform statement of the form T ∈ T specifies an event-driven implementation

where T is a set of tuples (τt , l, u,n) describing available timers. The timers may be

provided by hardware or an interface layer. The technique of §6.3.3 is applied: each

delay e statement is replaced by an emit statement that starts an assigned timer and

an await statement that waits for it to expire.

The transformation must allocate timers, from the multiset given by the platform

statement, to delay statements in the program while minimising differences between

required and actual delays. No single timer may be assigned to two simultaneous de-

lays and all delays must be supported if possible. Issues of signal naming and aborted

delays require care but do not present any fundamental problems.

The allocation of timers to delays can be simplified by forming a static over approx-

imation of the original Esterel+delay program.

Definition 6.4.6

A delay term is formed from constants in Q≥0, and the two binary operators ; and ‖.

Definition 6.4.7

The delay abstraction function D maps an Esterel+delay program, where delay expres-

sions have been evaluated, to a delay term:

D(nothing) = 0

D(emit s) = 0

D(pause) = 0

D(delay d) = d
D(present s then p else q end) = D′(p, q, ;)

D(suspend p when s end) = D(p)
D(p ; q) = D′(p, q, ;)

D(loop p end) = D(p)
D(p || q) = D′(p, q,‖)

D(trap t in p end) = D(p)
D(exit t) = 0

D(signal s in p end) = D(p)

where:

D′(p, q,⊗) =

D(q) if D(p) = 0

D(p) if D(q) = 0

D(p)⊗D(q) otherwise.

When a program p does not contain any delay statements, the delay abstraction func-

tion D(p) gives the result 0. Otherwise, a delay term represents a binary tree with

two types of internal nodes and leaves in Q>0. The constraints expressed by a delay

term are conservative, they do not consider the reachable state-space of the program. A

more accurate, but inevitably more expensive, analysis would permit a finer expression

of constraints.

As an example, the delay term for the microprinter controller program of Fig-

ure 6.3a is: (0.0024; 0.001667); ((0.00005; 0.0003) ‖ 0.000733). Note that the delays in

6.4. AN ALTERNATIVE 179

the branches of the present statement are combined with ‘;’ in the delay term; all that

matters is that they do not occur simultaneously.

The platform statement T ∈ T is a set of timer types. For the purposes of timer

allocation, it may be considered a multiset of timer triples (τt, l, u). A certain number

of timers are necessary to implement a given delay term, even before the closeness of

their approximations is considered.

Definition 6.4.8

The timer count function Tn gives the number of timers required for a delay term:

Tn(0) = 0

Tn(d) = 1

Tn(d1 ;d2) = max(Tn(d1), Tn(d2))

Tn(d1 ‖ d2) = Tn(d1)+ Tn(d2)

Two functions are introduced to evaluate the suitability of a particular timer for a

particular delay.

Definition 6.4.9

The timer match function Tm maps a delay d and a timer (τt , l, u) to a rational number:

Tm(d, (τt , l, u)) = min(max(l,

⌊
d

τt

⌋
),u)

The timer match function gives the closest delay to the ideal delay that is achievable

by the timer. The possibility of implementing a delay with multiple successive timer

invocations is not considered here, but it could be effected by a ‘splitting transforma-

tion’ on delay terms that breaks delays bigger than a given constant up into sequences

of smaller delays.

Definition 6.4.10

The timer delta function Tδ maps a delay d and a timer (τt, l, u) to a positive rational

number:
Tδ(d, (τt , l, u)) = | d− Tm(d, (τt , l, u)) |

The timer delta function is a measure of the suitability of a timer for meeting a delay.

Given a delay term d and a multiset of timers T such that |T | ≥ Tn(d), the clock

assignment problem is to pair each delay in d with a timer from T such that no single

timer is assigned to both subterms of any ‖ operator. An optimal assignment is one

that minimizes Tdelta for each pairing.

The clock assignment problem may be solved automatically with standard con-

straint solving techniques. But since it is likely that engineers would prefer to make

some or all of the allocations manually, compilers should provide pragmas for naming

delays, and the platform statement should be extended so that timers can be asso-

ciated with the names. These pragmas would further constrain the set of possible

solutions.

In the definition of the transformation with allocated timers, it is assumed that

each delay d statement is identified by a distinct index i ∈ I , with which it is anno-

tated, delayi d.

Definition 6.4.11

Given an Esterel+delay program p where each delay statement is indexed from a set I ,
and an allocation of timers represented by two functions, timera from I to the name

of a timer and valuea from I to an integer, the timer-allocated transformation Ta(p)
extends the carrier function to the delay statement:

Tτ(delayi d) = emit start(timera(i))(valuea(i)) ; await finish(timera(i)) ,

where start gives the name of the integer-valued output signal that triggers a timer,

and finish gives the name of the pure input signal emitted by a timer upon expiry.

180 CHAPTER 6. DELAYS IN ESTEREL

delay 3;

emit O1;

loop

emit O2;

delay 2;

emit O3;

delay 5

end loop

+0

+3

+3

+3

+5

+5

+10

+10

+10

+12

+12

+17

+17

+17

+19

+19

+24

· · ·
· · ·
· · ·
· · ·
· · ·

[·,0]

[7,3]

[7,5]

Figure 6.9: Phase relationships in an Esterel+delay program

An implementation must manage timers properly when corresponding await state-

ments are aborted. Two possibilities must be considered. First, a running timer could

be aborted and then, in the same reaction, a new countdown could be requested. The

interface layer should clear any latches for a timer after it has been restarted. Second,

multiple timer requests could be made and aborted within the same reaction. Con-

sider, for example, this fragment where two consecutive delay statements have been

transformed to emit/await pairs that share a timer:

weak abort

emit T1(100); await T1

when S ;

emit T1(80) ; await T1 .

When the signal S is present, T1 is emitted twice in a single reaction. Special combine

functions are required to ensure that only the last request is honoured.4 Such func-

tions must normally be associative and commutative. An exception can be made for

allocations against a delay term because timers are only reused for delays in sequence,

provided that the compiler respects the sequence of microsteps.

Issues of abortion and timer management are better addressed by the technique

of §6.3.4, where each delay e statement would be replaced by an exec statement that

starts an assigned timer and awaits its completion. Unfortunately, the exec statement

is not always supported by compilers.

The transformation with timers gives Esterel programs that suffer the inadequate

interaction of suspension and delay described in §6.4.2.2. Compilers should emit a

warning for programs where delay statements are subject to suspension.

6.4.2.3 Event-driven with timing inputs

A platform statement of the form A ∈ A where A is a set of timing input pairs (s, τs)
specifies an event-driven implementation where each signal s occurs regularly with a

period of τs relative to system startup. Delays are implemented by counting these

timing inputs using the technique described in §6.3.2.

For a delay d, and a signal s with period τs , the statement await n s gives a physical-

time delay t that satisfies (n−1) ·τ < t ≤ n ·τ .5 While there is again a choice between

lower and upper approximations of the delay, that is between the values l and u given

in equations 6.1 and 6.2, the n− 1 multiplier in the lower bound for t means that the

upper approximation is the safer choice; since u = l+ 1.

The lower approximation may sometimes be more suitable than the upper approxi-

mation. It depends on the start time of a particular delay statement relative to the pe-

riod of a given timing input signal. It is possible to statically determine the ‘phase rela-

tionships’ between delay statements, relative to system startup, in some Esterel+delay

programs. An example is presented in Figure 6.9. Each statement has been labelled

with its offset, in ideal time, from system startup. Multiple offsets are given for state-

ments within the loop. In this example, the delay statements can be assigned a fixed

period and offset. The first delay has no period, since it is only executed once, and a

4It does not matter if it is also aborted instantaneously because then there would be no statement
awaiting the timeout input; it would either be reallocated later or ignored.

5The reason for the open lower bound of (n− 1) · τ is explained in §6.3.2.

6.4. AN ALTERNATIVE 181

zero offset. The second and third both have a period of 7, the total delay within the

loop body. Their offsets are determined by delays before the loop is entered and also

by those within the loop itself.

Phase relationships cannot be determined following pause statements or within

suspend statements when they depend on the presence or absence of inputs whose

timing characteristics are not known or not predictable. It would be possible to provide

extra information about inputs, like timing offsets for instance, and to include timing

inputs that do not occur regularly but may nevertheless only occur at certain times. It

would also be possible to propagate known information about emitted signals to other

parts of a program; for instance, that a certain signal is always emitted with a certain

period and offset. It is not clear, however, how useful all of this would be in practice.

Determining phase relationships for the present, trap, and parallel constructs is

difficult in general. An analysis could insist that both branches in a present or parallel

construct have the same final offset and period, and similarly for each exit within a

trap as well as for the trap body itself, but, again, it is not clear whether this would be

especially useful.

An optimal choice of timing input also depends on phase relationships. Without

this information, the timing input with the smallest granularity is the best choice be-

cause it provides the smallest range for the delay in physical time and the most ac-

curate accounting in the presence of suspension. The selection of a timing input for

a given delay may, moreover, affect the phase relationships and hence influence the

selection of timing inputs for other delays. It is not clear how best to address this

complication.

The most basic transformation always uses the finest timing input and takes the

upper approximation.

Definition 6.4.12

Given a platform statement A, the timing-input transformation TA(p) extends the car-

rier function to the delay statement:

Tτ(delay d) = await n s ,

where (s, ts) is chosen from A to minimise τs , and n =
⌈
d
τs

⌉
.

More work is required to determine the usefulness and practicability of more sophisti-

cated approaches.

6.4.3 Comparison to related work

The literature contains an abundance of proposals for modelling and implementing

real-time systems. In particular, there are several techniques and methodologies for

implementing or otherwise discretizing timed automata, like, for instance, the AASAP

semantics discussed in §3.5. The focus of this section is, however, on the incorpo-

ration of continuous time elements into synchronous languages. Five approaches are

especially relevant. Two of them, TAXYS and temporized Argos, are already described

in §§6.3.6 and 6.3.5. Some further comparisons are nevertheless made in this section.

Two extensions to the Quartz language [BS02, LS02] are outlined here, as is a proposal

for validating the real-time constraints of Esterel programs [SA01].

The proposal for Esterel+delay is influenced by the TAXYS [BCP+01, STY03] method-

ology for building real-time systems with Esterel, but there are important differences.

In TAXYS, application logic is specified in logical time and implementations are mod-

elled in continuous time. A satisfaction relation is defined to judge the correctness

of the latter against that of the former. It has been argued in this chapter, however,

that applications like the microprinter controller are specified most naturally in terms

of continuous time and only later transferred to discrete controllers with logical time.

The timing annotations of TAXYS express the execution characteristics of a program

on a specific platform, and also aspects of its environment, whereas the delay state-

ments of Esterel+delay express desired application behaviours; platform limitations

are stated separately. The platform models of Esterel+delay are more abstract and

182 CHAPTER 6. DELAYS IN ESTEREL

less ambitious than those of TAXYS, where an asynchronous platform with dynamic

scheduling is adopted. The relationship between ideal and executable models is more

rigorously defined in TAXYS than it is in Esterel+delay.

The temporized version of Argos [JMO93] has both discrete-time and continuous-

time semantics. The latter is derived from the former by treating discrete delays,

expressed in terms of a distinguished timing input, as delays in terms of a continuous

clock. The continuous-time semantics is motivated by and exploited for the automatic

verification of quantitative properties. The direction of translation is reversed in Es-

terel+delay: continuous-time programs are translated into discrete-time programs. The

motivation is different too: Esterel+delay aims to support both natural descriptions of

certain types of programs and the adjustments required for implementation platform

limitations. This latter issue is not addressed by temporized Argos.

Quartz is an Esterel-like language for which real-time verification [LS02] and hybrid

systems extensions [BS02] have been proposed.

Quartz programs can be translated into timed Kripke structures to verify quan-

titative properties [LS02]. Delays are expressed by pause statements, essentially as

described in §6.3.1. An abstraction statement is introduced to ignore intermediate

polling states; for instance, the statement await n is not expanded into a sequence of

n pause statements, but rather treated as a timed transition labelled with n. Quartz

is intended for high-level designs before any implementation details have been con-

sidered. The translation is based on logical time since physical time. . . depends on the

hardware chosen for the realization [LS02, §1]. The proposal for Esterel+delay suggests

a different possibility.

The hyperQuartz language [BS02] is an extension of Quartz for modelling hybrid

systems. Continuous execution intervals are expressed as lower and upper timing

bounds on pause statements. The length of an interval may depend on an expression

over a global time parameter and other continuous signals. Pure signals are piece-wise

continuous over an interval, but hybrid variables may evolve according to given dif-

ferential equations. It is not clear how multiple constraints are resolved to produce

practical implementations. The timing limitations and characteristics of implementa-

tions are not discussed. The focus is modelling not programming.

In another proposal [SA01] for validating the real-time behaviour of Esterel pro-

grams,6 locations and blocks of statements are annotated with markers to which tim-

ing constraints, that are stated separately, may then refer. For example [SA01, §4.1],

this program fragment contains one pair of annotations:

%# block_1_begin

Y := 100;

emit S1 (Y) ;

Y := Y + 100;

X := 7;

emit S2 (Y)

%# block_1_end .

Timing constraints can then be stated relative to an external clock, for example:

time (block_1_end) − time (block_1_begin) ≤ 4 units .

A program is analyzed by replacing the marker annotations with ‘ghost signals’, which

are observable after compilation to an automaton. The proposed design flow involves

two steps. Logical correctness is first established under an assumption of perfect syn-

chrony, then the timing analysis establishes that the constraints are met. There are

several differences between this approach and that of Esterel+delay. In Esterel+delay,

application timing details are stated within a program in physical time, that is as ra-

tional multiples of seconds, rather than as separate annotations in uncertain, discrete

units. Platform timing constraints are given separately in Esterel+delay in terms of ab-

stract execution models, whereas in the approach with annotations the form of even-

tual implementations is unclear, besides that they may be asynchronous and that their

signal emissions may take time; no mention is even made of the standard event-driven

and sample-driven execution schemes. The timing details of Esterel+delay programs

6The paper allows the exec statement but not the suspend statement.

6.5. LOOSE ENDS AND FURTHER POSSIBILITIES 183

Esterel+delay

specification

Esterel prog.

. .
.

Esterel prog.

Impl.Impl.

Impl.

⊒

+ platform

+ platform c
o
m

p
ilec

o
m

p
ile

Impl.

. .
.

Impl.

Esterel+delay

specification

Figure 6.10: Esterel+delay: artifacts and relations

are stated in terms of physical time and later translated into discrete time for imple-

mentation. In the approach with annotations, as with other approaches, programs are

designed in discrete-time and then validated in physical time.

Many other programming languages allow delays to be specified in terms of phys-

ical time – whether by special keywords, or by calls to library functions with either

runtime or operating system support. It seems fair to state, however, that in most

cases the menaing of these statements is approximate or subject to various special

clauses and uncertainties. It is by no means certain how to derive discrete controller

implementations with precise behaviour, nor how to describe or judge compromises

between ideal behaviour and its approximations on specific platforms. The translation

of Esterel+delay to Esterel is distinguished in this regard; it is possible in large part

due to the synchronous and precise nature of the latter language.

6.5 Loose ends and further possibilities

The proposed delay statement and its interpretation relative to an abstract platform

seem to be the right solution for designing and specifying applications like the micro-

printer controller. But, while the syntactic transformation addresses many issues well

and takes advantage of existing tools and technology, it is not completely satisfactory.

There are two issues: a lack of tool support and a certain semantic shallowness.

The lack of tool support may be the easier of the two to remedy. There seem to

be no obstacles to implementing the transformations described in §§6.4.2.1–6.4.2.3,

although the analysis of phase relationships sketched in §6.4.2.3 requires further in-

vestigation. Ideally, Esterel+delay would be supported by a simulation tool that com-

bines features of Xes and Esterel Studio with those of Uppaal; rather than requiring

repeated clicking through intervals, timing behaviours would be presented and manip-

ulated symbolically. Esterel+delay programs might also be embedded into Simulink;

delay statements would then be linked to the t parameter of a model.

The semantic issues are more difficult to address. Ideally, the discrete and contin-

uous elements of Esterel+delay could be better integrated with one another. But, in

fact, it is not certain that this is even possible without sacrificing some of the essential

character and balance of Esterel, and without resorting to intricate formalisations.

6.5.1 Relating specifications and implementations

A semantic treatment should address the comparison of Esterel+delay programs with

the implementations generated from them. The basic idea is depicted in Figure 6.10.

An Esterel+delay program can be transformed, given different platform statements

and parameters, into different Esterel programs, which can themselves be compiled

184 CHAPTER 6. DELAYS IN ESTEREL

and executed. A refinement relation could be defined between an original program and

its final implementations; much like the correctness property of TAXYS, although in

this case, solely in continuous time.

Any such relation would have to allow some ‘fuzziness’ in the timing behaviour

of implementations. The relative closeness of implementations to the original speci-

fication could be used to evaluate alternative implementation platforms. A maximum

allowable divergence could be factored into verifications of properties against the spec-

ification, the results of which would then also apply to a range of implementations. The

quantitative relations defined in some recent approaches [BS08a] may offer insights. An

alternative approach would be to use a precise relation, but to ‘blur’ the Esterel+delay

specification before applying it.

The equivalence of synchronous program traces, and hence of the programs them-

selves, is usually based on comparisons of discrete sequences. For Esterel+delay pro-

grams, the physical time between inputs and outputs, or between one output and an-

other, may be more significant than the number of reactions between them—especially

when nothing happens in the intervening reactions or when they simply count down

reactions or discrete timing inputs. These ideas, though, only seem to hold for certain

subclasses of Esterel+delay or Esterel programs, as is discussed in the next subsection.

Of course, a semantic model of Esterel+delay programs is requisite to defining re-

lations between them and their eventual implementations. Several extended semantic

domains have already been proposed for Esterel, including timed automata [LS02], hy-

brid automata [BS02], and formulas of the Duration Calculus [PRS95]. One of these

may be suitable for defining Esterel+delay and related refinement relations.

6.5.2 Strictly event-driven programs

The pause statement is somewhat awkward in event-driven systems. Unlike in sample-

driven systems, a precise interpretation in physical time is not possible. The discussion

in §6.3.1 suggested, furthermore, that some uses of the pause statement sacrifice a

form of stutter invariance for Esterel programs.

It may be possible to define a subclass of strictly event-driven programs7 whose

observable behaviour relative to inputs and physical time is relatively unaffected by

their eventual execution rates; that is, programs that still function as expected after

the insertion of extra reactions where all relevant inputs are absent. This would not be

a new semantics, but rather a restriction on the existing one. There are several reasons

for studying such a subclass. Conceptual issues of triggering would be clarified; such

programs would operate most naturally in the event-driven execution scheme. Some

aspects of program behaviour should be easier to reason about; for instance, the sort

of equivalence and refinement relation described in the previous subsection. The extra

assumption could be exploited to give more efficient systems; runtime layers could be

more discerning about which parts of a program to execute. Moreover, the difficulties

that arise when trying to define the subclass offer insights into the problems of giving

a stronger definition of Esterel+delay.

Issues of triggering will be considered for standard Esterel first, and then, after-

ward, extended to encompass the delay statement.

The set of triggering inputs is important to determining whether or not a program

statement is strictly event-driven. The subclass would thus be defined at the module

level, where both a set of inputs and a program statement are given. A strictly event-

driven module is one where observable behaviour, namely outputs, and state changes

occur solely in response to explicit input events from the module interface. Consider

four example statements given the declaration input A, B; output O:

await A; emit O,

loop pause end ,

pause ; emit O,

await A; pause ; emit O.

7Some of the ideas sketched in this section were presented at the SYNCHRON workshop in 2006.

6.5. LOOSE ENDS AND FURTHER POSSIBILITIES 185

The first statement is strictly event-driven, the emission of O is simultaneous with the

input A. The second statement, which is equivalent to halt, is also strictly event-driven:

it does not emit anything and nor does it change state. The third and fourth statements

are not strictly event-driven; their output emissions are related, respectively, to system

startup and the occurrence of A in terms of logical reactions.

A strictly event-driven module should only respond when at least one input signal

is present. The absence of a signal should be judged relative to other input signals

and not solely to the occurrence of a reaction. Consider, for example, an event-driven

implementation of:

module main :

input A;

output O;

await [not A] ; emit O.

Will O ever be emitted? Or is the program equivalent to halt? It depends on whether

the module is sometimes executed when A is absent. This module is not strictly event-

driven. Given the same interface however, these two statements are strictly event-

driven:

await [A and not B] ; emit O,

await A; present B then emit O end .

The absence of B is only tested relative to the presence of A.

Suspension fits nicely with these ideas because it can only further constrain encap-

sulated statements. The negation implicit in suspend is not especially concerning. For

instance, the statement

suspend

await A;

emit O;

when B

is equivalent to await [A and not B]; emit O, which is strictly event-driven. Though the

statement

suspend

await [not A] ;

emit O;

when B,

which is equivalent to await [not A and not B], is not strictly event-driven, neither are

the statements encapsulated by the suspend. In general, suspend p when e is strictly

event-driven if p is strictly event-driven, since the expression e can only further re-

strict the instants of reaction. The converse is not always true. Consider, for example,

enclosing one of the earlier examples of non strictly event-driven statements:

suspend

pause ;

emit O

when [not A] .

This statement is equivalent to await A; emit O, which is strictly event-driven. In fact,

any statement p of a module with inputs i1 through in can be made strictly event-

driven by adding a suspend statement:

suspend p when [not (i1 or · · · or in)] .

Similar ideas are used to encode multiclock Esterel in standard Esterel [BS01, §4.2], and

also to encode asynchronous processes in Esterel [HB02].

Surprisingly, the sustain statement does introduce conceptual problems. The ex-

pansion of sustain O into primitive Esterel gives loop emit O; pause end loop, which,

according to the foregoing discussion is not strictly event-driven—but there is some

justification for insisting that it should be. The sustain statement connotes an idea

of duration, of a signal being held for an interval of time. While the expansion into a

looping emit gives this effect within the standard semantics, there is no fundamental

reason why a module should be repeatedly polled if it is only sustaining signals. The

sampler components of multiclock Esterel [BS01, §2.3] embody this idea somewhat, al-

186 CHAPTER 6. DELAYS IN ESTEREL

though they do not distinguish whether a signal was emitted or sustained. There may

be justification for treating sustain as a primitive statement. Interestingly, a semantics

of Esterel in the Duration Calculus [PRS95, §4.1] proposes two possible definitions for

output signals, termed ‘non-latching’ and ‘latching’. The same, or a similar, distinction

could perhaps be made between the emit and sustain statements.

There are similarities between the idea of strictly event-driven programs and an ear-

lier semantics for Esterel [BG92]. It seems that ‘tick-free’ programs in the earlier seman-

tics would have similar properties. The earlier semantics does not treat the suspend

and sustain constructs which, it turns out, complicate the definition of strictly-event

driven modules.

The notion of strictly event-driven modules is extended to Esterel+delay by simply

insisting that modules are triggered when a delay expires. For example, the statement

delay 5s ; emit O.

would be strictly event-driven, since the output occurs at a specific time relative to

initialization of the statement. The combination of strictly event-driven programs and

delay statements on event-driven platforms may be a useful technique for minimising

the number of reactions and maximising accuracy; for doing less computation while

reducing lag and jitter.

6.5.3 Suspension

Since the delay statement is expanded into statements of standard Esterel, it shares

their inadequate interactions with suspension. Consider, for instance, the statement:

suspend

delay 5s ; emit O

when P

| |

abort

sustain P

when Q

| |

delay 2s ; emit Q .

Three components run in parallel. The first waits for five seconds and then emits

O. But, it is suspended initially by the second component that sustains P until the

third component emits Q, which it does after two seconds. The current description of

Esterel+delay does not define when O would be emitted. There would seem to be two

reasonable possibilities.

The first and simplest possibility is that delay statements are not affected by sus-

pension. The example program would then emit O after precisely five seconds. Delays

implemented by the timer-allocated transformation have this behaviour, while those

implemented by the sample-driven or timing-input transformations do not. There

are two justifications for this approach, though neither is completely satisfactory.

One could argue that physical time cannot be suspended, but why should that limit

the expressive possibilities of a programming or modelling language? Stopwatch au-

tomata [CL00] indicate that the suspension of continuous time is a powerful technique,

albeit one whose analysis is undecidable. The second justification is that since signal

emissions are conceptually instantaneous, their occurrence should have no impact on

delays which are conceptually intervals of time. But, as mentioned in the previous sub-

section, the sustain statement seems rather to imply a continuous emission, rather

than repeated instants of emission.

The second possibility is that delay statements should be suspended for intervals

of time. The example program would then emit O after precisely seven seconds. The

sample-driven and timing-input transformations approximate this behaviour, though

neither is perfect. The closeness of the approximation depends on relationships be-

tween stated delays and their starting instants relative to sampling or timing input

periods. Accuracy could be determined or measured by static analysis, and perhaps

factored into the type of quantitative refinement relation suggested in §6.5.1. Alter-

6.5. LOOSE ENDS AND FURTHER POSSIBILITIES 187

natively either or both suspend and sustain statements could be encoded with two

signals: one when an associated interval begins and another when it ends. This is a

classic technique for representing intervals with discrete events. Ultimately, it is not

clear whether ‘Moore-like’ elements can be incorporated into a ‘Mealy-like’ language

like Esterel satisfactorily; that is, whether such a combination would benefit program-

mers without sacrificing too much of the simplicity of the underlying model and the

efficacy of existing compilation and analysis techniques.

6.5.4 Indeterminate delays

In many timed formalisms, a model can specify that an action occurs or may occur

within an interval of time, rather than at an explicit time. An informal attempt to model

timed automata guards in Esterel+delay programs shows that the latter effectively op-

erate under a form of maximal progress assumption.8 This suggests the possibility of

a statement for expressing indeterminate delays. Two other possible extensions are

mentioned briefly.

Consider a transition from a state in a timed automaton labelled with an action I
and a guard 2 ≤ x∧x ≤ 3. Assuming that I is an input and that the clock x is reset

when the state is entered, this transition expresses a response to an I action from the

environment occurring within two and three units inclusive of the source state having

been entered. The same idea is readily expressed in Esterel+delay:

delay 2;

weak abort

await immediate I ;

after 3 ,

using the abort after macro described in §6.4.2. Removing the immediate keyword

gives a strict lower bound. Removing the weak keyword gives a strict upper bound.

Thus the guard 2 < x∧x < 3 is also expressible:

delay 2;

abort

await I ;

after 3 .

The possibility in timed automata of resetting a clock at one state and expressing a

guard against it from another can be modelled in Esterel+delay using parallelism and

local signals.

Consider now a transition from a state in a timed automaton labelled with an ac-

tion O and a guard 2 ≤ x∧x ≤ 3. Assuming again that the clock x is reset when

the state is entered, but this time that O is an output, this transition expresses the

possibility, but not necessity, of performing an O action within the given interval. An

attempt can be made in Esterel+delay:

delay 2s ;

weak abort

sustain S

after 3s

| |

await immediate S ;

% delay ?

present S then emit O end ,

but the idea of an indeterminate delay cannot be expressed. Instead the signal O would

be emitted as soon as possible, as if the program were subject to a form of maximal

progress assumption. Inputs may occur non-deterministically in Esterel+delay, but not

outputs.

Incidentally, the necessity of action, which is expressed with location invariants in

timed automata, does not introduce any special difficulty. For example, the second

8Timed automata are described in §2.2.3. Uppaal and TIOA, described respectively in §§2.3 and B.5,
are variants of timed automata that make a distinction between inputs and outputs. Guards in timed
automata and the maximal progress assumption are discussed in §2.2.3.3.

188 CHAPTER 6. DELAYS IN ESTEREL

branch in the above parallel statement could simply be replaced with:

abort

% delay ?

when [not S] ;

emit O.

Another primitive could be introduced to express the indeterminate delays repre-

sented by the delay ? comments; an unparameterized version of the TAXYS npause

statement. The precise delay could be chosen statically or dynamically. Adding a new

primitive gives a separation between exact timing specification and non-deterministic

timing specification,9 without excluding macro expressions that combine the two; like,

for example, delay [2 <= x <= 3]. Such a primitive would allow more flexible specifi-

cations; more design decisions could be postponed until a platform is chosen. But, it

would also add further complications, and it would run contrary to the usual insistence

on determinism in synchronous languages. The notion of a ‘fuzzy’ refinement relation

may be better suited to the class of applications for which Esterel+delay is intended.

