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Motivation

Hybrid Systems Modelers

ñ Platforms for simulation and development
ñ More and more important

ñ Semantics
ñ Efficiency and predictability
ñ Fidelity / Consistency

Simulink

Ptolemy
. . .

Conservative extension of a synchronous data-flow language

What distinguishes our approach?

ñ Compilation with existing tools
(after source-to-source transformation)

ñ Static typing

ñ Semantics based on non-standard analysis
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Modeling

Model discrete systems with data-flow equations

Model physical systems with Ordinary Differential Equations (ODEs)

ẏ (t) = f ( t , y )

instantaneous
derivatives

variables

y (0) = yi

initial values

(Causal) First-order ODEs

ñ Causal: inputs on right,
outputs on left

ñ First-order:
one equation = one variable
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ẏ (t) = f ( t , y )

instantaneous
derivatives

variables

y (0) = yi

initial values

(Causal) First-order ODEs

ñ Causal: inputs on right,
outputs on left

ñ First-order:
one equation = one variable



Bouncing ball
model

h

F =m · a

−g =m · d2h(t)
dt2

d2h(t)
dt2 = −g/m

v̇ = −g/m v(0) = v0

ḣ = v h(0) = h0

v(t) = v0 +
∫ t

0
(−g/m) .dτ

h(t) = h0 +
∫ t

0
v(τ) .dτ

Solver

f yi

approximation

g

event!

up(-h)
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Solver execution

t

t

f f f

g

f

g

f

g

f

g

1. approximation error too large

f f f

g

f

g

f

g

2. expression crosses zero

g gg

ñ Bigger and bigger steps (bound by hmin and hmax )

ñ t does not necessarily advance monotonically

ñ Ok for continuous states (managed by solver)
ñ Cannot change state within f or g
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Basic Hybrid Language
Start with Lucid Synchrone (subset); add first-order ODEs with reset.

ẋ (t) = f ( t , x ) x (0) = xi

instantaneous
derivatives

variables initial values

Rather than ẋ = ed and x(0) = xi, write

der x = ed init xi

reset e1 every up(ez1)

· · · | en every up(ezn)

x = (pre h + 1) every up(e) default ec init ei

| purely sync every event

Very simple: no clocks, no automata, no higher-order

without default

with default
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Rather than ẋ = ed and x(0) = xi, write

der x = ed init xi

reset e1 every up(ez1)

· · · | en every up(ezn)

x = (pre h + 1) every up(e) default ec init ei

| purely sync every event

Very simple: no clocks, no automata, no higher-order

without default

with default



Basic Hybrid Language
Start with Lucid Synchrone (subset); add first-order ODEs with reset.
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ẋ (t) = f ( t , x ) x (0) = xi

instantaneous
derivatives

variables initial values
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Bouncing ball
program

h

v̇ = −g/m v(0) = v0

ḣ = v h(0) = h0

reset v to −0.8 · v when h becomes 0

let hybrid bal l ( ) =
let
rec der v = (−. g / m) init v0

reset (−. 0.8 * . last v ) every up(–. h)
and der h = v in i t h0
in ( v , h )



Semantics
reals non-standard reals

R + infinitesimals (∂) ?R

· · · < t−3∂ < t−2∂ < t− ∂ < t < t+ ∂ < t+2∂ < t+3∂ < · · ·

ñ dense and discrete
ñ base clock for both continuous and discrete behaviors
ñ ∀t. •t is the previous instant, t• is the next instant

integr#(T )(s)(s0)(hs)(t) = s′(t) where
s′(t) = s0(t) if t =min(T )
s′(t) = s′(•t)+ ∂s(•t) if handler#(T )(hs)(t) = NoEvent
s′(t) = v if handler#(T )(hs)(t) = Xcrossing(v)

up#(T )(s)(t) = false if t =min(T )
up#(T )(s)(t•) = true if (s(•t) ≤ 0)∧ (s(t) > 0) and (t ∈ T )
up#(T )(s)(t•) = false otherwise

. . . . . . . . .
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Compilation

h

let hybrid bal l ( ) =
let
rec der v = (−. g / m) init v0

reset (−. 0.8 * . last v ) every up(–. h)
and der h = v in i t h0
in ( v , h )

let node bal l (z1 , ( lh , lv ) , ( ) ) =
let rec i = true fby fa lse

and dv = (−. g / m)
and v = i f i then v0

else i f z1 then −. 0.8 * . lv
else l v

and dh = v
and h = i f i then h0 else lh

and upz1 = −. h

in ( ( v , h ) , upz1, (h , v ) , (dh, dv ) )

transform into discrete subsettransform continuous variablestransform zero-crossings
All continuous parts execute in 1st instant

ñ type system prevents C inside D

ñ no branching or activations
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reset (−. 0.8 * . last v ) every up(–. h)
and der h = v in i t h0
in ( v , h )

let node bal l (z1 , ( lh , lv ) , ( ) ) =
let rec i = true fby fa lse

and dv = (−. g / m)
and v = i f i then v0

else i f z1 then −. 0.8 * . lv
else l v

and dh = v
and h = i f i then h0 else lh

and upz1 = −. h

in ( ( v , h ) , upz1, (h , v ) , (dh, dv ) )

transform into discrete subsettransform continuous variablestransform zero-crossings

All continuous parts execute in 1st instant

ñ type system prevents C inside D

ñ no branching or activations



Execution (Simulation)

(upz, y ,dy) = mainσ (z, y)
f (t, y) = let (_, _,dy) =mainσ (false, y) in dy
g (t, y) = let (upz, _, _) =mainσ (false, y) in upz
d (z, y) = let (upz, y , _) =mainσ (z, y) in (upz, y)

DI C D
/ init

zc

¬zc zc
¬zc / reinit

d f g d

ñ Only d may have side effects

ñ Neither f , nor g may change the (internal) discrete state



Typing
Motivation

This compilation/execution scheme only works for some programs!

We need a type system to:

ñ Reject programs that do not respect the invariant:

ñ discrete computations in D only

ñ continuous evolutions in C only

ñ Reject unreasonable programs

ñ where behavior depends ‘too much’ on simulation parameters
(like the step size, or number of iterations)
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Typing
Unreasonable programs

der y = 1.0 in i t 0.0 and x = (0.0 → pre x) + y

x = 0.0 → ( pre x +. 1.0) and der y = x in i t 0.0

ñ y is a variable that changes continuously

ñ x is discrete register

ñ The relationship between the two is ill-defined



Typing

The type language

bt ::= float | int | bool | zero
t ::= bt | t × t | β
σ ::= ∀β1, ..., βn.t

k
-→ t

k ::= D | C | A A

D C

Initial conditions

(+) : int× int
A
-→ int

(=) : ∀β.β× β A
-→ bool

if : ∀β.bool× β× β A
-→ β

pre(.) : ∀β.β D
-→ β

.fby . : ∀β.β× β D
-→ β

up(.) : float
C
-→ zero
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Typing
G,H `C der y = 1.0 init 0.0 G,H `D x = (0.0 fby (x + 1))

G,H `C x′ = (0.0 fby (x + 1))

every up(ez) init 0.0

G,H `? der y = · · · and x = · · · %

G,H `?G,H `C der y= · · · and x′ = · · · "

G,H `?G,H `D x = · · · and x = · · · "

Typing of function body gives its kind k ∈ {C,D,A}:

h : float× float
k
-→ float× float

Less expressive but simpler than ‘per-wire’ kinds, e.g. Simulink

j : (floatD)× (floatC) -→ (floatD)× (floatC)
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Conclusion

ñ Simple extension of a synchronous data-flow language
ñ Add first-order ODEs
ñ and zero-crossing events

ñ Non-standard semantics
ñ Gives a ‘continuous base clock’
ñ Simplifies definitions, clarifies certain features

ñ Static block-based typing system
ñ Divide system into continuous and discrete parts

ñ Compilation
ñ Source-to-source transformation
ñ Recycle existing compilers

ñ Execution
ñ Simulate using Sundials CVODE solver

Ocaml Sundials CVODE interface and compiler available
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