Two other possible extensions to Esterel+delay that may be worth considering are

features for measuring elapsed time and estimating timing parameters. The former

makes most sense if the measured values could then be used in calculations and pos-

sibly other delay statements. It would potentially make Esterel+delay more expressive

than standard finite timed automata, and, in particular, introduce the possibility of

Finite Internal Nondeterminism (FIN). Parameter estimation might be a useful tech-

nique for solving design problems using a combination of Esterel+delay programs and

separately-stated timing constraints. Further investigation is required to determine the

usefulness and challenges of these ideas.

6.6 Summary

It has been argued, in this chapter, that while Esterel is ideal for applications with com-

plex sequential behaviour, there is no completely adequate way to express behaviours

in physical time. The strengths and weaknesses of Esterel are well demonstrated by

the microprinter controller example. The solution proposed is to allow the direct ex-

pression of delays in terms of physical time, and then to transform the stated delays

according to the limitations of particular implementation platforms. The proposal

differs from several others by recommending the expression of abstract designs in

physical time with a later transformation to a discrete-time program; similarly to the

usual approach for designing and implementing feedback controllers.

The proposal is simple and, it seems, practical, but further work is required to de-

velop a rigorous semantic model for Esterel+delay, and also to define relations between

specifications and implementations that account for inaccuracies introduced during

translation to specific implementation platforms. Ideally, such a semantic model would

assist in the definition of static analysis techniques for transforming Esterel+delay pro-

grams, and also provide a satisfactory explanation for Esterel constructs that embody

an element of duration, like suspend and sustain. Ultimately, however, it is not clear

whether it is possible to adapt a discrete, synchronous language in this way without

sacrificing simplicity, clarity, and practicability.

9S. Ramesh recommended such a separation after reading an earlier draft.

Chapter 7

Conclusion

This thesis began with the broad goal of studying and improving the design and im-

plementation of embedded systems, especially their timing aspects, using timed au-

tomata and synchronous languages. The specific contributions made towards this goal

are summarised and evaluated in this chapter. Some ideas for extensions and improve-

ments are included.

Four specific developments have been presented, their various strengths and weak-

nesses are discussed in §7.1. From these can be distilled some specific ideas for future

research which are listed in §7.2. The chapter, and the thesis itself, ends with some

final remarks in §7.3.

7.1 Summary, contributions, and significance

Each of the technical chapters contains a specific and largely self-contained develop-

ment. Yet the individual results can be summarised and evaluated along four common

axes. Each is discussed in a separate subsection. The relationship between the axes

and the technical chapters is summarised in Table 7.1.

Chapter 3 Chapter 4 Chapter 5 Chapter 6

(Simulink) (Sensor) (Timed traces) (Esterel+delay)

Programs in physical time §7.1.1 ∗ ∗ ∗
Real embedded controllers §7.1.2 ∗ ∗

Verification of timed models §7.1.3 ∗ ∗
Implementations §7.1.4 ∗ ∗

Table 7.1: Relations between the four common axes and the technical chapters

7.1.1 Programs in physical time

Embedded controllers interact in physical time with their environments. Two aspects

of their design must be balanced: the timing requirements of the application and the

timing characteristics of implementation platforms. There are good reasons for sepa-

rating these two aspects: to reduce complexity, to simplify analysis, to support various

platforms, and to make informed compromises between requirements and constraints.

But eventually, and usually sooner rather than later in many embedded controller de-

signs, they must be interweaved.

A general approach of this thesis is to transform abstract programs into implemen-

tation models while accounting for timing constraints. In the synchronous execution

model of §3.2, abstract programs expressed as BMMs in discrete time are transformed

into timed automata whose behaviour in continuous time accounts for implementation

inevitabilities. In the assembly driver of §4.5, application requirements expressed in

a timed automaton model are met by exploiting concrete timing characteristics of the

implementation language. The transformation in this case is from a semantics in terms

190 CHAPTER 7. CONCLUSION

of cycles per instruction to a timed automaton model incorporating the physical pe-

riod of a cycle. In the proposal for Esterel+delay of §6.4, application requirements are

expressed in terms of physical time and programs are transformed into a form suit-

able for discrete execution. The transformation requires the incorporation of timing

aspects of eventual implementation platforms. Each of the three approaches is now

discussed in turn.

Implementation characteristics in the synchronous execution model of §3.2 are ex-

pressed through three parameters: the execution mode, that is whether sample-driven

or event-driven, the execution period τ , and the output lag δout . The mode and pe-

riod parameters are necessary to relate logical instants to real time, which is essential

to the Simulink embedding. The inclusion of both parameters in the Esterel+delay

transformation confirms their usefulness. The output lag parameter is, however, less

compelling. The simulation results do not seem to indicate any advantage and such

fine details seem too brittle to be exploited in designs. From a control theory per-

spective, other implementation imperfections seem to be more important; for exam-

ple, the lag between event occurrence and detection, which is modelled in other ap-

proaches [DWDR04].

The output lag parameter attempts to quantify the disparity between an implemen-

tation and the ideal of perfect synchrony. While no implementation is perfectly syn-

chronous, it seems that the details of the imperfection are less important than whether

or not the assumption of synchrony is warranted in the first place. This depends on the

behaviour of the environment and on aspects of the implementation of the program,

for example like those addressed in TAXYS [BCP+01, STY03] and in recent work on

the WCET analysis of Esterel [BTH07, JHRC08]. Despite these facts, the δout parameter

does capture some aspects of non-zero execution times, most notably the separation

of input and output events in physical time. An alternative approach is suggested by

Item 6 of §7.2.

The three parameter transformation makes details of the interface layer of a syn-

chronous system explicit. Although these are not usually studied directly, there is

some acceptance of their importance and intricacy [AMP91, AP93, BHHS93]. The model

presented in this thesis formalises some of the details, notably, the necessity of latch-

ing new inputs between reactions and the concomitant complications for event-driven

execution. The necessity of double buffering inputs is not modelled, although it is

addressed indirectly in the implementation of the synchronous block. While this fea-

ture is not important in Chapter 3, other research indicates its significance in certain

systems [STC06].

The broader theme of programs in physical time is also manifest in the assembly

driver of §4.5. The semantics of the assembly language used are defined in terms of

an abstract model of time, namely the number of cycles per instruction. This model

is transformed into one in continuous time by accounting for details of the implemen-

tation, namely the cycle period. The mapping could have been made more detailed by

explicitly modelling the cycle clock and its inaccuracies. The chosen processor effec-

tively has a tractable semantics in terms of physical time, and engineers exploit these

semantic properties, which arise necessarily from the nature of digital computing, to

implement application timing requirements: either carefully tuning programs to meet

upper timing bounds, or introducing delays to meet lower timing bounds. The model

addresses a simple microprocessor, the MCS51 and it is not clear what can be inferred

about the possibility of extending the results to more sophisticated devices. This is

left to future work, see Item 9 of §7.2.

The proposal for Esterel+delay of §6.4 is a response to problems identified by the

microprinter controller example and a survey of techniques for expressing delays in Es-

terel. It builds on ideas explored in the synchronous execution and assembler models,

as well as on others from the research literature. The issue of what an Esterel+delay

program means is addressed by a series of implementation-driven transformations

into Esterel. The presented solution is pragmatic but incomplete.

Several problems are identified in the survey of delays, but the most critical, from

the perspective of applications like the microprinter controller, is that expressing a tim-

ing delay requires early resolution of implementation issues. Furthermore, implemen-

7.1. SUMMARY, CONTRIBUTIONS, AND SIGNIFICANCE 191

tation choices that affect timing behaviour are not made explicit in the program text;

at best they are stated as comments or incorporated into signal names. Esterel+delay

extends Esterel with a statement for expressing delays in physical time and indepen-

dently of implementation details. This deviation from the principle of multiform time

is justified by the need to flexibly treat both aspects of time: application requirements

and implementation constraints.

The proposal draws inspiration from other similar approaches, most notably those

of TAXYS [BCP+01, STY03] and temporized Argos [JMO93]. A TAXYS program is spec-

ified in discrete time and refined to an implementation in continuous time. A tempo-

rized Argos program is given an interpretation in discrete time and another in contin-

uous time. In Esterel+delay, by contrast, application timing behaviours are expressed

in physical time and then refined to discrete delays for specific platforms; much as

digital feedback controllers are designed and implemented.

The transformation to discrete programs exploits the assumption of synchrony and

the various techniques for realising delays. It has four novel features: an idealised rep-

resentation of implementation platforms, a simple feedback mechanism for approxi-

mating iterated delays, the statement of the timer allocation problem, and a sketch of

a static analysis problem for determining phase relationships between timing inputs

and program execution. Work remains, particularly regarding phase relationships in

Esterel+delay programs; see Item 4 of §7.2. The transformations are a practical ap-

proach for applying Esterel+delay to systems like the microcontroller printer, but a

principled semantic treatment is lacking, see Item 2 of §7.2, as is a formal relation be-

tween a program in Esterel+delay and corresponding implementations in Esterel, see

Item 3 of §7.2.

Throughout this thesis, transformations between models are applied to reconcile

application timing specifications with implementation platform characteristics. The

possibility of generalising this approach is raised in Item 1 of §7.2.

7.1.2 Real embedded controllers

It is difficult to artificially concoct the problems faced when designing embedded con-

trollers and futile to ignore them. The domain is characterised by intricate require-

ments arising from the physical necessities and limitations of the hardware to be con-

trolled and the hardware that hosts controllers. While this thesis includes streamlined

examples, namely the fuel, temperature, and railway controllers, special effort is made

to describe and address more realistic and idiosyncratic examples, namely the infrared

sensor of Chapter 4 and the microprinter of Chapter 6.

The infrared sensor case study presents a model of a realistic, if simple, embedded

component at the level of the detail required by, and from the perspective of, an em-

bedded systems engineer. Few compromises are made and all modelling choices are

discussed. The model is an accurate and useful reference for this particular sensor.

More importantly, however, the approach demonstrates the strengths and weaknesses

of the notation, viz. timed automata, and the techniques, viz. model checking and

timed trace inclusion, for studying a particular man-made artifact. The sequencing and

timing constraints are readily expressed using timed automata, but less so the partial

orderings of concurrent events, which are anyway limited in this particular example.

It turns out that there is a surprising amount of detail and ambiguity in the seem-

ingly uncomplicated timing diagram. Chapter 4 shows that there is more to faithfully

modelling the timing diagram than formalising its notation or re-expressing it in a for-

mal notation.1 Rather the meaning of the timing diagram must be interpreted against

a background of engineering convention and practice. Furthermore, the modelling no-

tation must be carefully applied to express these interpretations.

The idiosyncrasies of the sensor are simultaneously important and limiting. Impor-

tant because this thesis aims to treat such engineering challenges as they are, rather

than as they might be. But, also limiting because the same features may not occur in

other components, and thus addressing them solves a particular, rather than a general

problem. And, more importantly, features that are important in other components

1Appendix F demonstrates the possibility of re-expression in a formal timing diagram notation.

192 CHAPTER 7. CONCLUSION

may not be represented. The problem of omitted features might be addressed in two

ways: deductively, by proposing a modelling language that can express all possible

components and features thought to be of interest and then studying it in detail, or,

inductively, by studying more and more components. The deductive approach may be

the more interesting from a theoretical perspective, but it risks oversimplification and

irrelevancy. The inductive approach is surely more pragmatic. In any case, detailed

instances are a necessary precursor for more general proposals.

The models presented in the sensor case study are complete in themselves, but

there are many other styles of driver implementation that could be modelled and veri-

fied, see Item 9 of §7.2.

The microprinter controller is a novel example of a realistic embedded application,

even though it is not treated as thoroughly as the infrared sensor (further possibilities

are considered in Item 8 of §7.2). The extract that is presented demonstrates the timing

characteristics of most importance in this thesis. With reference to §2.2.1, time is not

solely exploited:

1. for error detection, as are time-outs in distributed systems [Lyn96, Chapters 23–

25][Tel00, Chapters 12 and 15];

2. to constrain the reachable state-space, as in Fischer’s algorithm [AL94];

3. for multiplexing, as in operating systems or on communication channels;

4. to increase simplicity, reliability, and predictability, as in timed-triggered sys-

tems [KB03, Kop97, Pon01]; or,

5. to state non-functional requirements, for example, acceptable response times.

Rather time is integral to the purpose of the microprinter controller. The program

of Figure 6.3 means little without its precise timing details. Furthermore, the timing

constants in the microprinter controller are most naturally expressed in terms of phys-

ical time; both in the original specification and in controller programs.

Broadly speaking, the mass of interrelated timing details that arise from devices

like the microprinter are handled in three stages. First, relevant details must be ex-

tracted from specifications (which may be incomplete), application notes, and back-

ground knowledge. Second, these must be coerced into coherent, task-directed, and

maintainable forms, which may take the forms of specifications, models, sketches, or

programs. Third, the design must be implemented on resource-constrained hardware.

The first stage was addressed prior to presenting the microprinter controller example,

but the last two stages are discussed in some detail. It is argued that high-level de-

signs and low-level implementation issues are too often intermingled, even in a more

abstract language like Esterel. The microprinter controller example well demonstrates

this essential challenge.

7.1.3 Verification of timed models

Verifying reactive systems is particularly important because they often involve complex

sequential logic that is difficult to program correctly, and they also often fulfill func-

tions whose failure can be expensive or dangerous. Adding intricate timing require-

ments only increases the difficulty of writing correct programs. Furthermore, such

requirements are common in systems that act in the physical world where failures can

cause damage to objects and harm to individuals. Verification by model checking in

Uppaal is applied throughout Chapter 4 to the various sensor models, and a technique

for verifying timed trace inclusion is extended in Chapter 5.

The sensor timing diagram model itself is not verified, but it is taken as a spec-

ification for the split models, which offer a different perspective on the relationship

between sensor and driver. The distinction between inputs and outputs and the re-

quirement of input enabled components is an important feature of the split models,

and natural for the scenario being modelled. Two techniques for input enabling are

presented: self-loops and broadcast channels. The broadcast technique is easier to

7.1. SUMMARY, CONTRIBUTIONS, AND SIGNIFICANCE 193

apply and the resulting models are less cluttered but, due to limitations in Uppaal, the

self-loop technique is sometimes necessary.

Each of the split models is verified against the timing diagram model using a con-

struction for testing timed trace inclusion in Uppaal. The approach is slightly unusual

because it concerns the set of traces that occur between two components rather than

the behaviour of a single component. Auxiliary channel constructions are required to

verify both the self-loop split model and the broadcast split model. The latter would

be simpler to verify if Uppaal allowed clock guards on broadcast receivers.

Data transmission in the split models is verified through reachability analysis of

a property expressed as an observer automaton. The ability to express functions in

Uppaal is invaluable for translating back and forth between data values and their rep-

resentation as strings of bits.

The driver component in the split model is treated as a specification for the as-

sembler implementation model. The timed trace inclusion testing technique is again

applicable, but the restriction on clock guards in broadcast receivers means that only

the self-loop model is readily useful. The verification would be more difficult if the

driver model were less deterministic. The implication of the two timed trace inclusion

verifications is that the assembly language implementation correctly implements the

sensor timing diagram. While this approach is not proposed as a general methodol-

ogy for verifying assembly language programs against timing diagrams, it has a certain

intrinsic interest and it demonstrates well some of the associated pros and cons.

The interdependencies between the sensor and driver components in the split mod-

els, and the possibilities and limitations of using each in isolation is an aspect that

could be explored in more depth.

The second verification tract considers the timed trace inclusion testing construc-

tion that was applied to the sensor case study. The basic construction is well known.

It has been applied to the IEEE 1394 Root Contention Protocol [Sto02, §7.5], adapted

to handle some non-deterministic specifications [Sto02, Appendix A], and extended to

handle urgent channels and shared variables [JLS00].

It was discovered, while attempting to implement the basic construction, that ex-

tra manipulations are needed for some of the more recent Uppaal features, namely

selection bindings, quantifiers, and channel arrays. These features are not usually rep-

resented in semantic definitions [BW04, BV08], presumably because they serve only to

make the modelling language more convenient and not fundamentally more expres-

sive. A semantic model in terms of processes, which are expanded to standard timed

automata, is proposed to describe the extra features and their manipulation.

The basic timed trace inclusion construction is extended to include the additional

features. Broadly speaking, two particular problems are encountered: meeting syn-

tactic restrictions on transition guards, and clustering transitions that synchronize

through channel arrays.

Transition guards are problematic because they are not closed under negation. In

the absence of selection bindings and quantifiers, the negation of a conjunction of

transition guards can be manipulated into Disjunctive Normal Form (DNF) and then

split across multiple valid transitions. While selection bindings can be represented

as existential quantifiers, their negation introduces universal quantifiers, which can

inhibit this disjunct splitting. A looping construction is proposed to handle difficult

expressions. Universal quantifiers alone are readily negated into existential quantifiers

and represented by selection bindings—they seek out counter-examples to the origi-

nal expression—which, due to their disjunctive character, can be split across multiple

transitions. But, in combination with selection bindings, negated expressions will, in

general, have the form ∀·· ·∀∃· · ·∃.e, which cannot be represented directly in Up-

paal. Two complementary solutions are proposed: a predicate that determines when

the quantifiers can be swapped, and an enhanced looping construction.

Channels are grouped in the testing construction by name and direction. Grouping

transitions on channel arrays is more challenging because the potential values of array

subscript expressions must be considered. An initial solution that characterises pos-

sible groupings by predicates over those expressions works for some cases and offers

insights into the problem, but it is difficult to generalise. A different solution based on

194 CHAPTER 7. CONCLUSION

the introduction of ‘sweep bindings’ turns out to be more widely applicable.

The extended technique is demonstrated on a modified version of the railway con-

troller example [WPD94, LS85]. Reachability analysis in Uppaal demonstrates that the

timed traces of the original controller are a subset of those of the new controller.

7.1.4 Implementations

Two tools were implemented as part of the work described in this thesis: software

for compiling (textual) Argos programs and incorporating them in Simulink models,

and a tool for performing the extended validation construction on Uppaal models.

Besides resulting in useful tools, these implementations were invaluable in coming to

understand, develop, and evaluate the various ideas. Regrettably, there is not yet any

tool support for Esterel+delay, some future possibilities are outlined in Item 4 of §7.2.

The tool-chain developed to support the Argos block is adequate for prototyping,

but not for realistic applications. In hindsight, it would have been better to integrate

the Argos compiler with the Lustre tool chain and to interface the latter’s executable

format into the synchronous block s-function. Furthermore, the simple graphical syn-

tax of Argos is one of its strengths, but the prototype tools do not include a graphical

editor or animator; it seems likely that the time it would have taken to develop such

tools would not have been rewarded commensurately with relevant research insights.

The two case studies demonstrate that while Argos is a suitable language for ex-

pressing some discrete controllers in Simulink, more sophisticated control logic would

probably be better expressed in Esterel or its graphical counterpart, SSM.

The Simulink s-function would have been more difficult to implement without the

precision and clarity provided by the synchronous execution model. A variety of

mechanisms—zero-crossing functions, inherited port-based sample times, and block-

based sample-times—are employed to realise the required timing behaviour. This sug-

gests that timed automata may be useful more generally for designing and implement-

ing behaviours in Simulink. This possibility is further discussed in Item 7 of §7.2.

There do not seem to be any other tools for producing the timed trace inclusion

validation construction—with or without extensions. The implementation described

in §5.4 makes the technique much more practicable, particularly since, as was found

while developing the sensor case study, timed trace inclusion testing reveals flaws in

models, through counter-example traces, which must then be fixed before renewed

testing. Such iterations are much faster and more accurate when partially automated.

The implementation directly reads and writes Uppaal XML models. It includes a sim-

ple expression language for describing manipulations, and newly generated models are

formatted using Graphviz. This last step is not just for show; legible output allows the

accuracy of the results to be examined, and makes animated counter-example traces

in Uppaal easier to follow.

The implementation includes a parser and algebraic data type for Uppaal models,

as well as several auxiliary routines. They are all publicly available and suitable for

adaptation and reuse. The basic infrastructure has already been adapted to generate

draft models from MCS51 assembler. While not perfect, this feature was nevertheless

useful in creating the assembly language driver model.

The internal complexity of the tool is troubling. Subtle faults are hard to avoid in

such intricate symbol manipulation programs. Some ideas for addressing this issue

are discussed in Item 5 of §7.2.

7.2 Limitations and future work

1. Semantic transformations with platform timing details.

Three of the four technical chapters in this thesis—Chapters 3, 4, and 6—apply

transformations that introduce implementation timing details. It seems possible to

study this idea more generally: to determine which features are important, and how

they differ between models for verification and those for implementation; to identify

the various trade-offs; and, to determine the role of approximation and the kind of

7.2. LIMITATIONS AND FUTURE WORK 195

‘fuzziness’ that engineers expect and exploit. More examples may be required before

general principles become clear.

2. Semantics for Esterel+delay.

A semantic model is not defined for Esterel+delay. Any proposal should seek to

provide a tractable and fundamental model, rather than just an impenetrable list of

rules. Furthermore, the motivation should not be to produce another way of expressing

timed or hybrid automata, or some other denotation, but rather to solve the design and

analysis problems that are of importance to engineers.

One of the central challenges in giving a semantics to Esterel+delay is to address the

interaction of instantaneous features with those that express or imply intervals, while

not sacrificing the simplicity and other strengths of synchronous languages. Specif-

ically, to find solutions to the interaction of suspend and delay—which may mean

treating sustain differently to emit—and to make better sense of pause statements in

event-driven programs. Some initial observations are made in §§6.5.2 and 6.5.3.

A semantic definition is an essential first step to simulating and analysing Es-

terel+delay programs. Ideally, direct verifications of these programs could guaran-

tee something about their discrete implementations, or at least those within a certain

range of accuracy. A definition is a prerequisite for defining the relation between ideal

programs and actual implementations that is discussed in Item 3 of §7.2.

There exist proposals where programs in Esterel or a derived language are inter-

preted as timed automata [SA01], as hybrid automata [LS02], or as formulas in the

duration calculus [BS02]. Related perspectives are found in other language proposals,

like, for instance, Hybrid Statecharts [MMP91]. It is possible that Esterel+delay could

be treated similarly, but more investigation is required. It is not ultimately certain,

however, that a satisfying semantics can be devised.

3. Relations between programs and implementations.

The sort of relation that should exist between programs in Esterel+delay and their

realisations for specific platforms in Esterel is outlined in §6.5.1. Definitions of such

implementation relations and of the semantic model suggested in Item 2 of §7.2 would

ideally be developed together.2

A rigorously defined relation would provide a basis for justifying the transforma-

tions to Esterel. It would have to account for the fact that the transformations give

different results for different platforms, and that delays in the original program may

only be approximated in implementations. This might be done by first ‘loosening’ pa-

rameters in Esterel+delay programs, or by allowing some ‘fuzziness’ in the relation

itself; the two approaches are likely to be equivalent. Engineers routinely make such

compromises, but the best way of supporting them formally is not clear; although re-

cent work [BS08a] may help. Further investigation into both practical and theoretical

aspects is required.

4. Static analysis for phase relationships in Esterel.

There are advantages to implementing delays by counting timing inputs. But one

of the problems is that timing inputs are relative to system startup whereas delays

are relative to the reaction of their commencement. As discussed in §6.4.2.3, this

limits the effectiveness of transformations from Esterel+delay. It also makes it difficult

to estimate inaccuracies. Static analysis could be applied to detect phase relations

amongst timing inputs and statements, and the results applied to improve program

program program transformation and estimation. There would certainly be limits, but

certain common cases could surely be detected.

Static analysis could also enable new compilation techniques for standard Esterel

programs. For instance, certain loops or subprograms could be assigned to interrupt

handlers, others could be executed at different frequencies.

5. Uppaal transformations in Isabelle.

Both the extended construction for testing timed trace inclusion and its implemen-

tation in SML are intricate. Confidence in their correctness is especially important

2The intimate relationship between preorders and semantics is emphasized in Appendix C.

196 CHAPTER 7. CONCLUSION

because they are proposed for use in verification. It could be increased by applying

theorem proving techniques. The Isabelle theorem prover [NPW02] is a suitable candi-

date because it is also written in SML, its architecture supports programmatic exten-

sion [WW07], and the essential soundness of its proof kernel cannot be undermined,

regardless of the complexity of an extension.

Ideally, the parser and data types of the implementation could be integrated with

Isabelle. At a minimum, Isabelle’s sophisticated and extensible term rewriter could be

exploited to improve the manipulation of expressions, and the tool could prompt for

interactive assistance if needed. A more sophisticated approach would be to develop

one of the existing semantic models of Uppaal [BW04, BV08] and the extensions of

Chapter 5 in Isabelle, and to use them as a basis for validating the output produced by

the tool. For instance, each step of the transformation could generate a justification of

its correctness such that chaining a sequence of justifications together would confirm

the correctness of the whole.

6. Evaluating the assumption of synchrony in Simulink models.

The Argos block for Simulink enables deviations from perfect synchrony to be ac-

counted for in simulations. In principle, this aids evaluations of whether the assump-

tion of synchrony is valid for a specific implementation in a specific environment. An

alternative would be to develop techniques and tools that determine whether the as-

sumption is valid by examining the program, its implementation parameters, and the

model of the environment. Such an approach could begin by adapting or extending

existing semantic models [TSR03, ASK04] for continuous Simulink blocks.

7. A Simulink s-function for timed automata.

The synchronous execution model acts as a specification for the Argos block, which

is implemented as a Simulink s-function. The s-function effectively implements a par-

ticular type of timed automaton using various Simulink features. This suggests the

possibility of tools for embedding general timed automata models in Simulink. They

could either allow the expression and simulation of timed automata directly, or they

could facilitate the development of higher-level tools, like the Argos block. It is not

clear which of the three options listed in §3.3.1 for embedding semantic models into

Simulink would best support such an approach.

8. Complete the microprinter controller example.

The microprinter controller example of Chapter 6 is incomplete. The presentation

and solution could be extended to include including serial communications of charac-

ters to print, the lookup of bitmaps in memory, and the transmission of pixels to the

print head. It would be interesting to formalise the requirements from the specifica-

tion relating to timing behaviour, temperature ranges, and exceptional conditions, and

then to verify that they are met by implementations. This may be one way to combine

the proposal for Esterel+delay with the techniques applied to the sensor case study.

9. More drivers for the infrared sensor case study.

Only a single assembly language driver was validated against the sensor timing di-

agram. It would be interesting to model and validate drivers that apply different tech-

niques, for instance timers or OS features, and that are written in different languages,

for instance in Esterel, C, or the assembly language of a more sophisticated platform.

While the techniques developed in this thesis would be applicable to an Esterel driver,

it seems likely that more research would be needed to treat timing in C programs,

and also for more advanced assembler programs. In particular, it is not clear how to

adapt the type of architecture-informed transformation that was used for the MCS51

assembler.

7.3 Final remarks

Programming embedded controllers is difficult. Intricate timing details, which arise

from both the physical characteristics of the applications themselves and the resource

7.3. FINAL REMARKS 197

constrained platforms on which controllers are implemented, exacerbate the challenge

of designing and expressing complex reactive behaviours. Synchronous languages like

Esterel and Argos alleviate some of the problems, but more support could be provided

for the compromises required to realise abstract designs efficiently on diverse plat-

forms. This support could take the form of parameterised transformations between

models that account for the timing characteristics of implementation platforms. Fur-

thermore, while the synchronous languages benefit greatly from their discrete time

foundation, the physical timing properties in hardware specifications and in models

of implementations are often better expressed in continuous time. Timed automata

are well-suited for expressing both of these kinds of timing details, with the distinct

advantage that many properties, including implementation relations, can be analyzed

automatically.

198 CHAPTER 7. CONCLUSION

Appendix A

Process Algebra

Transition systems are sufficient for modelling and analyzing the fundamentals of dis-

crete systems, but doing so for large systems is impracticable. The structural patterns

important for understanding and reasoning cannot be seen for the masses of detail.

Large systems are built, rather, from smaller components, and behaviours of the whole

emerge from those of the interacting parts. Process algebra focuses on the composition

and interaction of components.

In process algebra, as for the class of reactive systems, components operate concur-

rently with one another and their environment, and the actions performed over time

are more important than any final result. In fact, the systems of interest must usually

operate indefinitely and interact continually with their environments, which is in con-

trast to the study of algorithmic programming languages where termination is desired,

and there are only two points of external interaction: initial acceptance of inputs and

final delivery of results. Many of the semantic techniques, particularly notions of im-

plementation and equivalence, developed for process algebras find application in the

design of embedded systems.

The three main process algebra ‘schools’ are Communicating Sequential Processes

(CSP) [Hoa85], Calculus of Communicating Systems (CCS) [Mil89], and the Algebra of

Communicating Processes (ACP) [BW90].

CSP was originally intended as a concurrent programming language [Hoa78]. The-

oretical issues later became more central, but models of real systems remain impor-

tant. Both the Occam programming language, and the Language Of Temporal Ordering

Specification (LOTOS) [BB87] language are derived from CSP.

CCS was developed to study concurrent and communicating agents. It draws in-

spiration from the Lambda calculus of sequential processes [Mil93]. CCS has a less

operators, and is perhaps more mathematically ideal, than CSP. The pi-calculus ex-

tends CCS which features for naming processes and tracking evolving connections.

ACP is a series of process algebras. Each is described an equational system that

axiomatizes the intuitions about a class of processes. The primacy of equations char-

acterizes the mathematical approach of ACP. µCRL and mCRL2 are versions of ACP

with abstract data types and tool support for verification and efficient execution.

The common features of most relevance are a mathematical syntax, a focus on

semantic models, interleaved concurrency, synchronized communications, unobserv-

able actions, choice operators, and treatments of refinement and equivalence. Each is

described in turn over the next few sections, which do not aim for a rigorous and com-

plete comparison, as may be found elsewhere [Gla97], but rather to summarise and

exemplify the principles most relevant to later sections.

A.1 Mathematical syntax

The processes of a process algebra are expressed primarily as mathematical expres-

sions, tree structures written linearly and formed of bound variables, constants, and

function symbols. While perhaps forbidding at first, the notation has several advan-

tages: it is convenient for pen and paper derivations; there is a one-to-one relation

200 APPENDIX A. PROCESS ALGEBRA

CSP: X = a→ (b → STOP)� c → Y
Y = d→ e → Y

CCS: a.b.0+ c.fix(Y = d.e.Y)

ACP: X = a·b·δ+ c·Y
Y = d·e·Y

a

b

c

d

e

Figure A.1: Three process expressions and a corresponding process graph

between the syntax and operators on models; laws or propositions are expressed natu-

rally as equations; semantic rules can be written compactly, usually entirely on a single

page; and, there are fewer obstacles to writing rules and derivations precisely.

Three examples and a graphical representation of an associated process graph are

shown in Figure A.1. The examples demonstrate four primary function symbols, those

for dynamic operators [Mil89], and their interpretation on process graphs:

• action prefixing, →, a., a·, for transitions,

• deadlock constant, STOP , 0, δ, for a state1 with no outgoing

• choice, �, +, for branching transitions from a state,

• recursion for transitions that loop back into other states.

These four concepts suffice to express all finite process graphs, that is those with a

finite number of states and finite branching from each. The first three concepts alone

can express the subset of graphs that are also trees. These facts can be exploited for

reasoning about process graphs; the head normal form [BW90, Definition 2.4.6] and

related lemmas of ACP are good examples.

An indexed choice operator is required for process graphs with infinitary branching.

Infinitary branching encompasses image finite processes, where an infinite number of

actions are possible but where there are only a finite number of destination states

for each, and infinitely branching processes where there may be an infinite number

of destination states for an individual action. Mutual recursion with infinitely many

variables is required to express infinite state process graphs.

Variables, that stand for processes, are used in expressions for three main reasons:

to break complicated definitions into smaller parts, to describe recursive processes,

and to stand for arbitrary or unknown processes. The variables in the first two cases

are bound, explicitly or otherwise, by the process specification. In the last case they

are free variables. Only concrete terms,2 those where no variables are free, define pro-

cesses. But, in informal use, unspecified behaviours are often represented by variables.

Similarly, (infinitely) repeated behaviours may be written informally with ellipses.

A.2 Unobservable actions

There are various reasons for localizing some of the actions of a subsystem: to prevent

them from influencing other subsystems; to hide the internal operations of a system

from its environment; and, to abstract from certain actions when analyzing or com-

paring processes. Two distinct solutions for this task have arisen. In CCS and ACP,

and sometimes CSP [Ros97], a special action τ is distinguished to represent an internal

step, which can neither be seen nor controlled by the environment (control is the abil-

ity to force or block). In CSP, and sometimes CCS [DNH87], an internal choice operator

represents possibilities within a process that cannot be influenced by an environment.

In the process graph model, τ is just another action relation
τ−→, but it is treated

specially in semantic rules, where it occurs without synchronization, and in traces,

1The term ‘process’ is more usual, but ‘state’, used synonymously, emphasizes the link with transition
systems.

2Also called ‘closed process expressions’

A.2. UNOBSERVABLE ACTIONS 201

a τ

b τ
a+ τ.(b.0+ τ.0)

Figure A.2: Example for discussing the effect of τ transitions

where it is normally omitted, and also in those equivalence and refinement relations

that respect abstraction. The apparent simplicity of τ-actions belies their expressive

power and subtle semantic effect. Besides explicit prefixing, τ-actions are introduced

by completed communications in CCS, and the hiding operator of ACP. Any operation

that introduces τ-actions can introduce non-determinism.

Internal steps have a preemptive power [Mil89, §2.3] to change a process’s possi-

bilities for action. For example, the process of Figure A.2 is initially willing to perform

an a action, but it may take an internal step that spontaneously removes that possibil-

ity. There is no guarantee that an a will occur, even in an environment where another

process wishes to synchronize with it. If there are no other processes willing to syn-

chronize on a, the internal step will inevitably occur, under the usual assumption of

progress, giving a new process b.0+ τ.0, where a similar choice exists between b and

an internal step.

It is somewhat awkward that interaction possibilities may change spontaneously

in this way. It complicates thinking about process behaviours, for example, thought

experiments based on testing [Gla93]. For example, in Figure A.2, the ability to perform

a b may appear at some point and disappear at another. In asynchronous composition,

both the possibility and non-possibility of synchronization with b must be considered;

that is, neither internal nor external actions may take priority over the other.3

A change in action possibilities could be interpreted as an observable event, though

this is contrary to the idea that τ actions are unobservable. Standard process operators

are not sensitive to the removal of action possibilities, but operators able to detect it,

for example a ‘polling’ operator [Blo94], can be defined through SOS rules with negative

premises.

An alternative to τ-steps is to distinguish process branchings where the environ-

ment decides which path is taken from those where the process alone decides; opera-

tors for expressing the distinction are discussed in §A.5. CSP is usually defined in this

way, and some versions of CCS are too CCS [DNH87, Hen88].

Although, CSP was originally presented [Hoa85] without τ-steps, they can be intro-

duced in models of CSP expressions. The key idea is that an internal choice between

behaving like P or behaving like Q, written P ⊓ Q is essentially the same as a non-

deterministic choice between two τ-steps, one leading to P and the other to Q, that is:

τ.P + τ.Q. This idea and the mutual distributivity of the ⊓ operator with the operator

for external choice � [Hoa85, §3.3.1] limits the range of process graphs that are consid-

ered,4 which, in turn, gives insight into the treatment of τ-steps in the CSP-approach:

they occur immediately whenever possible before the environment has a chance to act,

and loops or cycles of τ-steps are considered as pathological.

In versions of CCS without τ-steps, the external and internal choice operators are

usually written as + and ⊕, respectively [Hen88]. The operational semantics is pre-

sented using ‘invisible moves’ [DNH87] which, unlike τ-steps, have no preemptive

power; that is, invisible moves can remove possibilities offered by internal choice, but

they must preserve those offered through external choice. All internal choices must be

resolved before any external possibilities are presented; synchronisations cannot sud-

denly be offered to or retracted from the environment. All CCS terms can be translated

into the τ-free calculus; testing equivalence, but not weak bisimulation equivalence, is

preserved [DNH87].

3In CCS, for instance, ((a+ τ.(b.0+ τ.0)) | (b̄.d.0))\{a,b} and τ.(τ.d.0+ τ.0) are equivalent.
4Graphs are rewritten so internal and external outgoing transitions are not mixed at any node [Hoa85,

§3.5.4].

202 APPENDIX A. PROCESS ALGEBRA

a

b

a.b.0

c

d

c.d.0

(a) individual
processes

a.b.0 | c.d.0 a c

b c a d

c ab d

bd

(b) Parallel composition

Figure A.3: CCS expressions and corresponding LTSs

A.3 Interleaved concurrency

The four dynamic operators presented in §A.1 are adequate for reasoning about indi-

vidual sequential processes. But many systems comprise multiple components acting

individually and concurrently, especially reactive systems where, at the very least, the

environment is considered as a concurrent entity. Thus process algebras invariably

have one or more operators for parallel composition. The parallel composition of pro-

cesses P and Q, is written variously:

CSP P 9Q interleaving

P ‖ Q lock-step

CCS P |Q composition

ACP P ‖ Q merge

The operators differ in the details of synchronization, which is discussed in the next

section, but all are interpreted as specifying interleaved concurrency. Parallel compo-

sition is classed as a static operator [Mil89].

In an interleaved model causally-independent events are ordered sequentially in

any single trace. For example, considered from the point of view of another concurrent

process or the environment, in a process of two enabled and independent actions a
and c, either a will occur first and then c, or c will occur first and then a. Neither the

possibility of the two occurring independently but simultaneously, nor of the order of

occurrence being relative to the observer, are admitted.

The CCS expression in Figure A.3 shows two independent processes in parallel, and

a corresponding process graph model. A trace of the process graph will run from top

to bottom. All orderings of the four actions that respect the sequentiality of the indi-

vidual components are possible. In the interleaved model, concurrency is transmuted

to choice. An equivalent5 expression to the one in the figure is

a.(b.c.d.0+ c.(b.d.0+ d.b.0))+ c.(a.(b.d.0+ d.b.0)+ d.a.b.0).

The example increases in size from an expression of two three-state processes to a

process graph of nine states. This is typical, the parallel composition of independent

processes in the interleaved model yields a Cartesian product of their states: each

pairing must be considered.

The interleaving model simplifies semantic rules, reasoning, and formal proofs.

It is a natural description of multitasking where the actions of individual sequential

processes are interleaved by an operating system. Interleaving seems also to be appro-

priate for modelling distributed systems provided the realities of networked commu-

nication are accounted for in the models themselves.

Interleaving is not the only possible representation of concurrency. There are par-

tial order, or ‘true concurrency’ models, including Petri nets [Rei85, Pet81] and Event

5For any equivalence relation on interleaved processes.

A.4. SYNCHRONIZED/HANDSHAKE COMMUNICATION 203

structures [NPW81]. Synchronous models also exist, including the SCCS [Mil83], a vari-

ant of CCS where all concurrent proceses must participate in each step of the system

if only to take an explicit idling step; actions then form an algebra of their own being

combined to give composite actions.

A.4 Synchronized/handshake communication

Communication and concurrency are intertwined in the process algebraic approach.

Concurrent components communicate with one another through synchronized actions,

which, for two participants, are called a handshake.6 The various approaches differ in

their details.

The parallel composition operator of CSP is parameterized over two sets of syn-

chronizing actions, one for each component [Ros97, §2.2]. In the process represented

by P X‖Y Q, actions in X ∩ Y may only occur if performed simultaneously by both P
and Q, actions not in X ∩ Y only occur when performed independently by either of P
or Q. The interleaving operator 9 is equivalent to ∅‖∅; all actions are performed inde-

pendently. The lock-step operator ‖ is equivalent to A‖B where A and B are called the

alphabets of P andQ respectively.7 The alphabet of a (CSP) process must include all ac-

tions that the process might perform, but it may include actions that are not otherwise

mentioned, and, which may thereby affect the behaviour of concurrent processes.

In CCS, every action a, except τ , has a complement ā. Only complementary actions

may synchronise, but they need not. The semantics of parallel composition | contain a

rule [Mil89, §2.5] for each possibility:

E
α−→E′

E|F α−→E′|F
Com1

F
α−→F ′

E|F α−→E|F ′
Com2

E
a−→E′ F

ā−→F ′
E|F τ−→E′|F ′

Com3

where a ∈ A \ {τ} and α ∈ A. Typically for CCS, the rules inductively describe part

of the transition relations of a process graph in terms of the syntax of an expression.

In rules Com1 and Com2 the processes act independently of one another. In Com3

complementary actions synchronise to become a τ-transition. Note that τ-steps can-

not synchronise with one another.8 An example expression and corresponding process

graph are shown in Figure A.4a. The structure is essentially identical with Figure A.3,

where there is no synchronization, but for the two τ-transitions. In CCS, instead of

forcing synchronization as done in CSP, unwanted transitions are pruned with a re-

striction operator, as shown in Figure A.4b.9

Composition in ACP also preserves the possibility of three actions, either inter-

leaving or shared, but does not insist that synchronization results in a τ-transition.

Rather a communication partial function γ : A × A → A is defined. It maps each pair

of actions that may synchronize to a resultant action, pairs not in the domain may

not synchronize. The function must be commutative and associative so that the or-

der of arguments is unimportant, neither of the arguments nor the result may be τ .

The semantics of composition in ACP are given axiomatically as a set of (conditional)

equations [BW90, Table 51]:

x ‖ y = x‖− y+ y‖−x+ x|y (CM1)

a·x‖− y = a·(x ‖ y) (CM3)

a|b = γ(a,b) if γ defined (CF1)

a|b = δ otherwise (CF2)

6They are also sometimes called a ‘rendezvous’, but this term is more appropriate for the type of
remote procedure call in Ada, or ‘synchronous communication’, but this term is easily confused with the
synchronous broadcast communication discussed in §2.4.

7Alphabets are presented differently in [Hoa85].
8Properly, a complete set of rules should be presented otherwise it is not possible to conclude which

transitions are not included.
9The CSP concealment and CCS restriction operators are both written as the symbol \. Both remove

transitions, but the former ‘reconnects’ the processes after concealed actions or alternatively renames
actions to τ , whereas the latter prunes them altogether.

204 APPENDIX A. PROCESS ALGEBRA

a.b.0 | ā.b̄.0 a ā

aā

τ

b b̄

ā a

τ

b b̄

bb̄

(a) Two synchronizing processes

(a.b.0 | ā.b̄.0) \ b a ā

aā

τ

τ

(b) Restriction of two synchronizing processes

Figure A.4: CCS expressions with process graphs for synchronization and restriction

Rules for several other cases have been omitted. The symbols ‖− and | are auxiliary

operators for defining parallel merge in ACP, the latter should not be confused with

the similar symbol in CCS. The use of a communication function increases both flex-

ibility and bookkeeping. The combine function of Esterel, §2.4.3, is a similar idea for

combining the effect of simultaneous actions

All three process algebras define ways of communicating values between concur-

rent processes. The approach and syntax of CSP have been particularly influential, for

example in an extension to Esterel [BRS93], and in Uppaal as described in §2.3. The

roles of sender and receiver are distinguished when values are communicated. Both

participants remain equal in terms of synchronisation, neither can occur without the

other and both actions occur simultaneously, but the sender specifies a value, usually

as an expression over local variables and constants, whereas the receiver specifies a

name to bind the communicated value. In CSP, sending and receiving are expressed by

the syntax [Hoa85, Chapter 4]:

c !v → P c ?x → Q(x),

where both processes refer to a global channel name c rather than to one another,

output is marked with an exclamation mark between channel name and value c !v ,

and input with a question mark between channel and variable names c ?x, the latter is

bound over the residual process expressionQ(x). Formally, the set of actions includes

an element c.v for each combination of channel name and value, and the input nota-

tion denotes a branch for each possible v . Communication of values in ACP [BW90]

is similar, but rather than name a common channel, each process specifies a local

port. Port interconnections are defined via the communication function, for instance

γ(send(5), receive(5)) = comm(5).

While handshake communication is conceptually appealing, its merits for modelling

and programming are also important. Several applications may be modelled directly:

subroutines calls [Hoa85, §7.3.4], where the instants of call and return are shared

by two functions; process synchronisation in multitasking operating systems, since

it does not matter which action occurs next after synchronisation; and, conceptual in-

teractions like pushing a button or picking up a chopstick [Hoa85, §2.5]. Handshake

communication can also benefit programmers: reasoning is simplified because there is

only a single instant of communication, not separate instants of sending and receiving.

Also something of the state of both participating processes is known at that instant:

they are blocked at communication instructions. Handshake communication can be

efficient because buffering is avoidable when not required. The absence of buffering,

or at least its restriction, can simplify verification [Hoa85, §7.3.4].

Some complain that handshake communication is unrealistic or not practicable to

implement, particularly for distributed systems and those with multiple processors

or multiple clocks. But this is an issue of modelling not mechanism. Buffering or

communications delay, whether programmed, through a synchronizer, or in a network,

should be modelled explicitly, for instance by adding buffer processes, or by mandating

A.5. DETERMINISM 205

that asynchronous actions may only prefix the deadlock process thereby syntactically

excluding dependencies on message receipt in the sender.10 Consider, for example, an

ACP process C , triggered by a local action s that sends an asynchronous query q and

awaits a reply of either ack or nack before reporting the result locally, in parallel with

another process P that acknowledges every second query:

C = s·(q·δ ‖ (ack·yes·C)+ (nack·no·C))
P = q·(P’ ‖ ack·δ)

P’ = q·(P ‖ nack·δ)

Modellers must decide whether direct handshake communication is accurate for a

given circumstance, depending on the level of abstraction, relative atomicity of actions,

and either the properties to be validated or the eventual implementation architecture.

Although buffer processes are easily included in models, it is less reasonable to

program distributed systems in the same way. The constructs of a language influ-

ence programmed solutions, compilation, and optimization. Systems with handshake

communications are most naturally implemented with message passing through a lo-

cal arbiter, rather than through shared memory or over asynchronous links. Attempts

at implementing handshake communication across networks require either a central

arbiter or constraints on when computations may occur [RS98].

The parallel composition operator of CSP allows each step of a system to be in-

fluenced by multiple processes. An action may only occur if all controlling processes

agree. Parallel composition is equivalent to conjunction of trace specifications [Hoa85,

§2.3.3] [Ros97, §2.5], and leads to a style of constraint-oriented specification [BB87,

Ros97] where the set of required behaviours is gradually refined through the addition

of new restrictions in parallel. Implementations, however, need not involve multiway

handshaking, it is sufficient if their behaviours can be shown to refine those of the

specification.

A.5 Determinism

In the process algebraic approach the environment of a system is treated like any other

concurrent process. In particular, system actions must synchronize with those of the

environment. Only τ-actions can be performed autonomously, all other actions are

presented to the environment which selects the next to occur.

Decisions that a system can make autonomously, that is non-deterministically, from

its environment are expressed in CSP by an internal choice11 ⊓ operator. For example,

the process a→ P ⊓b → Q may offer to synchronize on a but not b, on b but not a, or

on either a or b. The latter is termed angelic non-determinism, which can be inefficient

to implement. Internal choice is intended for use in specifications, either explicitly or

resulting from combinations of operators like concealment, or general choice when the

component processes are prefixed with the same action,

(c → P)� (c → Q) = (c → P)⊓ (c → Q).

Neither ACP nor CCS has an explicit operator to represent non-deterministic choice,

since the autonomy of τ-actions can be exploited to the same effect. The CSP pro-

cess P ⊓Q could be written in CCS as τ.P + τ.Q.

The philosophy that implementations are, ideally, deterministic is reflected in the

refinement ordering of CSP and in programming languages like Esterel. The distinction

between specification and implementation, though, is not always clear. A program

may give the same result regardless of the way particular choices are resolved. The

compiler or runtime environment would then be free to resolve the choices to satisfy

other requirements, possibly improving some factor of efficiency.

10Matthew Hennessy pointed this out during a tutorial in 2005.
11Also called nondeterministic or [Hoa85, §3.2]

206 APPENDIX A. PROCESS ALGEBRA

A.6 Semantic models

model
actual

processes

equational
system

(a) CCS and CSP approach

models

actual
processes

equational
system

(b) ACP approach

Figure A.5: Sketch of relations between process algebras, models, and actual processes

In CSP and CCS, processes are modelled as mathematical structures, refer Fig-

ure A.5a. The models formalise an abstraction of actual processes: like vending ma-

chines [Hoa85, §1.1] or job shops [Mil89, §1.3]. Constants, operators, and equational

identities are conceived to represent and reason about process models, but the focus

of study is the models themselves.

In contrast, ACP is primarily concerned with equational systems as formalizations

of actual processes, refer Figure A.5b. An equational system is a set of function sym-

bols and their arities, and a set of equational axioms. Technically, a model is just a

witness to the consistency of a set of axioms. But, models are also interesting as math-

ematical objects in their own right, and they aid the development of intuitions on the

implications of axioms.

There are two standard process models in CSP: a trace model for deterministic

processes [Hoa85, §2.8], and a failures/divergences model for non-deterministic pro-

cesses [Hoa85, §3.9].

In the trace model a process is a pair (A, S), where A is a set of symbols and S
is a prefix-closed set of finite traces over A. Constants in the expression language

correspond to specific pairs and function symbols to operators on pairs. The solutions

of recursive equations are defined through fixed point theory.

In the failures/divergences model, each trace is augmented with additional infor-

mation about the actions possible thereafter.

Definition A.6.1

Given an LTS (S, S0,−→) over A, a refusal of a state s ∈ S is a set X ⊆ A such that

∀a ∈ X. (s a
/−→∧ s τ

/−→). The set of all refusals of s is written refusals(s).

Definition A.6.2

A failure of an LTS T over A is a pair (t, R), where t is a finite trace of T and R =⋃{refusals(sn) | α = s0, a0, . . . , an−1, sn ∈ execs(T) and trace(α) = t}.

The set of all failures of an LTS T is written failures(T); the traces are prefix-closed,

and the refusals of each trace are subset-closed. An element is a failure of a process,

if, after performing the sequence of actions T and all possible internal actions, the

process may deadlock if only offered actions in X for synchronisation; two examples,

that cannot be distinguished by their traces alone, are given in Figure A.6. The union

after grouping executions by trace in Definition A.6.2 induces a subtle and important

structure. A failure set encodes the effects of all possible executions for the associated

trace, and thus expresses the effect of non-determinism.

In the failures/divergence model a process is a triple (A, F,D), where A is a set of

symbols, F is a set of failures, and D is a set of divergences. A divergence is a finite

trace where the process may afterward perform an infinite number of internal steps.

The set of divergences is closed under trace extension.

CCS adopts a single transition system model. The closed process expressions of the

language form the set of states of an LTS where S0 = ∅ [Mil89, §2.5], usually modulo

A.6. SEMANTIC MODELS 207

a→ ((b → STOP)⊓ (c → STOP))

{(ǫ,X) | X ⊆ {b, c}}
∪{(a,X) | X ⊆ {a, c}∨X ⊆ {a,b}}∗
∪{(ab,X) | X ⊆ {a,b, c}}
∪{(ac,X) | X ⊆ {a,b, c}}

a→ ((b → STOP)� (c → STOP))

{(ǫ,X) | X ⊆ {b, c}}
∪{(a,∅) , (a, {a})}
∪{(ab,X) | X ⊆ {a,b, c}}
∪{(ac,X) | X ⊆ {a,b, c}}

∗ Note that {a,b, c} is not in this refusal set.

Figure A.6: Failure sets where A = {a,b, c}

a bisimulation equivalence. The transition relation
a−→ is described using SOS. The

definition is given inductively by rule schemas over the structure of expressions. A

rule schema has two parts: a sequence of hypotheses and a conclusion, the former is

usually written over the latter with a line between like Com1, Com2, and Com3 of §A.4.

If all the hypotheses are true of the relation then the conclusion must be too.

No distinction is made in CCS between processes and states. The model denoted

by a process expression is a connected subgraph of the transition system defined by

the whole language; it is a process graph where s0 is the state corresponding to the

expression and the predicate
√

is unused.

In ACP, reasoning proceeds, ideally, from the axioms alone, independently of any

model. Rather than distinguish one process model, various models are developed and

compared. The most usual are [BW90] a term model, similar to the LTS of CCS, a pro-

jective limit model, and a process graph model, which is similar to, but more abstract

than the term model. The relations between a set of axioms and a model are estab-

lished rigorously: soundness means that all statements derivable from the axioms are

true of the model, and completeness that all statements true of the model are derivable

from the axioms.

208 APPENDIX A. PROCESS ALGEBRA

Appendix B

Input/Output Automata and related

approaches

Input/Output Automata (IOA) [Lyn96, Chapter 8][LT89] are another formalism for the

rigorous modelling and verification of reactive and concurrent systems. They were

influenced primarily by the CSP approach to process algebra [Lyn96, §8.9] but they

have developed a distinct character and body of research of their own. The extension of

IOA to model time [KLSV06] is particularly relevant for modelling embedded systems.

Hybrid and probabilistic extensions are also important but they are outside the present

scope.

The three distinguishing characteristics of IOA are the partitioning of external ac-

tions into sets of inputs and outputs with related restrictions on transition structures,

§B.1, the description of states via variable valuations §B.2, and the attention given to

fairness, §B.3. IOA incorporate external actions as in process algebra, with particular

inspiration from CSP, with description and reasoning over states and executions as do

formalisms like the Temporal Logic of Reactive and Concurrent Systems (TLRCS) and

Temporal Logic of Actions (TLA+), which are described in §B.4. A version of IOA in

continuous time is outlined in §B.5.

B.1 Input-enabling and composition

Definition B.1.1

An input/output automaton over I, O, and L is an LTS (S, S0,−→) over A = I ∪̇O ∪̇L and

P = ∅ where ∀i ∈ I, s ∈ S.∃s′ ∈ S. s i−→ s′, and a task partition T that partitions O ∪̇L
into equivalence classes. The pair will be written (S, S0,−→, T).1

The three types of action are respectively input, output, and internal. The first two are

together termed external actions I ∪̇O, and the latter two together locally-controlled ac-

tions O ∪̇L. Internal actions are like the τ actions of process algebra, but distinguish-

ing different actions allows for specific reasoning about the behaviour and properties

of individual components.

The clause that requires transitions on every input action to be defined for every

state defines a class of input-enabled LTSs. It marks a distinct shift in perspective

from the consensus-requiring handshakes of the process algebras to a setting where

processes must always be ready to react to stimuli from the environment which is, ar-

guably, more natural for a large class of embedded systems where there is no arbitra-

tion between processes, rather just detection and response. While in process algebras

a larger class of processes can be considered, the restriction has the advantage of sim-

plifying notions of refinement and equivalence [Vaa91, LV95a]. In terms of specifying

1I/O automata are usually presented differently [Lyn96, Chapter 8][LT89]. For an automaton A, the sets
of states, initial states, transitions, and the task partition are written, respectively, states(A), start(A),
trans(A), and tasks(A). A separate ‘signature’ sig(A) = S partitions the set of actions, written acts(S)
into inputs in(S), outputs out(S), and internal in(S) actions. The set trans(A) is a subset of states(A) ×
acts(sig(A))× states(A), rather than a family of transition relations.

210 APPENDIX B. Input/Output Automata AND RELATED APPROACHES

algorithms, it can be argued [Lyn96, §8.1] that input-enabling forces designers to spec-

ify what should happen when an unexpected input occurs. Furthermore, it simplifies

the theory [Lyn96, §8.1].

An IOA may model implementations comprising multiple distinct threads of con-

trol. While there is a tendency to abstract from such details in process algebra, they

are integral to the treatment of fairness in IOA. Rather than identify tasks, locally-

controlled actions are considered equivalent, for the purpose of defining execution

fairness, when they are controlled by the same component.

The properties of locally-controlled actions are ensured, while preserving the syn-

chronising character of communications, by restricting when IOA may be composed. A

(countable) set of IOA are compatible if their local actions are truly local, each action

is controlled by at most one of them, and only finitely many of them share any one

action [Lyn96, §8.2.1].

Definition B.1.2

A set of IOA {Ij}j∈J is compatible iff

1. ∀j, k ∈ J. j ≠ k =⇒ Lj ∩Ak =∅
2. ∀j, k ∈ J. j ≠ k =⇒ Oj ∩Ok =∅

3. ∀a ∈
⋃

j∈J
Aj .finite ({Ak | k ∈ J and a ∈ Ak})

Compatibility is a prerequisite for forming the composition of IOA [Lyn96, §8.2.1].

Definition B.1.3

Given a set of compatible IOA
{
Ij =

(
Sj , S0j ,−→j , Tj

)}
j∈J the composition ‖j∈J Ij is an

IOA (S, S0,−→, T) over I = ⋃j∈J Ij \O, O = ⋃j∈J Oj , and L = ⋃j∈J Lj where

• S =
∏

j∈J
Sj

• S0 =
∏

j∈J
S0j

• −→
s

a−→ −→
s ′ iff

sj

a−→ s′j if a ∈ Aj
sj = s′j otherwise

• T =
⋃

j∈J
Tj

The symbol
∏
j∈J denotes a Cartesian product indexed by J, each element is a vector

−→
s

whose components are written sj for j ∈ J.

The definition of composition over a set of IOA, rather than as a binary operator as in

the process algebras, emphasizes the structure of the composition, and allows com-

positions of an unbounded number of components without a recursion operator. The

restriction to compatible IOA ensures that exactly one component controls each inter-

nal and output action, and also that only a finite number of components participate in

any transition. The structure of task partitions is preserved by composition.

Communication between composed IOA is similar to that of CSP: the potential for

further synchronization with an action is preserved and all components who can syn-

chronize on an action must. But the input-enabled and compatibility clauses restrict

the structure of interactions. The occurrence of an output action is determined by at

most one component, and any other component that shares the action must synchro-

nise with it. Communication is thus by synchronized broadcast from a single source.

Importantly, and as in CSP [Hoa85, §2.8.1, D6], the traces of an IOA composition have

the property [Lyn96, Theorems 8.1–8.3] that when restricted to the alphabet of an in-

dividual component they are also a trace of that component; similarly for executions.

B.2. MODELLING AND SPECIFICATION 211

I1
I1 = {b}, L1 = ∅, O1 = {a}

a

b

a

I2
I2 = {a,d}, L2 = ∅, O2 = {c}

c

c

d

a

c

c

a

I3
I3 = {c}, L3 = {f}, O3 = {e}

c

e

c

e

f

e

d

c

c

Figure B.1: ‘Pasting’ together Input/Output Automata (IOA) traces

This property makes compositional reasoning possible; properties of the whole follow

directly from properties of the components.

Composition constrains the executions and traces of components. The executions

or traces of individual components can only be ‘pasted together’ if there is a mutually

consistent ordering of the actions of each. That is, all components with an action in

common must correspond on its occurrences, whether it is generated inside or out. The

correspondences must respect the sequential ordering within each execution or trace.

See Figure B.1 for an example. Even given a specific execution for each component,

different executions of the composition may still be possible if the components do

not synchronise together on all actions. Each would represent one projection of a

partial ordering amongst the events. This characteristic is accounted for in the usual

statements of the properties of compositionality [Lyn96, Theorems 8.2/8.5, 8.3/8.6] by

postulating a trace in the composition that is consistent with individual component

behaviours, from which a combined effect can then be concluded.

Hiding is the only other operator commonly defined on IOA [Lyn96, §8.2.2]. It has

a similar effect to the ACP encapsulation operator, or the CSP hiding operator defined

with τ-actions.

Definition B.1.4

Given an IOA I over I, O, and L, a subset of output actions H ⊆ O can be hidden to

produce an IOA I \H with identical structure but defined over I, O \H, and L ∪̇H.

B.2 Modelling and specification

The states of an IOA in Definition B.1.1 are elements of an abstract set, a description

which, although sufficient for describing many operations and properties, does not

adequately represent the way that IOA models are created or analysed in practice.

Rather the state space of a model is defined implicitly by declaring a set of variables

and their possible values; computing an exact set of reachable states may be non-

trivial and possibly the main reason for constructing a model. The subset of initial

states is defined by stating the values that variables may take initially. Input, output,

and internal actions are stated directly, and often parameterized for convenience, as

are the task sets. The transition relation is described by associating a precondition and

an effect with each action. The precondition is a predicate over state-space variables

defining a set of states whence a transition on an action departs. By describing how a

subset of those variables may change—those not mentioned are unchanged—the effect

describes transition destinations relative to an action and source state.

IOA are typically presented in a stylized form similar to Figure B.2. The example

shows an abstraction of software [Hol03, Chapter 5] from the NASA Pathfinder demon-

strating a priority-inversion fault. The pseudo-code notation [KLSV06] is more stylized

than the mix of informal natural language and mathematics in other examples [Lyn96].

The description comprises the declaration of two type domains and an IOA described

212 APPENDIX B. Input/Output Automata AND RELATED APPROACHES

type PcValue = enumeration of idle , wait , run
type MutexValue = enumeration of free , busy

automaton Pathfinder
signature

input pause (v : Bool)
output enterh , exith , enterl , e x i t l
internal waith , waitl

states
pch : PcValue := idle ,
paused : Bool ,
pcl : PcValue := idle ,
mutex : MutexValue := free

transitions
input pause (v : Bool)

eff
paused := v

internal waith
pre

pch = idle
eff

pch := wait

output enterh
pre

pch = wait ∧ mutex = free
eff

pch := run ;
mutex := busy

output exith
pre

pch = run
eff

pch := idle ;
mutex := free

tasks
high = { enterh , exith , waith }
low = { enterl , ex i t l , wait l }

internal waitl
pre

pcl = idle ∧ pch = idle
eff

pcl := wait

output enterl
pre

pcl = wait ∧ mutex = free
∧ pch = idle

eff
pcl := run ;
mutex := busy

output ex i t l
pre

pcl = run ∧ pch = idle
eff

pcl := idle ;
mutex := free

Figure B.2: Pathfinder abstraction [Hol03, Chapter 5] as an IOA in TIOA style [KLSV06]

B.3. FAIR EXECUTIONS AND ANALYSIS 213

over four sections. The signature describes the I, O and L sets of actions, note the

parameterization giving pausetrue and pausefalse actions. The reachable states are a

subset of a cross-product of the domains of the four variables, and there are two initial

states because paused is not assigned an explicit initial value. Two of the state vari-

ables encode program counters, pch and pcl for the high- and low-priority processes

respectively, which is an effective technique for small examples and abstract models

but manual reasoning about complex control structures may be unnecessarily difficult.

The transitions section contains a precondition/effect pair for each action or action

schema. There is no explicit precondition for the pause actions, and they are thus

enabled in each state as required for input-enabledness. The two task partitions are

given last.

The low-priority process is only allowed to run when the high-priority process is

idle, which, although it would likely be effected by an operating system scheduler, is

here modelled in the preconditions of waitl, enterl, and exitl. With handshake commu-

nication, particularly the CSP-multiway version, it would be natural to model each of

the two processes, the mutex, and the scheduler as a distinct IOA. However, as pro-

cesses must be input-enabled, the occurrence of an action does not give the controlling

process any information about the state of other processes: separate acknowledgement

actions, which complicate modelling, would be required.

In the example two separate processes are encoded in a single IOA. They interact

via a shared variable, the mutex, rather than through input and output events. This

style of asynchronous shared memory model [Lyn96, Chapter 9], where interaction

with the system environment is through actions but local tasks communicate through

shared variables, differs from that of the asynchronous network model [Lyn96, Chap-

ter 14] where processes and channels are modelled as separate IOA that communicate

in composition by sending and receiving messages. In the shared memory model, lo-

cality restrictions on local variables and variable type restrictions on shared variables

limit transition preconditions and effects. The pathfinder example does not meet the

locality restrictions because the actions of one task depend on the state of another.

Dynamic behaviour in IOA models is expressed directly by individual automata, in

contrast to the process algebras where individual processes are built from constants,

action prefixing, choice, and recursion. The static operators for composition and hiding

are used, however, to describe how automata are connected to form larger structures.

This is sufficient for modelling a variety of algorithms and accords with the importance

in IOA of variable-structured states for description and reasoning. An alternative is to

build and compose IOA with action transducers [LV95a], a formalism for describing

operators on the domain of IOA. Even using action transducers, little distinction is

made between syntax and model, between description and denotation.

Mandating input-enabledness restricts the type of transition systems that can be

described. It is possible to define syntactic conditions on transition rules to ensure

input-enabling, and then, with a further condition ensuring output non-refusal, to de-

fine an input/output form of process algebra [Vaa91]. Interestingly, the choice opera-

tor must be parameterised by the triggering actions of each component since they are

input-enabled:

E
e−→E′

E I+J F
e−→E′ if e ∈ I ∪A

F
e−→F ′

E I+J F
e−→F ′ if e ∈ J ∪A

where A is the set of input actions, A is the set of output actions, and I, J ⊆ A.

B.3 Fair executions and analysis

In an asynchronous model nothing can be said about the execution times, relative or

absolute, of parallel processes. Systems modelled or designed under this simplifying

assumption are less dependent on brittle details of implementation [Dij68, §2]; the

length of a wire, temperature of a chip, or number of instructions in a scheduler for

instance.

214 APPENDIX B. Input/Output Automata AND RELATED APPROACHES

But there may be executions of such models where the enabled locally-controlled

actions of some components are never performed. Such executions may be unrealistic,

for instance physically distinct components operating at any non-zero speed would

be expected to act eventually, and infinitely often if possible, or it may be possible to

assume or mandate that they are, for instance by requiring that a scheduling mecha-

nism eventually gives every process that is able to act a chance to do so. Such fairness

assumptions either restrict the applicability of a model, or form part of a specifica-

tion that must be validated of or ensured by implementations. Stating them separately

adds an additional complication, but obviates the need to explicitly model scheduling

mechanisms, which may be complicated, tedious, or irrelevant. Fairness assumptions

are stated in terms of infinite sequences, which makes them abstract, and thus cannot

be expressed, in full generality, by a (finitely branching) transition system which can

only act on the finite prefixes of sequences [MP92, §2.10].

For an IOA (S, S0,−→, T), each task partition C ∈ T is a set of locally-controlled

actions, C ⊆ O ∪̇L, that belong to a subcomponent which must make progress when

able regardless of other subcomponents. The integrity of a task partition is maintained

through composition, Definition B.1.3, some structure of the parts is thereby retained

in the whole [LT89, p. 12]. The approach taken by the process algebras is more abstract

because the details of how a composite is formed are lost afterward, but this has an

effect on the expression of fairness. The effect of task partitioning is considered by

defining a subset of fair executions [Lyn96, §8.3]. Fairness is a type of progress that is

not lost in composition.

Definition B.3.1

Given an IOA I = (S, S0,−→, T) over I, O, and L, let fairI be a predicate that is true of

an execution α of I iff

• if α = s0, a0, s1, a1, . . . , an−1, an then ∀a ∈ O ∪̇L. sn a
/−→,

• otherwise ∀C ∈ T . (¬finite(α ⌈C) or ¬finite(α ⌈{s | ∀a ∈ C. s a
/−→}))

A finite execution is considered fair if no locally-controlled actions can occur in the

final state. An infinite execution is fair if for each task either infinitely many of its

locally-controlled actions occur, or there are infinitely many states where such actions

cannot occur.

Definition B.3.2

Given an IOA I let fairexecs(I) denote {α | α ∈ execs(I) and fairI(α)}.

Definition B.3.3

Given an IOA I let fairtraces(I) denote the set of fair (weak) traces2 in fairexecs(I).

The set of fair traces is a subset of the set of traces.

Trace properties [Lyn96, §8.5.2][LT89] are one way of specifying requirements on,

or expectations of IOA models. A trace property P is a set of traces traces(P) defined

over sets of inputs IP and outputs OP . No specific formalism is proposed for defining

traces sets; it could be done informally or with a linear temporal logic [Lyn96, p. 220],

for instance. An IOA I over I, O and L can only satisfy a trace property if I = IP
and O = OP . There are two notions of satisfaction either traces(I) ⊆ traces(P),
or fairtraces(I) ⊆ traces(P). In the latter case, traces resulting from executions that

are not fair need not be considered by proofs.

The IOA approach is characterised by the attention paid to rigorous and practical

proof techniques. Three main techniques [Lyn96, §8.5] are invariant assertions, com-

positional reasoning, and hierarchical proofs.

Despite its name, an invariant assertion, in the IOA approach, is a property that

is always-true of reachable states of an automaton [Lyn96, §8.5.1]. Thus it need not

be invariant in the sense of being preserved by all transitions regardless of source

state reachability [GT90]. The distinction makes little difference for IOA because com-

ponents in parallel can only influence one another through actions, not by changing

2The original [LT89] IOA terms for strong and weak traces were, respectively, ‘schedules’ and ‘be-
haviours’.

B.4. RELATED TECHNIQUES 215

non-local state components. Invariant assertions are usually proved by induction over

the steps in an execution, with case-analysis over possible actions.

Compositional reasoning allows the properties of the whole to be inferred from

those of the parts. It is made possible because of properties of the definitions of IOA

and their composition. The executions and traces of a composition, when suitably re-

stricted, are also executions and traces of individual components [Lyn96, Theorem 8.1].

The merged traces of individual components that correspond on shared actions form

a trace of the composition [Lyn96, Theorem 8.3], and similarly for executions [Lyn96,

Theorem 8.2].

Hierarchical decomposition [Lyn96, §8.5.5] is a technique for developing a proof,

implementation, or both simultaneously, by beginning with a relatively simple IOA

and developing a series of successive refinements of increasingly detailed IOA until

the desired levels of detail and efficiency are reached. The essentials of the technique

are also applicable for forming successive abstractions from an implementation model

through to one where analysis becomes feasible or where it is obvious that desired

properties hold. One IOA Ic is a valid implementation of another Ia if a one-way

simulation relation can be found between initial states of Ic and Ia. A relation exists

if for every step from a reachable state of Ic there exists a sequence of steps from

the corresponding state in Ia to a corresponding destination state. The existence of a

relation implies trace inclusion, traces(Ic) ⊆ trace(Ia). Simulation techniques are used

in many formalisms; notably in CCS.

B.4 Related techniques

Many systems for specifying concurrent and distributed systems using assertional rea-

soning have been proposed. They are extensions of classical techniques for analysing

the properties of sequential programs. Two approaches, both based on temporal logic,

are particularly close in style and technique to IOA: the Temporal Logic of Reactive and

Concurrent Systems (TLRCS) [MP92] and the Temporal Logic of Actions (TLA+) [Lam02].

Executions,3 Definition 2.1.6, are primary in all three approaches. States assign

values to variables. In all three frameworks, actions represent discrete transitions

between states, but they play a more central role in IOA where they are given a distinct

identity, act as inputs, outputs, or internal steps, and affect operators on automata. In

both the TLRCS and the TLA+ an action is an assertion on the values of variables in two

consecutive states—those in the second state being distinguished by primes—actions

are not observed directly, rather only by their effect on variables. Thus, in the TLRCS

and the TLA+, traces are usually not defined or studied.

Temporal logic is an optional extra for IOA [Lyn96, p. 220], but it is central to the

approaches of the TLRCS and the TLA+ although the two differ slightly in style.

The basic model of TLRCS is a Fair Transition System (FTS), which is essentially—

like an IOA—an LTS over A, where states are described by assignments to a finite set

of variables, augmented with sets J ⊆ A and C ⊆ A that play a role, like the partitions

of IOA, in defining fair executions. Four modelling languages [MP92, Chapter 1] are

proposed: graphical transition diagrams communicating through shared variables, a

shared-variable concurrent programming language, a message-passing concurrent pro-

gramming language, and Petri nets. Each is given a semantics in terms of FTSs by an

encoding in state variables; for instance, rather than associate states with program ex-

pressions, like the transition systems of CCS, §A.6, control variables and a system of

nested labels are used. An FTS, in turn, implicitly defines a set of executions. Proper-

ties are expressed in temporal logic, which is a topic of interest in its own right [MP92,

Chapter 3]. Interpretations are given for executions and thereby for FTSs.

Everything in the TLA+ is a formula of temporal logic; the focus is on concepts

rather than language []. In fact, predicate logic is preferred and temporal operators are

used in a limited and structured way. A system is specified by a single formula of the

form

Init ∧2 [Next]v ∧Liveness,

3Called variously ‘computations’ [MP92] and ‘behaviours’ [Lam02].

216 APPENDIX B. Input/Output Automata AND RELATED APPROACHES

where Init characterises the initial states of the system, Next characterises the actions—

pairings of states—that may occur, and Liveness limits the set of infinite behaviours;

usually in terms of fairness constraints.

The subscript v represents the set of variables whose values may change as a re-

sult of next. The notation [next]v means Next ∨(v = v′), the variables in v either

change due to the action or they are left unchanged by stuttering steps: other transi-

tions that may occur but that do not concern the specification. The square brackets of

the action are suggestive of the box-shaped always operator because the two always

occur together (so that stuttering steps may always occur). Another action notation is

used with the diamond-shaped eventually operator in liveness properties 〈Next〉v to

mean Next ∧(v ≠ v′), an action that does change variables in v (since stuttering steps

may occur infinitely often anyway).

TLA+ formulas are interpreted over infinite executions. A specification σ represents

a set {σ | σ ⊨ Spec}. Properties are also written in temporal logic and imply a set of

executions. A property P holds of a specification Spec if the executions of the latter

are a subset of those of the former, or equivalently if Spec =⇒ P .

A state in an execution is said to be stuttering when it is identical to an adjacent

state. A formula of temporal logic is said to be invariant under stuttering when its truth

value is unchanged by the addition or removal of stuttering states [Lam02, Chapter 8];

such a formula cannot distinguish between two formulas that only differ in this way.

Invariance under stuttering is the basis for hierarchical specification [Lam83, §2.3]; a

single step in an abstract specification might be refined by multiple steps in an im-

plementation model. Additionally, a single specification describes behaviours only as

they are relevant to a set of variables, which may model only one aspect of a system.

A behaviour of the broader system, when reduced to the set of variables, may have

stuttering states where actions were occurring elsewhere.

All ‘sensible’ TLA+ formulas should be invariant under stuttering [Lam02, Chap-

ter 8]. The FTSs of TLRCS are required to have ‘idling transitions’ on every state that

leave the state unchanged; they are self-loops. An execution may only contain an in-

finite number of idling transitions after having reached a state where such transitions

are the only possibility.4 So stuttering is always possible in TLRCS but it need not be

ignored, in particular the temporal logic defines a next operator ©, which is sensitive

to stuttering. A next operator is considered too expressive for the TLA+ [Lam83]. The

local state components of IOA stutter when an action occurs in an unrelated compo-

nent, Definition B.1.3, but because actions are more essential to a description of system

behaviours stuttering is irrelevant.

The type of fairness described previously, §B.3, is known as weak fairness: execu-

tions where a transition is continuously enabled, that is without interruption, but does

not occur are excluded from consideration. Weak fairness can be interpreted in terms

of individual transitions or in terms of processes [MP92]. The latter interpretation is

expressed in IOA by grouping transitions into task partitions, although the former can

also be expressed by defining a separate partition for each transition. In TLRCS, weak

(transition) fairness is assumed of all actions in the J-set of an FTS. In TLA+, weak fair-

ness is asserted for an action by conjoining a predicate, defined ultimately in temporal

logic, onto the Liveness subformula.

Weak fairness is inadequate for ensuring individual progress when an action de-

pends on access to a shared resource or the participation of another process [MP92].

Then strong fairness is more appropriate: executions where a transition is repeatedly

enabled, but not necessarily continuously, but does not occur are excluded from con-

sideration. It is not relevant for IOA because the enabledness of output and internal

actions depends on the controlling process alone, and any assumptions required of

input actions are better modelled explicitly. Strong fairness in TLRCS is assumed of all

actions in the C-set of an FTS, and in TLA+ by asserting predicates on actions.

While more general liveness assertions can be made in TLA+, nearly all specifica-

tions are adequately expressed in terms of conjunctions of fairness conditions on ac-

tion clauses [Lam02, §8.9.2].

4Which removes the need to consider finite executions, and also mandates a kind of global progress
property.

B.5. TIMED I/O AUTOMATA 217

B.5 Timed I/O Automata

Timed Input/Output Automata (TIOA) [KLSV06] are an extension of IOA for reasoning

about algorithms and systems in quantitative time. They are a good example of how

modelling formalisms can be adapted by adding explicit clock variables.

Definition B.5.1

A Timed Input/Output Automata (TIOA) over pairwise disjoint I, O, and L is a tu-

ple (V ,V0,−→,T), where V is a finite set of variables, V0 ⊆ 2ValsV is a set of initial

variable valuations, −→⊆ ValsV × A × ValsV , where A = I ∪̇O ∪̇L, and ∀i ∈ I, valV ∈
ValsV . valV

i−→, and T is a set of V -trajectories that satisfy:

1. If valV ∈ ValsV there is a τ ∈ T from [0,0] to valV (existence of point trajectories),

2. If τ ∈ T and τ′ ≤ τ then τ′ ∈ T (prefix closure),

3. If τ0
a τ1 ∈ T and τ0

1 = τ ltime
0 then τ1 ∈ T (suffix closure),

4. If τ0, τ1, τ2, . . . is a sequence of trajectories, each in T, such that each τi is closed

and τ ltime
i = τ0

i+1 then τ0
a τ1

a τ2
a · · · ∈ T (concatenation closure), and,

5. If valV ∈ ValsV there is a τ ∈ T which is either open with ltime(τ) = ∞, or closed

and ∃l ∈ O ∪̇L. τ ltime l−→ (time-passage enabled).

Definition B.5.1, and particularly the five axioms, is more or less directly from the

theory of TIOA [KLSV06, §§4.1 and 6.1], where the development is more detailed and

the input/output distinction is introduced separately. Like basic IOA, Definition B.1.1,

the states and structure of TIOA are described in terms of a finite set of variables,

and there is an input-enabled discrete transition relation. Unlike basic IOA, there is

an additional element, the set of trajectories, describing when time may pass and how

variables evolve as it does.

The clauses in Definition B.5.1 for prefix and suffix closure are analogues of the

time interpolation axiom in Definition 2.2.1, and similarly for concatenation closure

and time additivity. The requirement that there be a point trajectory for each state is

a technicality that simplifies the definitions of executions and traces of TIOA; given

below. The input-enabling requirement on discrete transitions is characteristic of the

input/output approach. Time passage enabling excludes certain unrealistic models as

discussed in §2.2.3.4.

Definition B.5.2

An (A,V)-sequence τ0, a0, τ1, a1, τ2, . . . is an execution of a TIOA (V ,V0,−→,T) over I,

O, and L if τ0
0 ∈ V0, every τi ∈ T , every ai ∈ I ∪̇O ∪̇L, and if τi is not the last

trajectory then τ ltime
i

a−→τ0
i+1.

Definition B.5.3

A trace of an execution α of a TIOA over I, O, and L is the sequence α ⌈(I ∪̇O,∅).

218 APPENDIX B. Input/Output Automata AND RELATED APPROACHES

Appendix C

Preorders

There are both theoretical and practical reasons for considering relations between pro-

cess models; and there is a large amount of literature on the subject, particularly on the

various distinctions made by different notions of equivalence [Gla90, Gla93]. A broad

overview, rather than a comprehensive survey, is provided in this appendix. Essential

intuitions are presented rather than detailed technicalities.

Reasons for studying relations between models are outlined in §C.1, followed by a

summary of some basic concepts in §C.2. In §C.3, trace-based process relations that ex-

pose increasing amounts of the internal structure of models are discussed, which lead

to simulation techniques that are defined directly in terms of internal structure §C.4.

Some remarks on preorders for process algebras and IOA are made in §C.5.

The TTSs of §2.2.2 are not explicitly addressed. It has been noted [LV96] that the

standard concepts are directly applicable when delay transitions are treated as discrete

transitions but that the proofs are more difficult.

C.1 Motivation

Techniques for relating models to one another are important to semantic theory, where

arbitrary models are considered; to system development, where models of increasing

detail may be created between a specification and an implementation; and to verifica-

tion, where increasingly abstract models of an implementation are often a prerequisite

for analysis, and where relationships with models derived from properties or stated as

ideal are of prime importance.

C.1.1 Semantic theory

Central to the semantic theory of any formalism is a definition of how arbitrary models

are to be compared. Such definitions express which features of a model are considered

important enough to distinguish, and thereby also which are to be ignored. They guide

the definition of operators, for instance to ensure compositionality, and determine

what can be expressed and how precisely. They also provide a means for judging

and comparing multiple semantic constructs, for instance, ensuring a correspondence

between operational and denotational descriptions.

C.1.2 Design and development

Development can, at least ideally, proceed from a high-level model of a design through

successive refinements to a detailed implementation model. This allows development

to begin with an abstract model that is easily understood or obviously correct and to

gradually add the details required of an implementation, such as distribution over a

network, specific protocols, error handling, more efficient data structures, or security.

The different models may be expressed in the same formalism, for instance as terms

of a process algebra (see Appendix A), or as IOA (see Appendix B), or as formulas of

220 APPENDIX C. PREORDERS

the TLA+ (see §B.4). Showing or ensuring relations between successive pairs of models

guarantees that certain properties of the most abstract model also hold in the final

concrete one.

C.1.3 Verification

Verification often amounts to showing a relationship between models. One model

may be designated as a specification and another as an implementation. The latter is

typically an abstraction of the step-by-step behaviour of a concrete implementation,

while the former may be less operational. A specification need not be comprehen-

sive, and may permit many different implementations. It may, indeed, state only a

single, specific property that is desired of an implementation model. Properties such

as deadlock-freedom and mutual exclusion are typical examples.

In many approaches, specifications and properties are stated in a different form to

implementation models. For instance, in CSP specifications are stated as predicates

over free variables representing system traces and refusal sets [Hoa85], and similarly

in IOA where a trace property [Lyn96, §8.5.2] groups explicit sets of input and output

actions with a set of traces, possibly expressed in linear temporal logic, over those

actions. Specification and implementation models may be translated into the same

form for comparison. For instance, the semantics of a logic used for specification and

the semantics of a modelling language may both be given in the same domain. Or, a

proof system or algorithm may allow relationships between the two to be shown with-

out recourse to explicit translation and comparison. In other approaches models are

unnecessary: for instance, in TLA+ specifications are stated in the same language used

to express system details and logical implication is the relationship of choice [Lam02];

as another example, the ACP insists on model-independent reasoning, see §A.6.

An alternative to stating properties in a separate specification language is to con-

struct a system model whose correctness is obvious or readily verifiable, and then to

compare it to a more detailed model. For example, a CCS model of a network proto-

col could be compared to a simpler First-in-First-Out (FIFO) buffer which obviously has

the desired properties of not losing messages, nor duplicating them, and of preserving

their order [Mil89, Chapter 1]. In CCS (and ACP) such comparisons involve the intro-

duction of τ-steps, see §A.2, to abstract from low-level details. Comparing the models

requires ignoring τ-steps while ensuring that the relevant properties of each model

also hold of the other; the subtleties of this task require careful attention.

A complex verification proof can be decomposed, just like a complex programming

task, into smaller subproblems whose individual solutions can be combined to give

a complete solution [Lyn96, §8.5.5]. Ensuring that the extracted models are related

to the original model is essential for sound analysis. Such proof techniques rest on

properties of operators in the modelling language, for instance that the synchronous

product of CSP processes is effectively restriction and conjunction in the underlying

model [Hoa85, §3.9] and similarly for IOA composition [Lyn96, Theorems 8.1–8.3], and

the existence of relations between models [LV95b].

C.2 Technical Background

The different ways of comparing models of processes are built on the basic mathemat-

ics of relations for ordering and equivalence.

A relation R on a set A is a subset of the cross-product: R ⊆ A × A. Two ele-

ments a,a′ ∈ A are related by R if (a,a′) ∈ R, written aRa′. The relations used for

comparing processes satisfy certain structural restrictions.

Definition C.2.1

A preorder � is a relation satisfying:

• (reflexivity) ∀a ∈ A.a � a

• (transitivity) ∀a,b, c ∈ A.a � b∧b � c =⇒ a � c

C.2. TECHNICAL BACKGROUND 221

There are two common specialisations of a preorder relation. In a partial order, two

elements are equal if the relation holds between them in both directions. In an equiva-

lence relation, the relation either holds in both directions or not at all.

Definition C.2.2

A partial order � is a preorder satisfying:

• (antisymmetry) ∀a,b ∈ A.a � b∧b � a =⇒ a = b

Definition C.2.3

An equivalence � is a preorder satisfying:

• (symmetry) ∀a,b ∈ A.a � b =⇒ b � a

Thus a relation is a preorder if it is reflexive and transitive. Additionally, it may be

termed a partial order if it is antisymmetric, or an equivalence if it is symmetric. Any

preorder is readily extended to a specific equivalence relation.

Definition C.2.4

The kernel ≡ of a preorder � is the relation that holds between two elements a and b
iff a � b∧b � a. It is an equivalence relation.

Elements are not distinguished by the kernel relation if the underlying preorder holds

between them in both directions; the resulting equivalence classes are partially ordered

by the underlying preorder since it is antisymmetric with respect to them.

The relations defined between models are usually partial orders or equivalences

because their respective constraints express the minimum expectations of such rela-

tions. Partial orders are used to define when one model is better than another for some

purpose, such as for implementation or analysis. Equivalences are used to define the

differences between models that are important and those which may be ignored. In

most cases it is sufficient to define a preorder on a class of models; its kernel then

divides the models into a partial ordering of classes of equivalent models.

In most modelling frameworks, models are built by combining smaller models using

operators from a fixed set. As described in §C.1, a large model may be developed or

analyzed in terms of its components. For instance, a component may be replaced with

a more detailed version as a design is gradually refined into an implementation, or a

complex component may be replaced with a more abstract version to make analysis

feasible. The ability to predict the effect of replacing an arbitrary component with

an equivalent or better one, that is to reason compositionally, rests on the interaction

between the chosen relation on models and the set of operators from which the models

are built. One way to make this idea precise is by defining, abstractly, those contexts

in which a single component could find itself operating.

Definition C.2.5

For a fixed set of operators Σ, a context CΣ[_] is a term built from those operators where

the only variable _ occurs once. The substitution of another term t for the variable in

context CΣ[_] is written CΣ[t].

Not only are contexts useful in the technicalities of definitions and proofs, they also

give an abstract representation of the ‘environment’, which is of central importance to

models of reactive systems.

Definition C.2.6

A relation R is a congruence for operators in Σ iff for all processes p and q, pRq
implies ∀CΣ[_]. CΣ[p]R CΣ[q].

Having a preorder that is a congruence for the operators of a modelling framework

means that replacing one component of a model with a better component, according

to the ordering, gives a better model. Replacing one component with an equivalent

component gives a model that cannot be distinguished by those features discernible

through the equivalence from the original. This requirement is so fundamental that

relations are chosen so as to be congruent for desired operators, and operators are

222 APPENDIX C. PREORDERS

defined so that a desired relation is a congruence for them; it allows properties of the

whole to be inferred from properties of the parts.

Many preorders have been proposed. There are broad philosophical differences

about which features should be distinguished and which ignored. There are also

smaller technical differences on how precisely this should be done. And there are ad-

justments to ensure congruence with proposed operators. Relations can be compared

with one another by considering their relative granularities [Gla90, Gla93].

Definition C.2.7

Given relations Rf and Rc on a set A, Rf is finer than Rc , or equivalently Rc is coarser

than Rf , iff ∀a,b ∈ A.aRf b =⇒ aRc b.

The concept of relative granularity for two notional equivalence classes=f and=c is

illustrated by Figure C.1. The solid lines mark divisions between =c classes. Divisions

between =f classes are marked by both the solid and dotted lines. Two elements

related by the finer equivalence =f will also be related by the coarser one =c . Two

elements considered equal in the coarser equivalence may or may not be related in the

finer equivalence.

p

q

a

b =f =c

a =f b =⇒ a =c b

p =c q
p 6=f q

Figure C.1: Relative granularity of equivalence classes

Every modelling framework designates a particular preorder as ideal for comparing

the models that it can express. Although the various preorders are defined against

different semantic models, they can be characterised and thereby compared by their

power to distinguish labelled transition systems, Definition 2.1.1, specifically process

graphs, Definition 2.1.3 [Gla90, Gla93]. A chosen preorder can be considered the se-

mantics for a framework because from it suitable models can be derived. A seman-

tics N can be characterised as a function ON that maps a process graph to the set of

observations that may be made by experimenting or testing it externally [Moo56, Gla90,

Hen88]. A semantic preorder on process graphs is then defined p ⊑N q iff ON(p) ⊆
ON(q), the kernel gives p =N q iff ON(p) = ON(q). To properly characterise process

graphs with τ-steps, more sophisticated notions of possible observability [Gla93] and

preorders based on must-testing [Hen88] are necessary, but they will not be further

discussed.

The observational characterisations can be ordered by relative granularity which,

since not all pairs of preorders can be said to be finer or coarser than one another,

gives a lattice called the linear time–branching time spectrum [Gla90, Gla93]. It is so

named because the coarsest relation compares process graphs based only on the linear

runs they may make, whilst the finest relation compares their computation trees—that

is, all potential future behaviours at each step of an execution. A simplified version

of the lattice containing the eight semantics to be discussed over the following sub-

sections, from 155 more precise definitions [Gla93], is shown in Figure C.2. A line

between two names indicates that the upper is strictly finer than the lower; lines are

transitive. A practical advantage of such a lattice is that once it is known which equiv-

alence distinguishes models sufficiently, it is immediately evident which finer equiva-

lences would also do so. Some equivalences may be more desirable than others due to

their simplicity of definition, their congruence for a set of operators, or because there

exist complete proof techniques or practical decision procedures for them. There are

C.3. TRACES 223

trace

completed trace

failure

completed simulation

simulation

ready simulation

bisimulation

Figure C.2: Simplification of the linear time–branching time spectrum [Gla90, Gla93]

advantages for the theory too; the characterisation of the various semantics in terms

of observations based on testing isolates the central concepts and insights from the

details of particular approaches and unifies the underlying ideas.

It is generally agreed that models of practical systems should only be distinguished

by the observations that can be made externally, ignoring irrelevant details of internal

structure, and compromising only to achieve congruence with operators. But there are

different ideas about what can be observed externally and which details are irrelevant.

Thought experiments on machines with various combinations of buttons, lights,

and displays are one way to conceptualize observations [Gla90]. They can be adapted

to understand the practical consequences for developing or trouble-shooting a real

system that has been developed from or as a model in a particular semantics.

The remaining subsections consider each of the semantics of Figure C.2 in turn,

working from the coarsest upward.

C.3 Traces

The trace preorder is the coarsest in the linear time–branching time spectrum. Traces

are defined in Definition 2.1.9.

Definition C.3.1

The two process graphs p and q are ordered by (partial) trace inclusion p ⊑t q iff

traces(p) ⊆ traces(q).

The notion of observation Ot is the traces function itself. The kernel of the preorder

is called trace equivalence. Two processes are trace equivalent exactly when their trace

sets are identical; coarser notions of equivalence are not considered because there is

little sense in identifying reactive processes that have different trace sets.

There are appealing reasons for using trace semantics. It is truly an external view

of model behaviour; all internal structure, including τ-steps, is ignored leaving only

the set of all linear runs that can be observed. The definition is relatively simple.

Trace semantics is a congruence for certain sets of operators; broadly, those that

can be defined using SOS rules with premises that are positive and where each variable

occurs only once [Blo94].1 The former constraint precludes predicates on actions that

cannot happen, the latter prevents discernment of the branching structure of a process.

The basic operators of CCS, CSP, and ACP meet these restrictions.

A set of traces expresses all action sequences that may be performed, but nothing

about which actions or subsequences are inevitable after observing an initial trace

prefix. One classic example is the set of traces {ǫ,a,ab} which is a trace model for

the process graphs, written as CCS expressions, (a.b.0) and (a.b.0 + a.0). The two

processes are thus trace equivalent, but, under an assumption of progress, the former

must eventually perform a b action, whereas the latter may stop after performing an a.

1More precisely: ‘tyft’ rules [GV92] that are ‘straight’ and ‘patient’ [Blo94].

224 APPENDIX C. PREORDERS

The semantics of transformational programs distinguish partial correctness, where

a program that terminates gives correct results, from total correctness, with the ad-

ditional requirement that a program does eventually terminate. Termination is also

desired for certain reactive algorithms, for instance that a series of network messages

result in the election of a leader node. In many other cases, however, a system that

stops prematurely, or deadlocks, is considered incorrect. The trace model does not

distinguish a process that deadlocks from another with the same potential behaviours

that does not. A simple remedy is to enhance traces with additional information about

when deadlock can occur.

Definition C.3.2

Given an LTS T over A, where 0 6∈ A, the completed traces, written ctraces(T), com-

prise traces(T) and additional elements a0, a1, . . . , an,0 for each trace a0, a1, . . . , an
that corresponds to an execution ending in a state with no outgoing transitions.

Definition C.3.3

The two process graphs p and q are ordered by completed trace inclusion p ⊑ct q iff

ctraces(p) ⊆ ctraces(q).

Completed traces are a simple form of decorated trace where externally visible

sequences of actions are augmented with additional information about the internal

structure of the generating model, namely whether it is in a deadlock state. They al-

low models to be distinguished based on differences in deadlock and termination, for

example ctraces(a.b.0) = {ǫ,a,ab,ab0} ≠ {ǫ,a,ab,a0, ab0} = ctraces(a.b.0 + a.0),
but they mandate an increased capacity for observation. One could ask whether an

observer really could always distinguish a deadlocked system from one that is simply

slow, particularly in the asynchronous setting where (almost) nothing is known of rela-

tive execution rates. The issue of deadlock in concurrent systems is important enough

to trump such philosophical objections.

Operators defined on a completed trace model, or any finer model, can utilise the

additional structural information. An example is true sequencing, P ;Q, where pro-

cess Q begins execution as soon as P terminates or deadlocks. Such operators may

be expensive or impractical to implement since they require a deadlock detection al-

gorithm [Blo94]. While they simplify the expression of certain designs, which is an

advantage for specification, the ramifications for eventual implementations, particu-

larly of embedded systems, cannot be ignored.

It is also possible to distinguish successful termination from deadlock [Gla90, §19].

If a particular system were shown to be free of deadlock states and a component

were replaced with an equivalent component, one would expect the resulting system

to also be free of deadlock. But this is only so when the notion of equivalence is a

congruence for the operators used to describe the system. Unfortunately, completed

traces are not congruent for common operators, like the CSP synchronous product or

the CCS restriction operator, which means they are not a suitable model.

Given a relation that is considered ideal for a fixed modelling language but for

a lack of congruence, the general solution is to consider all finer relations that give

congruence for the language and from them to choose the coarsest. That is, find a

new relation that distinguishes per the original except when necessary to ensure that

operator mappings respect the equivalence classes of the new kernel. The new relation

makes just enough additional distinctions to avoid ‘being tricked’ by the operators

of the calculus. By definition, any relation finer than completed trace inclusion also

distinguishes processes that differ in possible traces or deadlock states.

The coarsest relation that is a congruence for the operators of CSP is the failure

preorder,2 refer Figure C.2.

Definition C.3.4

Given two process graphs p and q, they are related by failure inclusion p ⊑f q iff

failures(p) ⊆ failures(q).

Failures are another form of decorated trace. They are more discriminating than

completed traces. Rather than indicate when no further actions are possible, they

2Only divergence-free processes are considered.

C.4. SIMULATIONS 225

record exactly which actions are not possible, see §A.6 for a precise definition. They

expose even more information about the internal structure of a model.

Failure sets are less relevant for input-enabled formalisms, like IOA, where the in-

tersection of failures and inputs will always be empty, and, besides, such formalisms

can only be placed in contexts that never restrict local or output actions [Vaa91, Defi-

nition 5.6]; that is, parallel composition is only defined for compatible automata (Def-

inition B.1.2). Alternately, the completed and partial trace sets of an IOA are always

identical because deadlock states are impossible3 because there must be a transition

for every input from every state. So, rather than deadlock states, the states of inter-

est in an input-enabled setting are those without outgoing local or output transitions,

or equivalently, those where only input transitions are enabled. Such states, where

a process waits indefinitely for stimulus from its environment, are termed quiescent.

Quiescent trace sets can be defined similarly to completed trace sets—including partial

traces, but with quiescent states marked rather than deadlock states—and the resulting

preorder is substitutive for any input-enabled calculus, even when fairness is consid-

ered [Vaa91].

Definitions C.3.1 and C.3.3 describe sets where each element is finite. The trace set

of a process able to continually and indefinitely perform a-actions will contain every

finite sequence: a, aa, aaa, . . . ; but no single infinitely long sequence of as. That is,

it will include every sequence in a∗ but not the sequence aω. In an infinitary trace

semantics observation sets comprise both partial and infinite traces. For infinitary

completed trace semantics, completed and infinite traces are included; they suffice to

recover partial traces [Gla90, §3].

Thinking about infinitary traces requires care because everyday intuitions do not

necessarily apply. Infinitary traces are also difficult to justify observationally since

an observation or test may never actually finish. Despite these drawbacks, they are

sometimes a convenient and necessary abstraction, allowing what would be an evolving

behaviour to be treated as a static object. Sets of infinite traces can be described as

formulas of linear temporal logic (for which they are a natural model) or ω-automata.

Although not evident from Figure C.2, infinitary trace semantics is strictly finer than

(finitary4) trace semantics [Gla93, Figure 2].

For certain classes of LTSs, finitary trace sets are valid approximations of infinitary

behaviour and concluding that two LTSs are ordered or equal in terms of their finitary

traces implies the same of their infinitary traces, which means that only the finitary

traces need ever be considered. This property is termed variously finite distinguisha-

bility [MP92, §2.1] or limit closure of infinitary trace sets. There is a simple restriction

on LTSs that ensures this property.

Definition C.3.5

An LTS (S, S0,−→) over A has Finite Internal Nondeterminism (FIN) if S0 is finite and

for every σ ∈ A∗ and s ∈ S the set {s′ | s σ=⇒ s′} is finite.

An LTS with FIN is image finite, meaning that, after any finite trace, it can only be in

one of a finite number of states. The finitary traces of an LTS with FIN are sufficient to

determine its infinitary traces.5

Although finitary traces suffice for models of ‘real’ systems, infinitary trace sets are

required for more abstract descriptions, like those that express fairness [MP92, §2.10].

C.4 Simulations

When models are compared in terms of traces, no direct reference is made to inter-

nal states or interconnecting transitions, even as increasingly decorated traces discern

3Provided the set of inputs is not empty: I ≠∅.
4The adjective ‘finite’ is preserved to distinguish different versions of failure semantics [Gla93].
5This result is shown with König’s Lemma, see for example [KLSV06, Lemma 4.18] and [Gla90, Proposi-

tion 2.4].

226 APPENDIX C. PREORDERS

(These relationships
also happen to be
functions, but this
is not required.)

a

a b

p

a

a b

a

b

q

is a simulation, thus p ⊑s q

a

a b

a

b

q

a

a b

p

is a simulation, thus q ⊑s p
. . . and thus p =s q

Figure C.3: Simulations between two processes p and q.

more internal differences. A simulation relation, in contrast, is defined on the states of

models based on the actions possible and the states resulting from each.6

The basic simulation relation and two extensions, completed simulation and ready

simulation, are presented in this subsection, though without treating τ-transitions in

detail. The existence of simulation relations between two models implies a close cor-

respondence between their behaviours, which both leads to distinct new preorders as

well as giving a partial proof method for decorated trace preorders. Although sim-

ulation preorders arise from the comparison of internal structure, they can also be

characterised in terms of external observations and experiments.

A relation between the states of two models is termed a simulation relation if it

satisfies an asymmetric constraint on possible actions and future states.

Definition C.4.1

Given two LTSs (S1, S01 ,−→1) and (S2, S02 ,−→2) over a single set of actions A, a relation

between their states R ⊆ S1 × S2 is a simulation relation provided that whenever s1 R s2
and s1

a−→1 s
′
1 then ∃s′2. s2

a−→2 s
′
2 and s′1 R s

′
2.

Between two models there may be many such relations; the existence of at least one

that relates initial states is enough to guarantee a close correspondence between the

model’s behaviours.

Definition C.4.2

Two process graphs p and q, with respective initial states p0 and q0, are ordered by

simulation p ⊑s q iff there exists a simulation relation R between their states such

that p0 Rq0.

Simulation relations and the associated preorder are fundamental and occur frequently

in the literature [Gla90, §8][Par81].

Given process graphs p and q where p ⊑s q, q could be considered as ‘better’

because it can simulate any execution of p such that both executions exhibit the same

external behaviour. That is, a requirement for a machine behaving per p would also be

satisfied given one behaving per q. Alternatively, q could be seen as a specification of

allowed behaviours and p an implementation. To meet the specification, every action

of p must be checked against q to see both that it is allowed and that all behaviours

from the subsequent state are also permitted. Note that, due to the asymmetry of

simulation relations, p is not required to match all possible behaviours of q.

The example in Figure C.3 shows two processes p and q. At left, the dotted lines

show a simulation relation from the states of p to the states of q. The relation, in

6The term ‘simulation’ refers to a relation between states; ‘simulates’ to the associated preorder; ‘simu-
lation equivalence’ to the full equivalence relation; and, ‘similar’ to two processes that are equal according
to that relation.

C.4. SIMULATIONS 227

this case a function, shows how every execution of p can be simulated by one in q
to produce the same trace. Other simulation relations are possible and any one is

sufficient to show that p is related to q by the simulation preorder p ⊑s q. At right,

a simulation relation is shown in the other direction: from q to p. Thus, these two

processes are simulation equivalent, or similar, p =s q.

Although the simulation preorder is defined through a relation on internal states it

can be characterised in terms of observations, provided experimenters can somehow

save and restore the state of machines; perhaps by allowing machines to be repli-

cated during an experiment or by equipping them with undo buttons [Gla90, §8]. Dif-

ferent preorders arise if machines can only be replicated a finite number of times

from a given state, or if replication is only allowed in states that have no outgoing

τ-transitions [Gla93].

A replication or undo mechanism allows experimenters to reconstruct the branch-

ing structure of a machine by performing multiple experiments from each reachable

state (or at least from those that cannot be internally preempted). Such mechanisms

may not be realistic for all systems, they serve rather as thought experiments on mod-

els and as a way to relate simulation with other preorders. The observations made

during such experiments can be characterised as branching traces where, when ex-

pressed as formulas of modal logic, multiple experiments from a replicated state are

put together with nested conjunction [HM80]. The notion of observation for simula-

tion Os is then sets of branching traces, with inclusion and equality of sets for its

preorder and equivalence relations [Gla90].

As replication (conjunction) can be added to traces to give basic simulation, so can

it be added to decorated trace preorders to give corresponding notions of simulation.

Completed simulation, refer Figure C.2, distinguishes processes more finely than do

either of the simulation or completed trace preorders. It is defined by constraining the

definition of basic simulation to relations that only pair deadlock states in one model

with deadlock states in the other.

Definition C.4.3

Given two LTSs (S1, S01 ,−→1) and (S2, S02 ,−→2) over a single set of actions A, a relation

between their states R ⊆ S1 × S2 is a completed simulation relation if it is a simulation

and whenever s1 R s2 then (∀a ∈ A. s1 a
/−→1) ⇐⇒ (∀a ∈ A. s2 a

/−→2).

Definition C.4.4

Two process graphs p and q, with respective initial states p0 and q0, are ordered by

completed simulation p ⊑cs q iff there exists a completed simulation relation R between

their states such that p0 Rq0.

Processes are observed in terms of completed simulation by enhancing completed

trace observation with the ability to replicate processes; giving sets of branching traces

where a leaf may be marked as complete if the process could deadlock after performing

the sequence of actions in the branch leading to it.

The ready simulation [Gla90, §9][LS91, BIM95] preorder is finer than either of the

completed simulation or failure preorders. A ready simulation is constrained to pairs

of states from which the same actions are possible.

Definition C.4.5

Given two LTSs (S1, S01 ,−→1) and (S2, S02 ,−→2) over a single set of actions A, a relation

between their states R ⊆ S1 × S2 is a ready simulation relation if it is a simulation and

whenever s1 R s2 then ∀a ∈ A. (s1 a
/−→1 ⇐⇒ s2

a
/−→2).

There are at least two other ways to state the key constraint, each offering additional

insight. First [LS91], by checking transition possibilities back in the other direction, that

is requiring that states are only related s1 R s2 if s2
a−→2 implies s1

a−→1 for all actions a.

Second [Gla90], by defining the set of transitions enabled from a state I(s) = {a | s a−→}
and requiring that if s1 R s2 then I(s1) = I(s2).
Definition C.4.6

Two process graphs p and q, with respective initial states p0 and q0, are ordered by

ready simulation p ⊑rs q iff there exists a ready simulation relation R between their

states such that p0 Rq0.

228 APPENDIX C. PREORDERS

a

a b

a

b

q

a

a b

p

%

An a-transition is not possible from
the state at left, which rules out the
most likely candidate state, for a
ready simulation relation, at right.

No ready simulation exists, thus q 6⊑rs p

Figure C.4: Failure to find a ready simulation between the processes of Figure C.3

a

b

c

b

d

p

a

b

c

b

d

a

b

c

q

a

b

c

b

d

a

b

c

q

a

b

c

b

d

p

is a ready simulation, thus p ⊑rs q is a ready simulation, thus q ⊑rs p

. . . and thus p =rs q

Figure C.5: Ready simulations between two processes p and q [LS91, from Figure 1].

There are several different but equivalent observational characterisations of ready

simulation [Gla90, §9]. For the simplification presented in Figure C.2, it suffices to con-

sider the combination of failures (Definition A.6.2), with replication, giving branching

traces where each state is labelled with a refusal set (Definition A.6.1).

Ready simulation is more discriminating than both basic and completed simulation.

The example in Figure C.4 depicts the two processes that were earlier shown to be

simulation equivalent, but for which only one of the simulation relations is also a ready

simulation. The figure shows that the other relation does not qualify because there is

a state in q (at left) from which less actions are possible than from any otherwise

potentially related state in p (at right).

An example where two processes are ready simulation equivalent is given in Fig-

ure C.5. The first direction p ⊑rs q is obvious because p is a subtree of q and no

additional actions are possible from the state of q where the additional branch is at-

tached. The other direction q ⊑rs p is also readily established. Note that the right-

hand a-transition of q leads to a state from which only a b-transition followed by a

c-transition is possible, whereas in the corresponding state of p in the ready simula-

tion, there are two b-transitions with different destination states. Ready simulation

C.4. SIMULATIONS 229

a

b

c

b

d

p

a

b

c

b

d

a

b

c

q

%

At right, there is no b-transition to a state (one
from which a d-transition to deadlock is possible),
which rules out the most promising candidate for a
bisimulation that includes the initial states.

No bisimulation exists, thus p ≠b q

Figure C.6: Failure to find a bisimulation between the processes of Figure C.5.

only requires that all possible actions are matched, not all possible derivatives.

Requiring that related states match all possible derivatives of one another gives

strong bisimulation [Mil89].

Definition C.4.7

Given two LTSs (S1, S01 ,−→1) and (S2, S02 ,−→2) over a single set of actions A, a relation

between their states R ⊆ S1 × S2 is a strong bisimulation provided, for all a ∈ A, that

s1 R s2 implies:

1. whenever s1
a−→1 s

′
1 then ∃s′2. s2

a−→2 s
′
2 and s′1 R s

′
2.

2. whenever s2
a−→2 s

′
2 then ∃s′1. s1

a−→1 s
′
1 and s′1 R s

′
2.

In contrast to the other simulations, bisimulations are symmetric; reversing the order

of the two clauses does not change anything. A bisimulation found between two mod-

els in one direction is also a bisimulation between them in the reverse direction. Thus

there is no preorder relation, only an equivalence.

Definition C.4.8

Two process graphs p and q, with respective initial states p0 and q0, are bisimilar,

p =b q, iff there exists a bisimulation relation R between their initial states p0 Rq0.

The two models that were earlier shown to be ready similar are presented again

in Figure C.6, where it is shown that they are not bisimilar. After an a-transition, the

process at right q cannot always match all future possibilities of the process at left p,

even though, q can, from both a-descendants, match all immediate possibilities for

action. Bisimulation is considered to be a branching time equivalence because of this

requirement on all future possibilities, even though any run of a system must resolve

each branching point to a single choice.

Powerful experiments are required to characterise bisimulation [Gla90]. In addition

to being able to replicate processes, an observer must have the power to ensure that all

possible transitions for an action at a state have been tested. This grants the power to

observe not just which actions cannot occur at a given point, as per ready simulation,

but also which future branchings are not possible, or equivalently which future branch-

ings are inevitable. For example, in Figure C.6, one could observe of p that initially it is

not possible to do an a such that all b actions then lead to states where c is inevitable

(equivalently actions in A \ {c} are impossible), while from q it is possible to do an a

230 APPENDIX C. PREORDERS

to a state where all b actions must be followed by a c. Such observations can be stated

more clearly as formulas in the Hennessy-Milner Logic [HM80], sets of which give an

observational characterisation of bisimulation Ob.

A strong bisimulation does not treat τ-transitions differently to other actions, con-

trary to their distinguished meaning. But a weak bisimulation [Mil89, §5] does, allowing

a τ-transition in one process to be matched by none, or any number of τ-transitions

in the other; and for any other type of transition the matching transition may be pre-

ceeded and trailed by any number of τ-transitions provided the final states, but not

necessarily any intermediate ones, are also in the relation.7 Weak bisimulation equiv-

alence is not a congruence for the choice operator due to the preemptive power of

τ-transitions; thus a refinement, observational congruence [Mil89, §7], that requires

explicit matching of τ-transitions from the initial state, is often preferred.

By ignoring τ-transitions, weak bisimulation also ignores differences in divergent

behaviour (the potential for infinite sequences of internal steps) between models; it is

suggested that such issues can be addressed ‘by a separate argument’ [Mil89, p. 149].

The remainder of this section outlines the use of simulation preorders and bisim-

ulation for proving relationships between models. Simulation proofs are often also an

effective way to prove trace inclusion.

Proving simulation ordering or bisimulation equivalence between two models re-

quires first proposing a relation between the states of both and then showing that it

is indeed a (bi)simulation relation; that is, initial states are interrelated, transitions oc-

cur between related states, and other relevant requirements on possible actions and

derivatives are met. For simulation equivalence, the proposal and proof must also be

repeated in the converse direction. The approach has two important advantages. First,

the existence of any relation that meets the requirements is sufficient to show order-

ing or equivalence; the most convenient can be chosen and state reachability can be

ignored or accounted for as required, possibly by incorporating invariants [LV95b, §6].

Second, reasoning is mostly local, though τ-transitions complicate matters, to pairs of

states, which simplifies analysis.

While simulation relations are defined as, and usually also presented as, relations

on abstract states, like the lines between the dots in Figures C.3–C.6 reasoning pro-

ceeds in practice from more structured descriptions; like, for instance, parameterised

definitions in a process algebra [Mil89], or variable valuations in IOA. Relations need

not involve specific models, they can also be proved over more abstract descriptions to

show desired properties of transformations within a modelling framework, or between

modelling frameworks. They can justify an equational proof system for a model [Mil89,

§7], see Figure A.5a, or a model for a set of equational axioms, see Figure A.5b.

Simulation proof techniques are also important for verifying trace inclusion and

equivalence relations because they ‘reduce reasoning about executions to reasoning

about individual states and steps’ [LV95b]. The simplified linear time–branching time

spectrum of Figure C.2 shows that for each of the (decorated) trace preorders, there is a

corresponding simulation preorder. The lines between each of the simulation and trace

preorders indicate that the former are finer: simulation is a sound proof technique for

trace inclusion, but it is not complete.

Simulation techniques are usually an effective way to show trace inclusion [LV95b].

The basic idea is to posit a relation between the states of two systems, and then to show

that it is indeed a simulation relation. The advantage is the ability to reason in terms

of states, rather than in terms of sequences of actions. Ideally, the relation between

the states will be a function, in which case it is termed a refinement. Simulation is

sufficient to show finite trace inclusion within a deterministic specification [LV95b,

Theorem 3.11].

Simulation fails to show trace inclusion between models that differ in the timing of

(non-deterministic) choices. The classic example is shown in Figure C.7 where a simu-

lation exists from p to q, but not from q to p due to the latter’s initial branching that

7Branching bisimulation [GW96] is a stricter variant where the intermediate states traversed by preced-
ing τ-transitions are related to one another and, similarly, those traversed by trailing τ-transitions are also
interrelated; branching potentials are always respected along corresponding runs of branching bisimilar
models.

C.5. REMARKS ON PROCESS ALGEBRA AND IOA 231

a

b

a

c

p

a

b c

q

is a simulation, thus p ⊑s q

a

b c

q

a

b

a

c

p

is a backward simulation, thus q ⊑bs p

(There is no (forward) simulation, q 6⊑s p)

. . . and thus p =t q

Figure C.7: Trace equivalence via forward and backward simulation.

limits later possibilities. A backward simulation overlooks such differences in branch-

ing. In the figure, the a-descendant of q is related to two states in p. The whole relation

is a backward simulation because both b- and c-transitions in q are matched in p even

though there each originates from a different related state. Combining forward and

backward simulations gives a complete proof technique for trace inclusion, and hence

equivalence [LV95b, Theorem 3.22].

It is sometimes easier to propose and prove simulation and backward simulation re-

lations between models if history and prophecy variables are introduced [AL91, LV95b].

Such variables track properties of complete executions while maintaining the ability to

reason about states and steps individually.

A simulation between models I and S implies that the traces of I are a subset of

those of S, and thereby that any safety property shown of S will not be violated by I .
This property partially justifies the use of simulation in successive refinements from

high-level models, be they design specifications or verified abstractions, to more de-

tailed low-level models. As simulations imply a closer relationship between processes

than trace inclusion alone, they can also help in showing that liveness properties are

preserved [Lyn96, §8.5.5].

The lattice of Figure C.2 collapses for deterministic processes—no preorder dis-

tinguishes any more processes than another. This is advantageous for deterministic

formalisms [MR01] where simulation is complete for trace inclusion and bisimulation

for trace equivalence.

C.5 Remarks on Process Algebra and IOA

Which of the various preorders is most appropriate for comparing process models

depends on several factors [Gla90, §18][Gla93, §5]. No single preorder is intrinsically

better than the others and the presented modelling languages differ in which they

distinguish as primary.

CSP adopts the coarsest preorder that is both a congruence for its operators and

able to distinguish differences in deadlock behaviour. Coarse preorders require less

imaginative testing scenarios and, thus, any distinctions made between processes are

easier to justify in practical terms. For algebraic approaches, the coarsest semantics

gives the most valid equations [Gla90]. For deterministic CSP trace inclusion is suffi-

cient [Hoa85, §2.8]. But, although it is a congruence for CSP more generally, it fails

to distinguish non-deterministic processes with different deadlock behaviours. The

coarsest equivalence that does and that is also a congruence is failures equivalence.

Distinguishing divergent behaviour is important in the CSP approach, so the preorder

232 APPENDIX C. PREORDERS

of choice compares both failures and divergence sets.

As demonstrated by CSP: the coarser a preorder is, the less likely it will remain

suitable if new operators or manipulations are introduced. This is one reason for

verifying equivalence with the finest possible relation: the result is more likely to hold

if the process is later used in an environment that makes more observations [Gla90].

For CCS, and also ACP, the equivalence of choice is bisimulation, which, because

it distinguishes processes finely on details of internal structure, is congruent for all

‘reasonable’ process operators and contexts. This is an advantage for theoretical in-

vestigations: new operators can be introduced and trialled without risking existing

results, and processes can be discriminated with accuracy. The proof techniques as-

sociated with bisimulation are convenient and they can often also be applied to show

coarser equivalences. There are effective algorithms for verifying bisimulation between

finite processes.

In the study of IOA more emphasis is typically placed on modelling and practical

proof techniques than on concerns about algebraic properties. As for CSP, processes

are related via the simplest observations possible. The restriction to input-enabled

processes and output-accepting contexts means that trace sets are compositional for

IOA [Vaa91]. Finitary trace inclusion is enough to show satisfaction of safety prop-

erties, which are represented as non-empty, prefix-closed, and limit-closed sets of in-

finitary traces [Lyn96, §8.5.3]. Satisfaction of liveness properties, which must include

an infinitary extension for every finitary trace, is shown by fair trace inclusion, which

means quiescent (finitary) traces and the subset of infinitary traces that meet the re-

quirements of being fair. Divergence is less of an issue for input-enabled models: they

must always respond to external stimulus.

Both TLRCS and TLA+ eschew distinctions based on branching alone, and, like IOA,

are less concerned about interactions of relations and operators. States, rather than ac-

tions, are central to both frameworks and thus the preorders discussed in this section

have less relevance.

In the TLRCS approach, transition diagrams, shared-variable programs, message-

passing programs, and petri nets are valid system descriptions [MP92, TODO], but the

focus of study is on fair transition systems. Properties or interrelations are based

on executions that either contain an infinite number of non-stuttering transitions, or

that, after a finite suffix, consist of an infinite repetition of a (deadlock) state where

the only possible transition is a stuttering self-loop [MP92, TODO]. Often only fair,

strongly or weakly, executions are considered. The TLA+ is similar in perspective but

with less emphasis on fairness and liveness [Lam02, §8.9.5]. Stuttering is important to

both approaches, and particularly the latter [Lam83], because it simplifies reasoning,

separate cases for finite executions are unnecessary [Lam02, §8.9.5], and composition,

where the conjunction of specifications is essentially synchronous and asynchronous

transitions are matched by stuttering transitions in unrelated components.

C.6 Omissions

Perhaps the biggest omissions of this section are the may and must preorders of pro-

cess testing [Hen88] and detail on abstraction (τ-transisions) and divergence [Gla93].

The importance of these topics is not in doubt, but they are not needed directly in this

thesis.

Appendix D

Textual Argos

D.1 Explanation

This grammar was constructed by examining online Argos examples [Ver05]. It con-

tains two enhancements:

1. An after keyword (see 〈transition〉) for specifying the timeout transition and

parameters for temporized states.

2. Process encapsulation (INTERNAL) is not limited to the top level process descrip-

tion, but braces must be used to delimit fine-grained scopes.

D.2 Lexical details

Comments begin with a percentage symbol and extend to the next new-line char-

acter. White space is otherwise ignored. IDENT represents the regular expression:

[A-Za-z0-9_]+. Matching is case-sensitive. The following keywords are reserved:

AUTOMATON init INTERNAL from PAR ENDPAR

PROCESS RAFF STATES to TARGOS ENDTARGOS

TRANS with after

D.3 Grammar

〈program〉 →
TARGOS 〈automata〉 〈process〉 ENDTARGOS

〈automata〉 →
〈automaton〉
| 〈automata〉 〈automaton〉

〈process〉 →
PROCESS 〈symbol〉 INTERNAL (〈symbol list〉) 〈process expr.〉
| PROCESS 〈symbol〉 〈process expr.〉

〈process expr.〉 →
〈raff〉
| 〈raff〉 { 〈refinement list〉 }
| PAR 〈parallel list〉 ENDPAR
| INTERNAL (〈symbol list〉) { 〈process expr.〉 }

〈raff〉 →
RAFF 〈symbol〉

〈parallel list〉 →
〈process expr.〉
| 〈parallel list〉 〈process expr.〉

〈refinement list〉 →
ε

234 APPENDIX D. TEXTUAL ARGOS

| 〈refinement list〉 〈refinement expr.〉
〈refinement expr.〉 →

〈symbol〉 〈process expr.〉
〈automaton〉 →

AUTOMATON 〈symbol〉 STATES 〈state list〉 TRANS 〈transition list〉
〈state list〉 →

ε
| 〈state list〉 〈symbol〉
| 〈state list〉 〈symbol〉 init

〈transition list〉 →
ε
| 〈transition list〉 〈transition〉

〈transition〉 →
〈fromto〉
| 〈fromto〉 with 〈transition expr. list〉
| 〈fromto〉 after 〈integer〉 〈symbol〉
| 〈fromto〉 after 〈integer〉 〈symbol〉 / 〈symbol list〉

〈fromto〉 →
from 〈symbol〉 to 〈symbol〉

〈transition expr. list〉 →
〈transition expr.〉
| 〈transition expr. list〉 + 〈transition expr.〉

〈transition expr.〉 →
〈guard expr.〉
| 〈guard expr.〉 / 〈symbol list〉
| / 〈symbol list〉

〈guard expr.〉 →
〈symbol〉
| - 〈symbol〉
| 〈guard expr.〉 . 〈guard expr.〉

〈symbol list〉 →
〈symbol〉
| 〈symbol list〉 , 〈symbol〉

〈symbol〉 →
IDENT

Appendix E

Argos Case Studies

This appendix contains textual Argos, see Appendix D, source code for the examples

in Chapter 3.

E.1 Sensor failure detection

The Sensor failure detection controller is described in §3.4.1. A graphical version ap-

pears in Figure 3.14.

1 TARGOS

2

3 AUTOMATON Oxygen_Sensor_Mode

4 STATES

5 O2_warmup init

6 O2_normal

7 O2_fail

8 TRANS

9 from O2_warmup to O2_normal after 48 TSEC

10 from O2_normal to O2_fail with −Ego_inrange/FAIL_O2

11 from O2_fail to O2_fail with −Ego_inrange/FAIL_O2

12 from O2_fail to O2_normal with Ego_inrange

13

14 AUTOMATON O2ColdLoop

15 STATES

16 stillcold init

17 TRANS

18 from stillcold to stillcold with / O2_cold, FAIL_O2

19

20 AUTOMATON Pressure_Sensor_Mode

21 STATES

22 press_norm init

23 press_fail

24 TRANS

25 from press_norm to press_fail with −Press_inrange / FAIL_PRESS

26 from press_fail to press_fail with −Press_inrange / FAIL_PRESS

27 from press_fail to press_norm with Press_inrange

28

29 AUTOMATON Throttle_Sensor_Mode

30 STATES

31 throt_norm init

32 throt_fail

33 TRANS

34 from throt_norm to throt_fail with −Throt_inrange / FAIL_THROT

35 from throt_fail to throt_fail with −Throt_inrange / FAIL_THROT

36 from throt_fail to throt_norm with Throt_inrange

37

38 AUTOMATON Speed_Sensor_Mode

236 APPENDIX E. ARGOS CASE STUDIES

39 STATES

40 speed_norm init

41 speed_fail

42 TRANS

43 from speed_norm to speed_fail

44 with −Moving.Press_underthresh / FAIL_SPEED

45 from speed_fail to speed_fail with −Moving / FAIL_SPEED

46 from speed_fail to speed_norm with Moving

47

48 AUTOMATON SingleFail

49 STATES test init

50 TRANS from test to test with

51 FAIL_O2.−FAIL_PRESS.−FAIL_SPEED.−FAIL_THROT / SINGLE +

52 −FAIL_O2.FAIL_PRESS.−FAIL_SPEED.−FAIL_THROT / SINGLE +

53 −FAIL_O2.−FAIL_PRESS.FAIL_SPEED.−FAIL_THROT / SINGLE +

54 −FAIL_O2.−FAIL_PRESS.−FAIL_SPEED.FAIL_THROT / SINGLE

55

56 AUTOMATON ZeroFail

57 STATES test init

58 TRANS from test to test with

59 −FAIL_O2.−FAIL_PRESS.−FAIL_SPEED.−FAIL_THROT / ZERO

60

61 AUTOMATON MultiFail

62 STATES test init

63 TRANS from test to test with −ZERO.−SINGLE / MULTI

64

65 AUTOMATON Fuelling_Mode_Running

66 % −fuel_mode_disabled added to each transition to simulate whennot().

67 STATES

68 Warmup init

69 Normal

70 Single_Failure

71 TRANS

72 from Warmup to Warmup

73 with O2_cold.−gorich.−fuel_mode_disabled / fuel_mode_low

74 from Warmup to Normal

75 with −O2_cold.−SINGLE.−fuel_mode_disabled.−gorich / fuel_mode_low

76 from Warmup to Single_Failure

77 with −O2_cold.SINGLE.−fuel_mode_disabled / fuel_mode_low

78 + gorich.−fuel_mode_disabled / fuel_mode_rich

79 from Normal to Single_Failure

80 with SINGLE.−fuel_mode_disabled / fuel_mode_rich

81 + gorich.−fuel_mode_disabled / fuel_mode_rich

82 from Normal to Normal

83 with −SINGLE.−gorich.−fuel_mode_disabled / fuel_mode_low

84 from Single_Failure to Normal

85 with −SINGLE.−gorich.−fuel_mode_disabled / fuel_mode_low

86 from Single_Failure to Single_Failure

87 with SINGLE.−fuel_mode_disabled / fuel_mode_rich +

88 gorich.−fuel_mode_disabled / fuel_mode_rich

89

90 AUTOMATON Fuelling_Mode_Disruption

91 STATES

92 Running init

93 Overspeed

94 Shutdown

95 TRANS

96 from Running to Shutdown with −toofast.MULTI / fuel_mode_disabled

97 from Running to Overspeed with toofast / fuel_mode_disabled

98 from Overspeed to Running with −FAIL_SPEED.speed_under_hys.−MULTI

99 from Overspeed to Overspeed with −speed_under_hys / fuel_mode_disabled

100 + FAIL_SPEED / fuel_mode_disabled

101 from Overspeed to Shutdown

E.2. BANG-BANG TEMPERATURE CONTROLLER 237

102 with −FAIL_SPEED.speed_under_hys.MULTI / fuel_mode_disabled

103 from Shutdown to Shutdown with MULTI / fuel_mode_disabled

104 from Shutdown to Running with −MULTI / gorich

105

106 PROCESS fuelcontrol

107 INTERNAL (O2_cold, SINGLE, MULTI, ZERO)

108 PAR

109 RAFF Oxygen_Sensor_Mode { O2_warmup RAFF O2ColdLoop }

110 RAFF Pressure_Sensor_Mode

111 RAFF Throttle_Sensor_Mode

112 RAFF Speed_Sensor_Mode

113 RAFF ZeroFail

114 RAFF SingleFail

115 RAFF MultiFail

116 INTERNAL (gorich) {

117 PAR

118 RAFF Fuelling_Mode_Running

119 RAFF Fuelling_Mode_Disruption

120 ENDPAR

121 }

122 ENDPAR

123

124 ENDTARGOS

E.2 Bang-bang temperature controller

The Bang-bang temperature controller is described in §3.4.2. A graphical version ap-

pears in Figure 3.16.

1 TARGOS

2

3 AUTOMATON Heater

4 STATES

5 Off init

6 On

7 TRANS

8 from Off to On with COLD.onOk / BOILER

9 from On to Off after 20 SEC

10 from On to Off with −COLD

11

12 AUTOMATON Wait

13 STATES

14 Hold init

15 Free

16 TRANS

17 from Hold to Free after 40 SEC

18 from Free to Free with / onOk

19

20 AUTOMATON Flash_led_red

21 STATES

22 Off init

23 On

24 TRANS

25 from Off to On after 5 SEC

26 from On to Off after 5 SEC

27

28 AUTOMATON Sustain_red

29 STATES

30 Single init

31 TRANS

32 from Single to Single with / RED

33

238 APPENDIX E. ARGOS CASE STUDIES

34 AUTOMATON Flash_led_green

35 STATES

36 Off init

37 On

38 TRANS

39 from On to Off with SEC

40 from Off to On with SEC / GREEN

41 from On to On with −SEC / GREEN

42

43 AUTOMATON Sustain_boiler

44 STATES

45 Single init

46 TRANS

47 from Single to Single with / BOILER

48

49 PROCESS bangbang

50 INTERNAL (onOk)

51 RAFF Heater { Off PAR

52 RAFF Flash_led_red { On RAFF Sustain_red }

53 RAFF Wait

54 ENDPAR

55 On PAR

56 RAFF Flash_led_green

57 RAFF Sustain_boiler

58 ENDPAR }

59 ENDTARGOS

Appendix F

Formal Timing Diagram Model

The sensor timing diagram of §4.2.2 has, at best, a semi-formal meaning. The formal

model that is constructed manually in §4.3 expresses an interpretation of the diagram

as a timed automaton. A model could also be created by transcribing the diagram into

the syntax of a formal timing diagram language with a well-defined semantics. The

semantic domain may also be timed automata, or it may be readily transformed into

timed automata. The two approaches are sketched in Figure F.1. Whereas the earlier

chapter presents an example of interpretation, this appendix presents an example of

transcription.

timing diagram

formal timing

diagram

notation

timed automata

transcription

semantics

interpretation

Figure F.1: Different ways of formalizing a timing diagram

Timing diagrams are so useful in engineering practice, particularly in hardware

systems design, that they have been widely studied as: a design notation [Ron80], a

form of specification permitting automatic synthesis [Tie91, Bor92, SD93, MAP93, FF89,

FJ97], an application of model checking [AEKN00], and a formal language of intrinsic

interest [KC98, Fis99].

Timing diagrams have much in common with Message Sequence Charts [RGG96,

Pel02], both are tools with a practical focus, for digital signals and network protocols

respectively, where each chart generally focuses on a single scenario, patterns of signal

or message exchanges respectively, within a system that may comprise many such

scenarios. As Message Sequence Charts express a causal (partial) ordering of atomic

events, timing diagrams indicate causal relations between signal transitions.

The intent, here, is not to survey the field of ‘scenario-oriented specifications’, the

references given here are not even exhaustive, but rather to gain some insights into

the relative advantages and disadvantages of expression in formal timing diagrams

compared to manual modelling in timed automata for the sensor case study. This sec-

tion begins with a brief introduction §F.0.0.1 to one formalization of timing diagrams

called Real Time Symbolic Timing Diagrams (RTSTD) [SD93, FJ97]. The original tim-

ing diagram is then modelled in that notation §F.0.0.2, before some conclusions are

stated §F.0.0.3.

F.0.0.1 (Real Time) Symbolic Timing Diagrams

RTSTDs are an extension of Symbolic Timing Diagrams (STDs), which are a declarative

specification language for qualitative constraints on system state changes [SD93]. They

240 APPENDIX F. FORMAL TIMING DIAGRAM MODEL

have been employed as a visual means for stating formulas of Propositional Temporal

Logic in the VHDL/S system that combines VHDL and Statecharts with support for

model checking and theorem proving [DJS95]. Techniques for synthesising controllers

from STDs have been investigated [KS94]. Case studies are available [KS95].

An STD specification may comprise multiple Timing Diagrams (TDs), each of which

is itself comprised of bundles. A bundle is a set of waveforms. They are normally

presented graphically. Each waveform is a sequence of alternating regions and events

that are totally ordered from left to right. Regions are labelled with propositional

expressions over one or more state variables, like, for example, equality between a

variable and value Vin = ‘1’.

Events mark discrete changes of state variables, where an activation condition is

true beforehand, and either a continuation condition, meaning that a bundle remains

applicable, or an exit condition, meaning that a bundle is no longer applicable, is true

afterward. Arrowed arcs drawn from one event to another, usually between differ-

ent waveforms, further constrain the possible sequences of state variable values, thus

restricting the specified set of behaviours. STDs differentiate between environment

actions and system actions. The former are associated with weak constraints and the

latter with strong constraints. The weak constraints act as assumptions for the guar-

antees provided by the strong constraints.

An STD defines traces of system variable values. A single TD will apply at different

times over a system trace, depending on whether it is initial or dynamic, and the details

of its activation, continuation, and exit conditions. When a bundle is applicable, it is

termed activated, and at other times deactivated. If initial, a TD is activated from the

initial state. If dynamic, a TD is activated when system variables satisfy the conjunction

of its left-most activation conditions. Multiple, overlapping invocations of TDs are

permitted, they act in parallel to simultaneously constrain system traces.

Allowable behaviours are defined by the unwindings of TDs [DJS95].1 A front con-

sists of one event for each waveform. These are the changes to state variables that

are waiting for one or more continuation conditions to become true before occurring.

Waiting is only permitted while all activation conditions are satisfied. At any state

change each event may:

1. Remain stable: The activation condition remains true.

2. Unwind: The activation condition no longer holds, but the continuation condition

is true in the next state.

3. Exit: The activation condition no longer holds and in the next state the continua-

tion condition is false but the exit condition is true.

4. Fail: The activation condition no longer holds, and both continuation and exit

conditions are false in the next state.

The constraints and conditions of a TD are distilled to these four possibilities that

apply to each front configuration. Violations of weak constraints result in exit deac-

tivations, meaning that a given TD is not applicable to the subsequence of behaviour

in question. Failure deactivations, caused when strong constraints are violated, distin-

guish behaviours that are outside a specification. Certain fronts are distinguished to

mandate eventual progress.

STDs are given semantics in terms of Temporal Logic formulas.

An RTSTDs [FJ97] is an STD where constraint arcs may be annotated with upper

and lower bounds. The four main types of constraint are listed in Table F.1. Simultane-

ity and precedence impose an ordering on events, conflict and leads-to mark timing

restrictions. Pairs of events may be constrained in multiple ways.

An RTSTD is translated to a timed Büchi automaton by adding a clock for each

event, and then, as a diagram is unwound, resetting clocks when events occur, and

later using them in guards to fulfil relative timing constraints. Care is required when

determining which of the system or environment breaks a leads-to constraint.

1The original paper contains detailed definitions.

241

constraint symbol bounds∗ description†

simultaneity RT= [0,0] e1 and e2 must occur in the same

unwinding step.

precedence RT≤ [0,∞] e2 cannot occur unless e1 has al-

ready occurred.

conflict RT≠t [t,∞] e2 must not occur in the same un-

winding step as, nor before t time

units after, e1.

leads-to RT;

t [−∞, t] e2 must occur with t time units of

e1 (bounded liveness).

∗[l,u], lower and upper bounds, respectively, on the interval between two events.
†for (e1, e2) ∈ RT

Table F.1: RTSTD timing constraints

state
:nat:out ‘0’ ‘1’ ‘2’ ‘3’ ‘4’ . . . ‘9’ ‘10’ ‘0’

sample
:nat:out

‘7’ ‘6’ ‘5’ . . . ‘0’ ‘7’

eact

Vin
:bit:out

. . .

Vout
:bit:in

? ? . . . ? ?

[0,∞]

[0,∞] [−∞,70] [0,∞] [0,maxtrans] [0,maxtrans] [0,maxtrans]
[0,maxtrans]

[0,minmark]

[0,0] [0,0] [0,0] [0,0] [0,0]

(maxtrans,∞]

[0,∞]

(maxtrans,∞]

[0,∞]
(maxtrans,∞]

[0,∞]

[0,0.2]
[1,∞]

[1.5,∞]

Figure F.2: RTSTD version of the timing diagram of Figure 4.3

F.0.0.2 RTSTD model of the timing diagram

An RTSTD version of the sensor timing diagram is shown in Figure F.2. The centre

of the diagram is omitted for reasons of clarity, arcs to and from elided events are

also omitted. The RTSTD diagram embodies the same decisions that lead to the timed

automaton model. Whereas the original timing diagram had only two waveforms, the

RTSTD version has four. The waveforms labelled Vin and Vout mimic those with the

same names in the original, though the formatting differs. The introduction of the two

others, sample and state, is unfortunate because they are not present in the original

and they make the diagram more complicated. The justification for sample was given

earlier §4.3.2. The necessity of state is described below. A third extra waveform power

is omitted.

The RTSTD is dynamic rather than initial, which would have been indicated by a

double bar at the left-hand side, so as to constrain repeated readings. An additional

initial RTSTD is required but not shown. It simply restricts the values of state, sample,

Vin and Vout to 0, 7, 1, and 1 respectively.

RTSTDs distinguish between system and environment, in contrast to the approach

taken for the timed automaton model. Here the diagram is treated as the specification

of a driver, thus, perhaps confusingly, Vin is labelled at left as an output and Vout as

an input. Constraints relating waveforms to Vout are weak, indicated by dashed lines,

242 APPENDIX F. FORMAL TIMING DIAGRAM MODEL

while those from Vout are strong, indicated by solid lines.

The notation used for Vin varies from the published [FJ97] examples, which ap-

pear, like state and sample, with ’0’ and ’1’ written in alternate regions. Regions are

bordered above or below by a single line intended to imply one of the propositions

Vin = 0 or Vin = 1 in the obvious way. The waveform Vout is depicted similarly, but

the events of indeterminate change are left as crossed lines, and the regions between

contain question marks. It is not clear how to model such a data signal; published ac-

counts [DJS95, FJ97] avoid the issue because they focus on control events. A predicate

Vin = 0∨Vin = 1 is unsuitable because it is always satisfied and events are defined by

waveform changes. One solution would be to exclude the Vout waveform altogether,

since range readings can be made without any feedback. This would, however, forbid

implementations that are triggered by the first rising Vout transition, or those that look

for transitions to detect data changes, and it departs from the ideal of modelling the

timing diagram itself. Instead control events and valid data intervals are mixed on the

same waveform, but arcs are only drawn to and never from the changes on Vout that

signify data transmission.

The sample waveform in the RTSTD performs the same function as the sample

event in the timing diagram model; it specifies the intervals where sampling may occur.

Since events are characterised by changes in state variables, sample is declared as a

natural number that decreases in value each time a sample is taken. The regions of

this waveform are marked with values that stand for propositional expressions, for

example ‘6’ abbreviates sample = ‘6’.

Understanding the inclusion of the state waveform requires considering the mean-

ing of the diagram, that is its semantics in terms of Timed Propositional Temporal

Logic (TPTL). A dynamic diagram is associated with a formula of the form

2(actcond ⇒ zact .TL(. . .)),

where actcond is a conjunction of the activation conditions from the heads of each

waveform, zact resets the clock associated with the activation event (eact), and TL(. . .)
is the rest of the translation. For Figure F.2, actcond is

state = 0∧ sample = 7∧Vin = 1∧Vout = 1.

Without the state waveform the RTSTD would exclude some valid observations. Since

the activation condition would also be true after the first rising edges of Vin and Vout,

a second invocation of the formula would apply. The new invocation starts anew and

thus mandates a 70ms delay before any subsequent transition on Vin. The addition of

the state waveform precludes such multiple invocations.

The state waveform is synchronized with each falling edge of Vin: the vertical lines

marked [0,0] represent simultaneity constraints. The two waveforms could also have

been merged into a single waveform with a conjunction in each range, for example,

Vin = 0∧ state = 2.

The addition of a state waveform violates the ideal of modelling observable be-

haviour at external interfaces. Unfortunately it cannot be made a local waveform be-

cause it would then have a distinct value for each instantiation of the RTSTD whereas,

for the desired effect, a single value must be shared across all invocations.

Having discussed the RTSTD diagram in broad terms, the finer details are now con-

sidered.

Working through Figure F.2 from the left, the first constraint is a strong precedence

constraint between eact , which occurs implicitly when an RTSTD is activated, and the

first falling Vin event. The first falling events of Vin and Vout are linked by a weak

precedence constraint. A weak leads-to constraint [−∞, ǫ] would give an upper bound.

A simultaneity constraint [0,0] would give a composite event.

The 70ms or more restriction is expressed as a weak leads-to constraint, requiring

a rising edge on Vout to occur within 70 units of the first falling edge on Vin. The next

rising edge on Vin must occur after the rising Vout edge. For strict compliance with the

timing diagram, a conflict constraint [70,∞] should be added between the first falling

edge on Vin and the subsequent rising edge.

243

Timing constraints are added between events on the Vin waveform, in addition

to its implicit total order: [0,0.2] expresses the 0.2ms or less restriction and [1,∞]
expresses the 1ms or more restriction across the sampling pulses. Not shown are the

conflict constraints [minspace,∞] between adjacent falling and rising edges on Vout

sampling pulses, nor [minmark,∞] between adjacent rising and falling edges, as these

render the diagram less readable. They could be expressed in a simultaneous RTSTD.

Each falling edge on Vin during the sampling phase anchors two out-going arcs.

The first, a strong combination of conflict, RT≠maxtrans, and precedence, RT≤, restricts

the subsequent sampling event. The second, a weak leads-to, RT;, constrains changes

on Vout. It is not clear that open intervals can be specified in the RTSTD language.

Events on sample must precede subsequent falling events on Vin. The independence

of sampling relative to rising transitions, except the last one, on Vin, is much more

naturally expressed in the this model than in the timed automaton model.

The 1.5ms or more constraint on beginning another reading or switching off is ex-

pressed between the last rising transition on Vin and the last change in state. After

state has returned to zero, and the final rising transition of Vout has occurred, the

RTSTD may repeat since the initial activation conditions are then true again.

The powerOff event could be modelled by adding a power waveform. In Figure F.2

the waveform would have a predicate of power = 1 with an exit condition of power = 0

strongly constrained by [1.5,∞] on the last rising edge of Vin. An additional initial

RTSTD, containing only power , would have the same predicates, though the second

would be a continuation condition.

F.0.0.3 Analysis and conclusions

This brief evaluation of formalised timing diagrams suffers from two main limitations.

First, the RTSTD model was not transformed into a timed automaton or formula of

temporal logic for formal comparison with the manually constructed model. Second,

RTSTDs are but one formalisation of timing diagrams and no attempt has been made

to isolate their particular peculiarities. Yet even with these limitations, it still seems

reasonable to draw some general conclusions on the use of precedence arcs and over-

lapping constraints, and on whether redrawing alone is sufficient for formalisation,

and to compare the modelling approaches and argue that the timed automaton model

is most suitable for the sensor case study.

Ideally, the RTSTD diagram would have been transformed into a semantic model,

but the synthesis software seems no longer to be available. Moreover, it is not clear how

the data changes on vout could be represented. It would be interesting to determine

whether the roles of system and environment in the RTSTD correspond directly with

the presence and absence, respectively, of location invariants in the timing diagram

model, and the necessity of response that they imply.

The precedence arcs of the RTSTD model are a distinctive and useful feature. They

make explicit causal relations that must otherwise be inferred from the relative place-

ments and dashed vertical lines of the original diagram. Some informal timing dia-

grams [Ron80] also contain such arcs, so perhaps the sensor diagram is not represen-

tative in this regard. While the arcs provide a necessary precision, it comes, arguably,

at the cost of readability. Interpreting a diagram requires, potentially, understanding

the simultaneous effect of multiple interwoven arcs, while a timed safety automaton2

may be understood one state and transition at a time, with relevant clock constraints

stated at each, although it may ultimately be only a question of taste and familiarity.

Another expressive, but potentially complicating feature of RTSTDs is the possibil-

ity of multiple overlapping constraints, which are similar to the parallel operator of CSP

and the constraint-oriented specifications of LOTOS (see Appendix A). This feature was

not necessary to express the sensor timing diagram so no practical conclusions can be

made. It would seem, however, to be quite complicated to define [DJS95].

In principle, a timing diagram is formalized using RTSTDs by simply redrawing it,

and then generating a semantic model. Yet, in practice, it is still necessary to carefully

interpret the original diagram to ensure a correct translation. Similarly, the meaning

2Timed Büchi automata require more complicated accounting.

244 APPENDIX F. FORMAL TIMING DIAGRAM MODEL

of a formal timing timing diagram may seem immediately clear, but precision depends

on semantics, not intuition; having something that looks like the specification sheet

gives no absolute guarantees about the underlying model.

At a high-level, comparing formalised timing diagrams with timed automata in-

volves weighing the appeal of a problem-specific notation against the benefits of a

more general formalism. RTSTDs, for instance, are good at mimicking the appearance

of the sensor timing diagram, but the additional details needed to remove ambiguity

and arrive at a complete description are awkward to include and the results may well

lack the great advantages of simplicity and abstraction possessed by informal timing

diagrams. While some behaviours are more naturally expressed in the RTSTD notation,

namely mutually unconstrained events, others, namely choice and state, are more eas-

ily expressed with timed automata. The gap between a timing diagram and a timed

automata is advantageous in a discussion of modelling details because each provides

a different perspective on the behaviours being studied.

Further, timed automata are both simpler and better understood than RTSTDs and

surely other similar formalisms. While STDs and RTSTDs are defined over several

pages [DJS95], the essence of timed automata can be expressed with a tuple and two

types of transition—though, admittedly adding other features, like variables, compli-

cates matters. Also, the translation of a timing diagram into an automaton or for-

mula is less direct than the relation between a timed automaton graph and the corre-

sponding tuple. Although realistic programming languages require more complicated

definitions, SML for example [MTHM97], the trade-off for RTSTDs does not seem as

worthwhile.

Bibliography

[ACD90] R. Alur, C. Courcoubetis, and D. Dill. Model-checking for real-time sys-

tems. In Proceedings of 5th Annual IEEE Symposium on on Logic in Com-

puter Science (LICS ’90), pp. 414–425. IEEE Computer Society, Jun. 1990.

[ACM08] Proceedings of 8th ACM International Conference on Embedded Software

(EMSOFT’08). ACM Press, Atlanta, Georgia USA, Oct. 2008.

[AD94] R. Alur and D. L. Dill. A theory of timed automata. Theoretical Computer

Science, 126(2):pp. 183–235, Apr. 1994.

[AEKN00] N. Amla, E. A. Emerson, R. P. Kurshan, and K. S. Namjoshi. Model check-

ing synchronous timing diagrams. In W. A. J. Hunt and S. D. Johnson,

eds., Proceedings of 3rd International Conference on Formal Methods in

Computer-Aided Design, vol. 1954 of Lecture Notes in Computer Science,

pp. 283–298. Springer-Verlag, Austin, Texas, Nov. 2000.

[AFH99] R. Alur, L. Fix, and T. A. Henzinger. Event-clock automata: A determiniz-

able class of timed automata. Theoretical Computer Science, 211(1–2):pp.

253–273, Jan. 1999.

[AH97] R. Alur and T. A. Henzinger. Real-time system = discrete system + clock

variables. International Journal of Software Tools for Technology Trans-

fer, 1(1–2):pp. 86–109, Dec. 1997.

[AKRS08] R. Alur, A. Kanade, S. Ramesh, and K. Shashidhar. Symbolic analysis for

improving simulation coverage of Simulink/Stateflow models. In ACM

[ACM08], pp. 89–98.

[AL91] M. Abadi and L. Lamport. The existence of refinement mappings. Theo-

retical Computer Science, 82(2):pp. 253–284, 1991.

[AL94] —. An old-fashioned recipe for real time. ACM Transactions on Pro-

gramming Languages and Systems (TOPLAS), 16(5):pp. 1543–1571, Sep.

1994.

[AMP91] C. André, J. Marmorat, and J. Paris. Execution machines for Esterel. In

Proceedings of European Control Conference, vol. 2, pp. 1672–1677. Her-

mes Editions, Grenoble, France, Jul. 1991.

[AMT94] A. W. Appel, J. S. Mattson, and D. R. Tarditi. A lexical analyzer generator

for Standard ML. Department of Computer Science, Princeton University,

1994.

[And95] C. André. SyncCharts: A visual representation of reactive behaviors.

Technical report, I3S, Sophia-Antipolis, France, Oct. 1995. RR 95-52.

[And96] —. Representation and analysis of reactive behaviors: A synchronous

approach. In Computational Engineering in Systems Applications, pp.

19–29. IEEE, Lille, France, Jul. 1996.

[AP93] C. André and M.-A. Péraldi. Effective implementation of ESTEREL pro-

grams. In 5th Euromicro Workshop on Real-Time Systems, pp. 262–267.

Oulu, Finland, Jun. 1993.

246 BIBLIOGRAPHY

[ASK04] A. Agrawal, G. Simon, and G. Karsai. Semantic translation of Simulink/S-

tateflow models to hybrid automata using graph transformations. In

4th Workshop on Language Descriptions, Tools and Applications (LDTA

2004), satellite event of ETAPS 2004. Barcelona, Spain, Apr. 2004. Prelim-

inary Version.

[AT05] K. Altisen and S. Tripakis. Implementation of timed automata: An issue

of semantics or modeling? Tech. Rep. TR-2005-12, Verimag, Gières,

France, Jun. 2005.

[BASRB04] M. Biglari-Abhari, Z. Salcic, P. Roop, and A. Bigdeli. REFLIX: A processor

core with native support for control dominated embedded applications.

Journal of Microprocessors and Microsystems, 28(1):pp. 13–25, Feb. 2004.

[BB87] T. Bolognesi and E. Brinksma. Introduction to the ISO specification lan-

guage LOTOS. Computer Networks and ISDN Systems, 14(1):pp. 25–59,

1987.

[BB91] A. Benveniste and G. Berry. The synchronous approach to reactive and

real-time systems. Proceedings of IEEE, 79(9):pp. 1270–1282, Sep. 1991.

[BC84] G. Berry and L. Cosserat. The ESTEREL synchronous programming lan-

guage and its mathematical semantics. In S. D. Brookes, A. W. Roscoe,

and G. Winskel, eds., Seminar on Concurrency, vol. 197 of Lecture Notes

in Computer Science, pp. 389–448. Springer-Verlag, Pittsburg, USA, Jul.

1984.

[BCD+07] G. Behrmann, A. Cougnard, A. David, E. Fleury, K. G. Larsen, and D. Lime.

UPPAAL-Tiga: Time for playing games! In W. Damm and H. Hermanns,

eds., 19th International Conference on Computer Aided Verification, vol.

4590 of Lecture Notes in Computer Science, pp. 121–125. Springer-Verlag,

Berlin, Germany, Jul. 2007.

[BCE+03] A. Benveniste, P. Caspi, S. Edwards, N. Halbwachs, P. Le Guernic, and

R. de Simone. The synchronous languages 12 years later. Proceedings of

IEEE, 91(1):pp. 64–83, Jan. 2003.

[BCG+97] F. Balarin, M. Chiodo, P. Giusto, H. Hsieh, A. Jurecska, L. Lavagno,

C. Passerone, A. Sangiovanni-Vincentelli, E. Sentovich, K. Suzuki, and

B. Tabbara. Hardware-Software Co-design of Embedded Systems: The

POLIS Approach. The Kluwer International Series in Engineering and

Computer Science. Kluwer Academic Publishers, 1997.

[BCLG99] A. Benveniste, B. Caillaud, and P. Le Guernic. From synchrony to asyn-

chrony. In J. C. M. Baeten and S. Mauw, eds., Proceedings of 10th Inter-

national Conference on Concurrency Theory (CONCUR ’99), vol. 1664 of

Lecture Notes in Computer Science, pp. 162–177. Springer-Verlag, Eind-

hoven, The Netherlands, Aug. 1999. ISBN 3-540-66425-4.

[BCLG+02] A. Benveniste, P. Caspi, P. Le Guernic, H. Marchand, J.-P. Talpin, and

S. Tripakis. A protocol for loosely time-triggered architectures. In

Sangiovanni-Vincentelli and Sifakis [SVS02], pp. 252–265.

[BCP+01] V. Bertin, E. Closse, M. Poize, J. Pulou, J. Sifakis, P. Venier, D. Weil, and

S. Yovine. Taxys = Esterel + Kronos: A tool for verifying real-time prop-

erties of embedded systems. In Proceedings of 40th IEEE Conference on

Decision and Control, pp. 2875–2880. IEEE, Orlando, Florida, USA, Dec.

2001.

[BDL04] G. Behrmann, A. David, and K. Larsen. A tutorial on Uppaal. In

M. Bernardo and F. Corradini, eds., Formal Methods for the Design of

Real-Time Systems: International School on Formal Methods for the De-

sign of Computer, Communication, and Software Systems, SFM-RT 2004,

BIBLIOGRAPHY 247

vol. 3185 of Lecture Notes in Computer Science, pp. 200–236. Springer-

Verlag, Bertinora, Italy, Sep. 2004.

[BDL+06] G. Behrmann, A. David, K. G. Larsen, J. Håkansson, P. Pettersson, W. Yi,

and M. Hendriks. Uppaal 4.0. In 3rd International Conference on Quanti-

tative Evaluation of Systems, pp. 125–126. IEEE Computer Society, River-

side, California, USA, Sep. 2006.

[Bee94] M. von der Beeck. A comparison of Statecharts variants. In H. Lang-

maack, W. de Roever, and J. Vytopil, eds., Formal Techniques in Real-

Time and Fault-Tolerant Systems, vol. 863 of Lecture Notes in Computer

Science, pp. 128–148. Springer-Verlag, Sep. 1994. ISBN 3-540-58468-4.

[Ber89a] G. Berry. Programming a digital watch in Esterel v3. Rapport de

recherche 1032, INRIA, Sophia Antipolis, May 1989.

[Ber89b] —. Real time programming: Special purpose or general purpose lan-

guages. In G. Ritter, ed., Proceedings of 11th International Federation for

Information Processing (IFIP) World Computer Congress, pp. 11–17. San

Francisco, USA, Aug.–Sep. 1989.

[Ber92] —. Esterel on hardware. Philosophical Transactions of the Royal Society:

Physical and Engineering Sciences, 339(1652):pp. 87–103, Apr. 1992.

[Ber93] —. Preemption in concurrent systems. In R. K. Shyamasundar, ed., Foun-

dations of Software Technology and Theoretical Computer Science, vol.

761 of Lecture Notes in Computer Science. Springer-Verlag, Bombay, In-

dia, Dec. 1993. ISBN 3-540-57529-4.

[Ber99] —. The Constructive Semantics of Pure Esterel. ftp://ftp-sop.inria.

fr/meije/esterel/papers/constructiveness3.ps, draft book, cur-

rent version 3.0 ed., Jul. 1999.

[Ber00a] —. The Esterel v5 Language Primer. Ecole des Mines and INRIA, version

5.92 ed., Jun. 2000.

[Ber00b] —. The foundations of Esterel. In G. Plotkin, C. Stirling, and M. Tofte,

eds., Proof, Language and Interaction: Essays in Honour of Robin Milner,

Foundations of Computing Series. MIT Press, 2000.

[BG89] G. Berry and G. Gonthier. Incremental development of an HDLC protocol

in Esterel. Rapport de recherche 1031, INRIA, Sophia Antipolis, May

1989.

[BG92] —. The Esterel synchronous programming language: Design, semantics,

implementation. Science of Computer Programming, 19(2):pp. 87–152,

Nov. 1992.

[BHHS93] R. Bernhard, L. Hazard, F. Horn, and J.-B. Stefani. Implementation of a

synchronous execution machine on Chorus micro-kernel. In Proceedings

of 14th IEEE Real-Time Systems Symposium (RTSS 1993), pp. 189–193.

IEEE, Raleigh-Durham NC, USA, Dec. 1993.

[BIM95] B. Bloom, S. Istrail, and A. R. Meyer. Bisimulation can’t be traced. Journal

of the ACM, 42(1):pp. 232–268, Jan. 1995.

[BKB99] C. Banphawatthanarak, B. Krogh, and K. Butts. Symbolic verification of

executable control specifications. In Proceedings of 10th International

Symposium on Computer Aided Control System Design, pp. 581–586.

IEEE, Hawaii, USA, Aug. 1999.

[Blo94] B. Bloom. When is partial trace equivalence adequate? Formal Aspects of

Computing, 6(3):pp. 317–338, May 1994.

ftp://ftp-sop.inria

248 BIBLIOGRAPHY

[BM02] J. Baeten and C. Middelburg. Process Algebra with Timing. Monographs

in Theoretical Computer Science. Springer-Verlag, 2002. ISBN 3-540-

43447-X.

[BMR83] G. Berry, S. Moisan, and J.-P. Rigault. Esterel: Towards a synchronous

and semantically sound high level language for real time applications.

In Proceedings of 4th IEEE Real-Time Systems Symposium (RTSS 1983),

pp. 30–37. IEEE Computer Society, Arlington, Virginia, USA, Dec. 1983.

[Bor92] G. Borriello. Formalized timing diagrams. In Proceedings of 3rd European

Conference on Design Automation, pp. 372–377. IEEE Computer Society,

Brussels, Mar. 1992.

[Bou91] F. Boussinot. Reactive C: An extension of C to program reactive systems.

Software: Practice and Experience, 21(4):pp. 401–428, Apr. 1991.

[Bou97] A. Bouali. XEVE: an ESTEREL verification environment. Rapport de

recherche 0214, INRIA, Sophia Antipolis, Dec. 1997.

[BR01] D. Buck and A. Rau. On modelling guidelines: Flowchart patterns for

STATEFLOW. Gesellschaft für Informatik, FG 2.1.1: Softwaretechnik

Trends, 21(2), 2001.

[BRS93] G. Berry, S. Ramesh, and R. K. Shyamasundar. Communicating reac-

tive processes. In Proceedings of 20th ACM SIGPLAN-SIGACTSymposium

on Principles Of Programming Languages (POPL 1993), pp. 85–98. ACM

Press, 1993. ISBN 0-89791-560-7.

[BS91] F. Boussinot and R. de Simone. The Esterel language. Proceedings of IEEE,

79(9):pp. 1293–1304, Sep. 1991.

[BS96] —. The SL synchronous language. IEEE Transactions on Software Engi-

neering, 22(4):pp. 256–266, Apr. 1996.

[BS00] G. Berry and E. M. Sentovich. An implementation of constructive

synchronous programs in POLIS. Formal Methods in Systems Design,

17(2):pp. 135–161, 2000.

[BS01] —. Multiclock Esterel. In T. Margaria and T. F. Melham, eds., Proceedings

of 11th Advanced Research Working Conference on Correct Hardware

Design and Verification Methods, vol. 2144 of Lecture Notes in Computer

Science, pp. 110–125. Springer-Verlag, Livingston, Scotland, Sep. 2001.

[BS02] M. Baldamus and T. Stauner. Modifying Esterel concepts to model hybrid

systems. Electronic Notes in Theoretical Computer Science, 65(5):pp. 819–

833, Jul. 2002.

[BS05] T. Bourke and A. Sowmya. Formal models in industry standard tools: An

Argos block within Simulink. In F. E. Tay, ed., International Journal of

Software Engineering and Knowledge Engineering: Selected Papers from

the 2005 International Conference on on Embedded and Hybrid Systems,

vol. 15, pp. 389–395. World Scientific, Singapore, Apr. 2005.

[BS06] —. A timing model for synchronous language implementations in

Simulink. In Min and Wang [MW06], pp. 93–101.

[BS08a] H. Bohnenkamp and M. Stoelinga. Quantitative testing. In ACM [ACM08],

pp. 227–236.

[BS08b] T. Bourke and A. Sowmya. Automatically transforming and relating Up-

paal models of embedded systems. In ACM [ACM08], pp. 59–68.

BIBLIOGRAPHY 249

[BST97] S. Bornot, J. Sifakis, and S. Tripakis. Modeling urgency in timed systems.

In W. P. de Roever, H. Langmaack, and A. Pnueli, eds., International Sym-

posium on Compositionality: The Significant Difference (COMPOS ’97),

vol. 1536 of Lecture Notes in Computer Science, pp. 103–129. Springer-

Verlag, Bad Malente, Germany, Sep. 1997.

[BTH07] M. Boldt, C. Traulsen, and R. von Hanxleden. Worst case reaction time

analysis of concurrent reactive programs. In International Workshop

on Model-driven High-level Programming of Embedded Systems (SLA++P

2007), pp. 65–79. Braga, Portugal, Mar. 2007. ETAPS 2007 Satellite Event.

[Bur95] A. Burns. Concurrent programming in Ada. The Ada Companion Series.

Cambridge University Press, 1995.

[BV08] J. Berendsen and F. Vaandrager. Compositional abstraction in real-time

model checking. In F. Cassez and C. Jard, eds., Proceedings of 6th Inter-

national Conference on Formal Modeling and Analysis of Timed Systems,

no. 5215 in Lecture Notes in Computer Science, pp. 233–249. Springer-

Verlag, Saint Malo, France, Sep. 2008.

[BW90] J. Baeten and W. Weijland. Process Algebra. No. 18 in Cambridge Tracts

in Theoretical Computer Science. Cambridge University Press, 1990.

[BW04] J. Bengtsson and Y. Wang. Timed automata: Semantics, algorithms and

tools. In J. Desel, W. Reisig, and G. Rozenberg, eds., Lectures on Concur-

rency and Petri Nets: Advances in Petri Nets, vol. 3098 of Lecture Notes

in Computer Science, pp. 87–124. Springer-Verlag, 2004.

[Cas92] P. Caspi. Clocks in dataflow languages. Theoretical Computer Science,

94(1):pp. 125–140, Mar. 1992.

[Cas01] —. Embedded control: From asynchrony to synchrony and back. In T. A.

Henzinger and C. M. Kirsch, eds., Proceedings of 1st International Con-

ference on Embedded Software (EMSOFT’01), vol. 2211 of Lecture Notes

in Computer Science, pp. 80–99. Springer-Verlag, Tahoe City, USA, Oct.

2001. ISBN 3-540-42673-6.

[CCM+03] P. Caspi, A. Curic, A. Maignan, C. Sofronis, S. Tripakis, and P. Niebert.

From Simulink to SCADE/Lustre to TTA: a layered approach for dis-

tributed embedded applications. In Proceedings of 2003 ACM SIGPLAN

Conference on Languages, Compilers, and Tools for Embedded Systems

(LCTES ’03), pp. 153–162. ACM Press, 2003. ISBN 1-58113-647-1.

[CDO96] C. Castelluccia, W. Dabbous, and S. O’Malley. Generating efficient proto-

col code from an abstract specification. ACM SIGCOMM Computer Com-

munication Review, 26(4):pp. 60–72, Oct. 1996.

[CGP94] P. Caspi, A. Girault, and D. Pilaud. Distributing reactive systems. In

Seventh International Conference on Parallel and Distributed Computing

Systems (PDCS ’94). International Society for Computers and their Appli-

cation, Las Vegas, USA, Oct. 1994.

[CJGP00] E. M. Clarke Jr., O. Grumberg, and D. A. Peled. Model Checking. MIT Press,

Jan. 2000. ISBN 0-262-03270-8.

[CL00] F. Cassez and K. Larsen. The impressive power of stopwatches. In

C. Palamidessi, ed., Proceedings of 11th International Conference on Con-

currency Theory (CONCUR ’00), vol. 1877 of Lecture Notes in Computer

Science, pp. 138–152. Springer-Verlag, Pennsylvania, USA, Aug. 2000.

ISBN 978-3-540-67897-7.

[Com99] F. M. Company. Structured analysis and design using Matlab/Simulink/S-

tateflow: Modelling style guidelines, version 2.4.2. http://vehicle.

berkeley.edu/mobies/papers/stylev242.pdf, 1999.

http://vehicle

250 BIBLIOGRAPHY

[CP95] P. Caspi and M. Pouzet. A functional extension to Lustre. In M. Orgun and

E. Ashcroft, eds., International Symposium on Languages for Intentional

Programming. World Scientific, Sydney, Australia, May 1995.

[Dij68] E. Dijkstra. Cooperating sequential processes. In F. Genuys, ed., Pro-

gramming Languages, pp. 43–112. Academic Press, 1968.

[DJS95] W. Damm, B. Josko, and R. Schlör. Specification and verification of VHDL-

based system-level hardware designs. In E. Börger, ed., Specification and

Validation Methods, International Schools for Computer Scientists, pp.

331–409. Oxford Science Publications, 1995.

[DNH87] R. De Nicola and M. Hennessy. CCS without τ ’s. In H. Ehrig, ed., Proceed-

ings of International Joint Conference on Theory and Practice of Software

Development (TAPSOFT’87); Volume 1: Advanced Seminar on Founda-

tions of Innovative Software Development I and Colloquium on Trees in

Algebra and Programming (CAAP’87), vol. 249 of Lecture Notes in Com-

puter Science, pp. 138–152. Springer-Verlag, Pisa, Italy, Mar. 1987.

[DWDR04] M. De Wulf, L. Doyen, and J.-F. Raskin. Almost ASAP semantics: from

timed models to timed implementations. In HSCC 04: Hybrid Systems

— Computation and Control, no. 2993 in Lecture Notes in Computer Sci-

ence, pp. 296–310. Springer-Verlag, 2004.

[Edw00] S. A. Edwards. Compiling Esterel into sequential code. In 37th Design

Automation Conference, pp. 322–327. ACM Press, Los Angeles, USA, Jun.

2000.

[Edw02] —. An Esterel compiler for large control-dominated systems. IEEE Trans-

actions on Computer-Aided Design of Integrated Circuits and Systems,

21(2):pp. 169–183, Feb. 2002.

[EG02] D. Evans and P. Gruba. How to Write a Better Thesis. Melbourne University

Press, 2nd ed., 2002.

[EL03] S. A. Edwards and E. A. Lee. The semantics and execution of a syn-

chronous block-diagram language. Science of Computer Programming,

48:pp. 21–42, 2003.

[EL07] —. The case for the precision timed (PRET) machine. In 44th Design

Automation Conference, pp. 264–265. ACM Press, San Diego, USA, Jun.

2007.

[ET05] S. A. Edwards and O. Tardieu. SHIM: A deterministic model for heteroge-

neous embedded systems. In Wolf [Wol05], pp. 264–272.

[FF89] M. Fujita and H. Fujisawa. Specification, verification and synthesis of

control circuits with propositional temporal logic. In J. A. Darringer and

F. J. Rammig, eds., Computer Hardware Description Languages and their

Applications: Proceedings of IFIP WG 10.2 ninth International Symposium

on, pp. 265–279. Elsevier Science, Washington DC, USA, Jun. 1989.

[Fis99] K. Fisler. Timing diagrams: Formalization and algorithmic verification.

Journal of Logic, Language and Information, 8(3):pp. 323–361, 1999.

[FJ97] K. Feyerabend and B. Josko. A visual formalism for real time require-

ment specification. In M. Bertran and T. Rus, eds., Proceedings of 4th

International Algebraic Methodology and Software Technology (AMAST)

Workshop on Real-Time Systems (ARTS’97), vol. 1231 of Lecture Notes in

Computer Science, pp. 156–168. Springer-Verlag, Palma, Mallorca, Spain,

May 1997.

BIBLIOGRAPHY 251

[Gla90] R. van Glabbeek. The linear time-branching time spectrum. In J. Baeten

and J. Klop, eds., Proceedings of 2nd International Conference on Con-

currency Theory (CONCUR ’90), vol. 458 of Lecture Notes in Computer

Science, pp. 278–297. Springer-Verlag, Amsterdam, Aug. 1990.

[Gla93] —. The linear time-branching time spectrum II: The semantics of se-

quential processes with silent moves. In E. Best, ed., Proceedings of

4th International Conference on Concurrency Theory (CONCUR ’93),

vol. 715 of Lecture Notes in Computer Science, pp. 66–81. Springer-

Verlag, Hildesheim, Germany, Aug. 1993. Unpublished full version:

http://theory.stanford.edu/~rvg/abstracts.html#26.

[Gla97] —. Notes on the methodology of CCS and CSP. Theoretical Computer

Science, 177(2):pp. 329–349, May 1997.

[GN00] E. R. Gansner and S. C. North. An open graph visualisation system and its

applications to software engineering. Software: Practice and Experience,

30(11):pp. 1203–1233, 2000.

[GR04] E. R. Gansner and J. H. Reppy. The Standard ML Basis Library. Cambridge

University Press, 2004.

[Gri99] E. T. Griebling. GP2D02 assembly language driver for 68HC12B32 micro-

controller. http://home.earthlink.net/~tdickens/68hc11/code/

sharpirhc12.asm, Feb. 1999.

[GT90] A. van Gasteren and G. Tel. Comments on “On the proof of a distributed

algorithm”: Always-true is not invariant. Information Processing Letters,

35:pp. 277–279, Sep. 1990.

[GTL03] P. L. Guernic, J.-P. Talpin, and J.-C. L. Lann. Polychrony for system design.

Journal of Circuits, Systems and Computers, 12(3):pp. 261–303, 2003.

[GV92] J. Groote and F. Vaandrager. Structured operational semantics and

bisimulation as a congruence. Information and Computation, 100(2):pp.

202–260, Oct. 1992.

[GW96] R. J. van Glabbeek and P. W. Weijland. Branching time and abstraction

in bisimulation semantics. Journal of the ACM, 43(3):pp. 555–600, May

1996.

[Haa81] V. H. Haase. Real-time behavior of programs. IEEE Transactions on Soft-

ware Engineering, SE-7(5):pp. 494–501, Sep. 1981.

[Hal93] N. Halbwachs. Synchronous Programming of Reactive Systems. Kluwer

Academic Publishers, 1993.

[Ham05] G. Hamon. A denotational semantics for Stateflow. In Wolf [Wol05], pp.

164–172.

[Har87] D. Harel. Statecharts: A visual formalism for complex systems. Science

of Computer Programming, 8(3):pp. 231–274, Jun. 1987.

[HB02] N. Halbwachs and S. Baghdadi. Synchronous modeling of asynchronous

systems. In Sangiovanni-Vincentelli and Sifakis [SVS02], pp. 240–251.

[HCRP91] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous

dataflow programming language LUSTRE. Proceedings of IEEE, 79(9):pp.

1305–1320, Sep. 1991.

[Hen88] M. Hennessy. Algebraic theory of processes. Foundations of Computing.

MIT Press, 1988.

http://theory.stanford.edu/~rvg/abstracts.html#26
http://home.earthlink.net/~tdickens/68hc11/code/

252 BIBLIOGRAPHY

[HL94] C. Heitmeyer and N. Lynch. The generalized railroad crossing: A case

study in formal verification of real-time systems. In Proceedings of 15th

IEEE Real-Time Systems Symposium (RTSS 1994), pp. 120–131. IEEE Com-

puter Society, San Juan, Puerto Rico, Dec. 1994.

[HLJ93] C. Heitmeyer, B. Labaw, and R. Jeffords. A benchmark for comparing

different approaches for specifying and verifying real-time systems. In

H. F. Wedde, ed., Proceedings of 10th IEEE Workshop on Real-time oper-

ating systems and software, pp. 122–129. IEEE Computer Society, New

York, May 1993.

[HLN+88] D. Harel, H. Lachover, A. Naamad, A. Pnueli, M. Politi, R. Sherman, and

A. Shtul-Trauring. STATEMATE: A working environment for the devel-

opment of complex reactive systems. In Proceedings of the 10th inter-

national conference on Software engineering, pp. 396–406. ACM Press,

Singapore, Apr. 1988.

[HLR93] N. Halbwachs, F. Lagnier, and P. Raymond. Synchronous observers and

the verification of reactive systems. In M. Nivat, C. Rattray, T. Rus, and

G. Scollo, eds., Proceedings of 3rd International Conference on Algebraic

Methodology and Software Technology (AMAST’93). Workshops in Com-

puting, Springer Verlag, Twente, Jun. 1993.

[HM80] M. Hennessy and R. Milner. On observing nondeterminism and concur-

rency. In J. de Bakker and J. van Leeuwen, eds., Proceedings of 7th Col-

loquium on Automata, Languages and Programming, vol. 85 of Lecture

Notes in Computer Science, pp. 299–309. Springer-Verlag, Noordwijker-

hout, The Netherlands, Jul. 1980.

[HMP92] T. A. Henzinger, Z. Manna, and A. Pnueli. What good are digital clocks?

In W. Kuich, ed., Proceedings of 19th International Colloquium on Au-

tomata, Languages and Programming, vol. 623 of Lecture Notes in Com-

puter Science, pp. 545–558. Springer-Verlag, Vienna, Austria, Jul. 1992.

[HMU01] J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to Automata

Theory, Languages, and Computation. Addison Wesley, 2nd ed., 2001.

[HN96] D. Harel and A. Naamad. The STATEMATE semantics of statecharts. ACM

Transactions on Software Engineering and Methodology (TOSEM), 5(4):pp.

293–333, Oct. 1996.

[HNSY94] T. A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic model

checking for real-time systems. Information and Computation, 111(2):pp.

192–244, Jun. 1994.

[Hoa78] C. Hoare. Communicating sequential processes. Communications of the

ACM, 21(8):pp. 666–677, Aug. 1978.

[Hoa85] —. Communicating Sequential Processes. Prentice Hall International,

1985.

[Hol03] G. J. Holzmann. The Spin Model Checker. Addison Wesley, 2003.

[HP85] D. Harel and A. Pnueli. On the development of reactive systems. Logics

and models of concurrent systems, pp. 477–498, 1985.

[HPSS87] D. Harel, A. Pnuelli, J. Schmidt, and R. Sherman. On the formal semantics

of Statecharts. In 2nd IEEE Symposium on Logic in Computer Science.

1987.

[HR95] M. Hennessy and T. Regan. A process algebra for timed systems. Infor-

mation and Computation, 117(2):pp. 221–239, Mar. 1995.

BIBLIOGRAPHY 253

[HR99] N. Halbwachs and P. Raymond. Validation of synchronous reactive sys-

tems: from formal verification to automatic testing. In P. Thiagarajan

and R. Yap, eds., 5th Asian Computing Science Conference (ASIAN’99),

vol. 1742 of Lecture Notes in Computer Science, pp. 1–12. Springer-

Verlag, Phuket, Thailand, Dec. 1999.

[HR04] G. Hamon and J. Rushby. An operational semantics for Stateflow. In

M. Wermelinger and T. Margaria-Steffen, eds., Proceedings of 7th Inter-

national Conference on on Fundamental Approaches to Software Engi-

neering, vol. 2984 of Lecture Notes in Computer Science, pp. 229–243.

Springer-Verlag, Barcelona, Spain, Apr. 2004.

[IEE04] IEEE Computer Society and The Open Group. Standard for Information

Technology—Portable Operating System Interface (POSIX®): System Inter-

faces, IEEE std 1003.1 ed., 2004.

[Int94] Intel Corporation. MCS®51 microcontroller family user’s manual, Feb.

1994.

[Jef93] K. Jeffay. The real-time producer/consumer paradigm: A paradigm for

the construction of efficient, predictable real-time systems. In Proceed-

ings of 1993 ACM/SIGAPP Symposium on Applied Computing: states of

the art and practice, pp. 796–804. ACM Press, Indianapolis, USA, Feb.

1993.

[JHRC08] L. Ju, B. K. Huynh, A. Roychoudhury, and S. Chakraborty. Perfor-

mance debugging of Esterel specifications. In 6th ACM/IEEE Interna-

tional Conference on Hardware/Software Co-Design and System Synthe-

sis (CODES+ISSS’08), pp. 173–178. ACM Press, Atlanta, Georgia USA, Oct.

2008.

[JLS00] H. E. Jensen, K. G. Larsen, and A. Skou. Scaling up Uppaal: Automatic

verification of real-time systems using compositionality and abstraction.

In Joseph [Jos00], pp. 19–30.

[JMO93] M. Jourdan, F. Maraninchi, and A. Olivero. Verifying quantitative real-

time properties of synchronous programs. In C. Courcoubetis, ed., 5th

International Conference on Computer Aided Verification, vol. 697 of Lec-

ture Notes in Computer Science, pp. 347–358. Springer-Verlag, Elounda,

Greece, Jun./Jul. 1993.

[Jos00] M. Joseph, ed. Proceedings of 6th International Symposium on Formal

Techniques for Real-Time and Fault-Tolerance (FTRTFT ’00), vol. 1926

of Lecture Notes in Computer Science. Springer-Verlag, Pune, India, Sep.

2000. ISBN 3-540-41055-4.

[JPO95] L. J. Jagadeesan, C. Puchol, and J. E. V. Olnhausen. A formal approach to

reactive systems software: A telecommunications application in Esterel.

In Proceedings of Workshop on Industrial-Strength Formal Specification

Techniques, pp. 132–145. IEEE, Florida, USA, Apr. 1995.

[JS88] F. Jahanian and D. A. Stuart. A method for verifying properties of mod-

echart specifications. In Proceedings of 9th IEEE Real-Time Systems Sym-

posium (RTSS 1988), pp. 12–21. IEEE Computer Society, Huntsville, USA,

Dec. 1988.

[KB03] H. Kopetz and G. Bauer. The time-triggered architecture. Proceedings of

IEEE, 91(1):pp. 112–126, Jan. 2003.

[KC98] K. Khordoc and E. Cerny. Semantics and verification of action diagrams

with linear timing constraints. ACM Transactions on Design Automation

of Electronic Systems (TODAES), 3(1):pp. 21–50, Jan. 1998.

254 BIBLIOGRAPHY

[KLSV06] D. K. Kaynar, N. Lynch, R. Segala, and F. Vaandrager. The Theory of

Timed I/O Automata. Synthesis Lectures on Computer Science. Morgan

& Claypool Publishers, 2006.

[KMSL83] J. Kramer, J. Magee, M. Sloman, and A. Lister. CONIC: an integrated ap-

proach to distributed computer control systems. IEE Proceedings (Part

E), 130(1):pp. 1–10, Jan. 1983.

[Kop97] H. Kopetz. Real-Time Systems: Design Principles for Distributed Embed-

ded Applications. Kluwer Academic Publishers, 1997.

[KRSW98] T. Kropf, J. Ruf, K. Schneider, and M. Wild. A synchronous language

for modeling and verifying real time and embedded systems. In GI/IT-

G/GME Workshop: Methoden des Entwurfs und der Verifikation digitaler

Schaltungen und Systeme und Beschreibungssprachen und Modellierung

von Schaltungen und Systemen, pp. 11–20. HNI-Verlagsschriften, Pader-

born, Germany, Mar. 1998.

[KS94] F. Korf and R. Schlör. Interface controller synthesis from requirement

specifications. In Proceedings of European Conference on Design Au-

tomation (with ETC and EUROASIC), pp. 385–394. IEEE Computer Society,

Paris, Mar. 1994.

[KS95] —. Synthesis of a Production Cell Controller using Symbolic Timing Dia-

grams, chap. 18, pp. 311–331. Vol. 891 of Lewerentz and Lindner [LL95],

1995.

[Lam77] L. Lamport. Time, clocks, and the ordering of events in a distributed

system. Communications of the ACM, 21(7):pp. 558–565, Jul. 1977.

[Lam83] —. What good is temporal logic? In R. Mason, ed., Proceedings of 9th In-

ternational Federation for Information Processing (IFIP) World Computer

Congress, pp. 657–668. International Federation for Information Process-

ing (IFIP), Paris, France, Sep. 1983.

[Lam02] —. Specifying Systems: The TLA+ Language and Tools for Hardware and

Software Engineers. Addison Wesley, 2002.

[LGGLBLM91] P. Le Guernic, T. Gautier, M. Le Borgne, and C. Le Maire. Programming

real-time applications with signal. Proceedings of IEEE, 79(9):pp. 1321–

1336, Sep. 1991.

[LHHR94] N. G. Leveson, M. P. E. Heimdahl, H. Hildreth, and J. D. Reese. Require-

ments specification for process-control systems. IEEE Transactions on

Software Engineering, 20(9):pp. 684–707, Sep. 1994.

[LL95] C. Lewerentz and T. Lindner, eds. Formal Development of Reactive

Systems—Case Study Production Cell, vol. 891 of Lecture Notes in Com-

puter Science. Springer-Verlag, Berlin, 1995. ISBN 3-540-58867-1.

[LL97] L. Léonard and G. Leduc. An introduction to ET-LOTOS for the descrip-

tion of time-sensitive systems. Computer Networks and ISDN Systems,

29(3):pp. 271–292, 1997.

[LLB+05] X. Li, J. Lukoschus, M. Boldt, M. Harder, and R. von Hanxleden. An Esterel

processor with full preemption support and its worst case reaction time

analysis. In Proceedings of International Conference on Compilers, Archi-

tectures and Synthesis for Embedded Systems (CASES’05), pp. 225–236.

ACM Press, San Francisco, USA, Sep. 2005.

[LPW97] K. G. Larsen, P. Pettersson, and Y. Wang. Uppaal in a nutshell. Inter-

national Journal of Software Tools for Technology Transfer, 1(1–2):pp.

134–152, Oct. 1997.

BIBLIOGRAPHY 255

[LS85] N. Leveson and J. Stolzy. Analyzing safety and fault tolerance using

time petri nets. In G. Goos and J. Hartmanis, eds., Formal Methods and

Software Development, Proceedings of International Joint Conference on-

Theory and Practice of Software Development (TAPSOFT) Volume 2: Col-

loquium on Software Engineering (CSE), vol. 186 of Lecture Notes in Com-

puter Science, pp. 339–355. Springer-Verlag, Berlin, Mar. 1985.

[LS91] K. G. Larsen and A. Skou. Bisimulation through probabilistic testing.

Information and Computation, 94(1):pp. 1–28, Sep. 1991.

[LS02] G. Logothetis and K. Schneider. Extending synchronous languages for

generating abstract real-time models. In Proceedings of Design, Automa-

tion and Test in Europe (DATE’02), pp. 795–803. IEEE Computer Society,

Paris, Mar. 2002.

[LT87] N. A. Lynch and M. R. Tuttle. Hierarchical correctness proofs for dis-

tributed algorithms. In Proceedings of 6th ACM SIGACT-SIGOPS Sympo-

sium on Principles of Distributed Computing, pp. 137–151. Vancouver,

Canada, Aug. 1987.

[LT89] —. An introduction to input/output automata. CWI Quarterly, 2(3):pp.

219–246, Sep. 1989.

[LV95a] N. Lynch and F. Vaandrager. Action transducers and timed automata.

Formal Aspects of Computing, 8(5):pp. 499–538, 1995.

[LV95b] —. Forward and backward simulations. Part I: Untimed systems. Infor-

mation and Computation, 121(2):pp. 214–233, Sep. 1995.

[LV96] —. Forward and backward simulations. Part II: Timing-based systems.

Information and Computation, 128(1):pp. 1–25, Jul. 1996.

[Lyn96] N. A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers, San

Mateo, CA, 1996.

[MAP93] P. Moeschler, H. P. Amann, and F. Pellandini. High-level modelling using

extended timing diagrams: A formalism for the behavioral specification

of digital hardware. In Proceedings of European Design Automation Con-

ference (EuroDAC93 and EURO-VHDL 93), pp. 494–499. Hamburg, Sep.

1993.

[Mar91] F. Maraninchi. The Argos language: Graphical representation of au-

tomata and description of reactive systems. In Proceedings of IEEE Work-

shop on Visual Languages, pp. 254–259. Oct. 1991.

[Mar92] —. Operational and compositional semantics of synchronous automaton

compositions. In R. Cleaveland, ed., Proceedings of 3rd International

Conference on Concurrency Theory (CONCUR ’92), vol. 630 of Lecture

Notes in Computer Science, pp. 550–564. Springer-Verlag, Stony Brook,

NY, USA, Aug. 1992. ISBN 3-540-55822-5.

[Mat01] MathWorks Automotive Advisory Board (MAAB). Controller style

guidelines for production intent using MATLAB, Simulink and State-

flow. http://www.mathworks.com/applications/controldesign/

MAAB_Style_Guide_html_v1_00/MAAB_v1p00.htm, Apr. 2001.

[Mat03a] The Mathworks, Natick, MA, U.S.A. Simulink—Using Simulink, 5th ed.,

Sep. 2003. Release 13SP1.

[Mat03b] The Mathworks, —. Simulink—Writing S-Functions, 5th ed., Sep. 2003.

Release 13SP1.

[Mat03c] The Mathworks, —. Stateflow® and Stateflow Coder® User’s Guide, 5th

ed., Sep. 2003. Stateflow 5.1 (Release 13SP1).

http://www.mathworks.com/applications/controldesign/

256 BIBLIOGRAPHY

[Mat04] The Mathworks, —. Stateflow® and Stateflow Coder® User’s Guide, 6th

ed., Jun. 2004. Stateflow 6.0 (Release 14).

[Mea55] G. H. Mealy. A method for synthesizing sequential circuits. Bell System

Technical Journal, 34(5):pp. 1045–1079, 1955.

[MH96] F. Maraninchi and N. Halbwachs. Compiling Argos into Boolean equa-

tions. In B. Jonsson and J. Parrow, eds., Proceedings of 4th International

Symposium on Formal Techniques for Real-Time and Fault-Tolerance

(FTRTFT ’96), vol. 1135 of Lecture Notes in Computer Science, pp. 72–

89. Springer-Verlag, Uppsala, Sweden, Sep. 1996. ISBN 3-540-61648-9.

[Mil83] R. Milner. Calculi for synchrony and asynchrony. Theoretical Computer

Science, 25(3):pp. 267–310, 1983.

[Mil89] —. Communication and Concurrency. Prentice-Hall, Inc., Upper Saddle

River, NJ, 1989.

[Mil93] —. Elements of interaction: Turing award lecture. Communications of

the ACM, 36(1):pp. 78–89, Jan. 1993.

[MM97] B. R. Montague and C. E. McDowell. Synchronous/reactive program-

ming of concurrent system software. Software: Practice and Experience,

27(3):pp. 207–243, Mar. 1997.

[MMP91] O. Maler, Z. Manna, and A. Pnueli. From timed to hybrid systems. In

J. de Bakker, C. Huizing, W. de Roever, and G. Rozenberg, eds., Real-

Time: Theory in Practice, vol. 600 of Lecture Notes in Computer Science,

pp. 447–484. Springer-Verlag, Mook, The Netherlands, Jun. 1991.

[Moo56] E. F. Moore. Gedanken-experiments on sequential machines. In C. Shan-

non and J. McCarthy, eds., Automata Studies, no. 34 in Annals of Mathe-

matics Studies, pp. 129–153. Princeton University Press, 1956.

[MP92] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent

Systems. Springer-Verlag, 1992.

[MP93] —. Verifying hybrid systems. In R. L. Grossman, A. Nerode, A. P. Ravn,

and H. Rischel, eds., Hybrid Systems, vol. 736 of Lecture Notes in Com-

puter Science, pp. 4–35. Springer-Verlag, 1993.

[MR01] F. Maraninchi and Y. Rémond. Argos: an automaton-based synchronous

language. Computer Languages, 27(1–3):pp. 61–92, 2001.

[MS92] G. J. Murakami and R. Sethi. Parallelism as a structuring technique: Call

processing using the Esterel language. In J. van Leeuwen, ed., Proceedings

of 12th International Federation for Information Processing (IFIP) World

Computer Congress, no. 92 in Information Processing, pp. 10–16. Madrid,

Spain, 1992.

[MT90] R. Milner and M. Tofte. Commentary on Stndard ML. MIT Press, Nov.

1990.

[MTHM97] R. Milner, M. Tofte, R. Harper, and D. MacQueen. The Definition of Stan-

dard ML (Revised). MIT Press, May 1997.

[MW06] S. L. Min and Y. Wang, eds. Proceedings of 6th ACM International Confer-

ence on Embedded Software (EMSOFT’06). ACM Press, Seoul, South Korea,

Oct. 2006. ISBN 1-59593-542-8.

[Neu99] A. Neumann. Parsing and Querying XML Documents in SML. Ph.D. thesis,

Universität Trier, Germany, Dec. 1999.

[NPW81] M. Nielsen, G. Plotkin, and G. Winskel. Petri nets, event structures and

domains, part I. Theoretical Computer Science, 13:pp. 85–108, 1981.

BIBLIOGRAPHY 257

[NPW02] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL: A Proof Assistant

for Higher-Order Logic, vol. 2283 of Lecture Notes in Computer Science.

Springer-Verlag, 2002.

[NS94] X. Nicollin and J. Sifakis. The algebra of timed processes ATP: Theory and

application. Information and Computation, 114(1):pp. 131–178, 1994.

[NSY93] X. Nicollin, J. Sifakis, and S. Yovine. From ATP to timed graphs and

hybrid systems. Acta Informatica, 30(2):pp. 181–202, 1993.

[Par81] D. Park. Concurrency and automata on infinite sequences. In G. Goos

and J. Hartmanis, eds., 5th GI-Conference, vol. 104 of Lecture Notes in

Computer Science, pp. 167–183. Springer-Verlag, Karlsruhe, Mar. 1981.

[PBEB07] D. Potop-Butucaru, S. A. Edwards, and G. Berry. Compiling Esterel.

Springer-Verlag, 2007.

[Pel02] D. Peled. Specification and verification using Message Sequence Charts.

Electronic Notes in Theoretical Computer Science, 65(7), 2002.

[Pet81] J. L. Peterson. Petri Net Theory and The Modeling of Systems. Prentice-

Hall, 1981.

[Pnu94] A. Pnueli. Development of hybrid systems. In H. Langmaack, W.-P.

de Roever, and J. Vytopil, eds., Proceedings of 3rd International Sympo-

sium on Formal Techniques for Real-Time and Fault-Tolerance (FTRTFT

’94), vol. 863 of Lecture Notes in Computer Science, pp. 77–85. Springer-

Verlag, Lübeck, Germany, Sep. 1994. ISBN 3-540-58468-4.

[Pon01] M. Pont. Patterns for time-triggered embedded systems: Building reliable

applications with the 8051 family of microcontrollers. ACM Press/Addi-

son Wesley, 2001. ISBN 0-201-331381.

[PRS95] P. Pandya, Y. Ramakrishna, and R. Shyamasundar. A compositional se-

mantics of Esterel in duration calculus. In Proceedings of 2nd Interna-

tional Algebraic Methodology and Software Technology (AMAST) Work-

shop on Real-Time Systems (ARTS’95). Bordeaux, France, Jun. 1995.

[Puc98] R. R. Pucella. Reactive programming in Standard ML. In International

Conference on Computer Languages, ICCL ’98, pp. 48–57. IEEE, Chicago,

USA, May 1998.

[Ram01] A. Ramsey. Interfacing the GP2D02 to a Microchip PIC. Encoder: The

Newsletter of the Seattle Robotics Society, Dec. 2001.

[Rei85] W. Reisig. Petri Nets: An Introduction, vol. 4 of EATCS Monographs on

Computer Science. Springer-Verlag, 1985.

[RGG96] E. Rudolph, P. Graubmann, and J. Grabowski. Tutorial on Message Se-

quence Charts. Computer Networks and ISDN Systems: Special issue on

SDL and MSC, 28(12):pp. 1629–1641, Jun. 1996.

[Ron80] P. R. Rony. Interfacing fundamentals: Timing diagram conventions. Com-

puter Design, 19(1):pp. 152–153, Jan. 1980.

[Ros97] A. Roscoe. The Theory and Practice of Concurrency. Concurrent and

Distributed Systems. Prentice-Hall, 1997.

[RS98] S. Ramesh and C. M. Shetty. Impossibility of synchronization in the

presence of preemption. Parallel Processing Letters, 8(1):pp. 111–120,

Mar./Apr. 1998.

[SA01] R. Shyamasundar and J. Aghav. Validating real-time constraints in em-

bedded systems. In 8th Pacific Rim International Symposium on De-

pendable Computing (PRDC 2001), pp. 347–355. IEEE Computer Society,

Seoul, Korea, Dec. 2001.

258 BIBLIOGRAPHY

[Sch08] B. Schlich. Model Checking of Software for Microcontrollers. Ph.D. thesis,

RWTH Aachen University, Aachen, Germany, Jun. 2008.

[SD93] R. Schlör and W. Damm. Specification and verification of system-level

hardware designs using timing diagrams. In Proceedings of 4th European

Conference on Design Automation (with EUROASIC), pp. 518–524. IEEE,

Paris, Feb. 1993.

[SGSAL94] R. Segala, R. Gawlick, J. Søgaard-Andersen, and N. Lynch. Liveness in

timed and untimed systems. In S. Abiteboul and E. Shamir, eds., Pro-

ceedings of 21st International Colloquium on Automata, Languages and

Programming, no. 820 in Lecture Notes in Computer Science, pp. 166–

177. Springer-Verlag, Jul. 1994.

[Sha97] Sharp Corporation. GP2D02: Compact, high sensitive distance measur-

ing sensor, 1997.

[Spe02] C. Spencer. Formal Verification of Stateflow Diagrams Using SMV. Mas-

ter’s thesis, Carnegie Mellon University, 2002. Not Sighted, Supervised

by Bruce Krogh.

[SSC+04] N. Scaife, C. Sofronis, P. Caspi, S. Tripakis, and F. Maraninchi. Defining

and translating a “safe” subset of Simulink/Stateflow into Lustre. In

G. Buttazzo, ed., Proceedings of 4th ACM International Conference on

Embedded Software (EMSOFT’04), pp. 259–268. ACM Press, Pisa, Italy,

Sep. 2004. ISBN 1-58113-860-1.

[STC06] C. Sofronis, S. Tripakis, and P. Caspi. A memory-optimal buffering

protocol for preservation of synchronous semantics under preemptive

scheduling. In Min and Wang [MW06], pp. 21–33.

[Sto02] M. I. Stoelinga. Alea Jacta est: Verification of probabilistic, real-time and

parametric systems. Ph.D. thesis, Katholieke Universiteit Nijmegen, The

Netherlands, Apr. 2002.

[STY03] J. Sifakis, S. Tripakis, and S. Yovine. Building models of real-time systems

from application software. Proceedings of IEEE, 91(1):pp. 100–111, Jan.

2003.

[SVS02] A. L. Sangiovanni-Vincentelli and J. Sifakis, eds. Proceedings of 2nd In-

ternational Conference on Embedded Software (EMSOFT’02), vol. 2491

of Lecture Notes in Computer Science. Springer-Verlag, Grenoble, France,

Oct. 2002. ISBN 3-540-44307-X.

[TA00] D. R. Tarditi and A. W. Appel. ML-Yacc User’s Manual. Department of

Computer Science, Princeton University, 2000.

[Tec05] E. Technologies. The Esterel v7 Reference Manual. Esterel Technologies,

Villeneuve-Loubet, France, v7_30 ed., Nov. 2005.

[Tel00] G. Tel. Introduction to Distributed Algorithms. Cambridge University

Press, 2nd ed., Sep. 2000. ISBN 0-521-79483-8. 1st ed.: Nov. 1994.

[The03a] The MathWorks. Bang-bang temperature controller example, 2003.

[The03b] —. Fault-tolerant fuel controller example, 2003.

[The06] S. Thesing. Modeling a system controller for timing analysis. In Min and

Wang [MW06], pp. 292–300.

[Tie91] W.-D. Tiedemann. Bus protocol conversion: From timing diagrams

to state machines. In F. Pichler and R. M. Díaz, eds., Proceedings of

2nd International Workshop on Computer Aided Systems Theory (EURO-

CAST ’91), vol. 585 of Lecture Notes in Computer Science, pp. 365–377.

Springer-Verlag, Krems, Austria, Apr. 1991.

BIBLIOGRAPHY 259

[Tiw02] A. Tiwari. Formal semantics and analysis methods for Simulink/State-

flow models. Unpublished report, SRI International, 2002.

[TNTBS00] S. Tudoret, S. Nadjm-Tehrani, A. Benveniste, and J.-E. Strömberg. Co-

simulation of hybrid systems: Signal-Simulink. In Joseph [Jos00], pp.

134–151.

[TS05] O. Tardieu and R. de Simone. Loops in Esterel. ACM Transactions on

Embedded Computing Systems, 4(4):pp. 708–750, Nov. 2005.

[TSCC05] S. Tripakis, C. Sofronis, P. Caspi, and A. Curic. Translating discrete-time

Simulink to Lustre. ACM Transactions on Embedded Computing Systems,

4(4):pp. 779–818, Nov. 2005.

[TSR03] A. Tiwari, N. Shankar, and J. Rushby. Invisible formal methods for em-

bedded control systems. Proceedings of IEEE, 91(1):pp. 29–39, Jan. 2003.

[Vaa91] F. W. Vaandrager. On the relationship between process algebra and in-

put/output automata (extended abstract). In Proceedings of 6th Annual

IEEE Symposium on on Logic in Computer Science (LICS ’91), pp. 387–398.

IEEE Computer Society, Amsterdam, Jul. 1991.

[Ver05] Verimag. Argos and Argonaute examples. http://www-verimag.imag.

fr/SYNCHRONE/ARGONAUTE/Examples.html, 2005.

[VG04] F. Vaandrager and A. de Groot. Analysis of a biphase mark protocol

with Uppaal and PVS. Technical Report NIII-R0445, Radboud University,

Nijmegen, The Netherlands, 2004.

[WA85] W. W. Wadge and E. A. Ashcroft. LUCID, the dataflow programming lan-

guage. Academic Press Professional, Inc., 1985.

[Wan90] Y. Wang. Real-time behaviour of asynchronous agents. In J. W. K. Jos

C.M. Baeten, ed., Proceedings of 2nd International Conference on Con-

currency Theory (CONCUR ’90), vol. 458 of Lecture Notes in Computer

Science, pp. 502–520. Springer-Verlag, Amsterdam, Aug. 1990.

[Wan91] —. CCS + time = an interleaving model for real time systems. In J. L.

Albert, M. Rodríguez-Artalejo, and B. Monien, eds., Proceedings of 18th

International Colloquium on Automata, Languages and Programming,

vol. 510 of Lecture Notes in Computer Science, pp. 217–228. Springer-

Verlag, Madrid, Spain, Jul. 1991.

[WBC+00] D. Weil, V. Bertin, E. Closse, M. Poize, P. Venier, and J. Pulou. Efficient

compilation of Esterel for real-time embedded systems. In Proceedings

of International Conference on Compilers, Architectures and Synthesis for

Embedded Systems (CASES’00), pp. 2–8. ACM Press, San Jose, USA, Nov.

2000.

[WEE+08] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whalley,

G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra, F. Mueller, I. Puaut,

P. Puschner, J. Staschulat, and P. Stenström. The worst-case execution-

time problem—overview of methods and survey of tools. ACM Transac-

tions on Embedded Computing Systems, 7(3):pp. 36–88, Apr. 2008.

[Wol05] W. Wolf, ed. Proceedings of 5th ACM International Conference on Embed-

ded Software (EMSOFT’05). ACM Press, Jersey City, USA, Sep. 2005. ISBN

1-59593-091-4.

[WPD94] Y. Wang, P. Pettersson, and M. Daniels. Automatic verification of real-

time communicating systems by constraint-solving. In D. Hogrefe and

S. Leue, eds., Formal Description Techniques VII, Proceedings of 7th

IFIP WG6.1 International Conference on Formal Description Techniques,

pp. 223–238. International Federation for Information Processing (IFIP),

Chapman & Hall, Berne, Switzerland, 1994.

http://www-verimag.imag

260 BIBLIOGRAPHY

[WW07] M. Wenzel and B. Wolff. Building formal methods tools in the Is-

abelle/Isar framework. In K. Schneider and J. Brandt, eds., Proceedings

of 20th International Conference on Theorem Proving in Higher Order

Logics (TPHOLs 2007), vol. 4732 of Lecture Notes in Computer Science,

pp. 352–367. Springer-Verlag, Kaiserslautern, Germany, Sep. 2007.

[Yov97] S. Yovine. Kronos: A verification tool for real-time systems. International

Journal of Software Tools for Technology Transfer, 1(1–2):pp. 123–133,

Dec. 1997.

	Title Page - Modelling and Programming Embedded Controllers with Timed Automata and Synchronous Languages
	Abstract
	Acknowledgements
	Related publications
	Table of Contents
	List of Figures
	Acronyms

	Chapter 1 - Introduction
	Chapter 2 - Background
	Chapter 3 - Simulating synchronous execution
	Chapter 4 - An infrared sensor
	Chapter 5 - Validating timed trace inclusion in Uppaal
	Chapter 6 - Delays in Esterel
	Chapter 7 - Conclusion
	Appendix A - Process Algebra
	Appendix B - Input/Output Automata and related approaches
	Appendix C - Preorders
	Appendix D - Textual Argos
	Appendix E - Argos Case Studies
	Appendix F - Formal Timing Diagram Model
	Bibliography

