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Ptolem
Hybrid Systems Modelers é o Y

» Platforms for simulation and development
» More and more important

» Semantics
» Efficiency and predictability
» Fidelity / Consistency

Conservative extension of a synchronous data-flow language

What distinguishes our approach?
» Compilation with existing tools
(after source-to-source transformation)
» Static typing
» Semantics based on non-standard analysis



Outline

Background

Hybrid Synchronous Language
Semantics
Compilation
Execution
Typing

Conclusion



Modeling

Model discrete systems with data-flow equations

Model physical systems with Ordinary Differential Equations (ODEs)



Modeling

Model discrete systems with data-flow equations

Model physical systems with Ordinary Differential Equations (ODEs)

(Causal) First-order ODEs

y®=r[(t,y)

| » Causal: inputs on right,
instantaneous outputs on left
derivatives

» First-order:

one equation = one variable
y (0) =y
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Solver execution

1. approximation error too large

ffft f f fffFf f f

g g g 99 g 99 99

t
2. expression crosses zero

» Bigger and bigger steps (bound by huyin and hpax)
» t does not necessarily advance monotonically

» Ok for continuous states (managed by solver)
» Cannot change state within f or g
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Basic Hybrid Language

Start with Lucid Synchrone (subset); add first-order ODEs with reset.

x(t)=f(t, x) x (0) = x

instantaneous
derivatives
Rather than x = e; and x(0) = x;, write
der x = e4 init Xx; reset e; every up(ez)

|  en every up(ez,)

X = (preh+1) every up(e) default e, init eg;

| purely sync every event

Very simple: no clocks, no automata, no higher-order

- without default

—

——o

—_—_———— s
—0

- with default




Bouncing ball

program

o
V=-g/m v(0) = vy
h=v h(0) = hg

reset v to —0.8 - v when h becomes 0

let hybrid ball () =
let
rec der v = (—. g / m) init vO
reset (—. 0.8 =. lastv) every up(-. h)
and der h v init hO
in (v, h)
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Compilation

® let hybrid ball () =
let
rec/der v = (—. g / m) init vO
reset (—. 0.8 «. lastv) every up(-. h)

h and| der h = v init hO

in {v, h)
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® let hybrid ball () =

let

rec der,v = (—. g / m) init vO

reset (—. 0.8 «. lastv) every up(-. h)
v init hO
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ldt relc i = true fby false
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Compilation

let hybrid ball () =
let

rec der v = (—. g / m) init vO

reset (—. 0.8~%. lastv) every up(-. h)

v ini

and der h =
in (v, h)

let node ball (z1, (lh, Iv),
let rec i = true fby false

0) 5

and dv = (-. g / m)
and v = if i then v
else if z1 then
else |v

70.8 =. Iv

transform zero-crossings
and dh =
and h

I
- <

hen hO else |h

and upzl = —. h

in ((v, h), upzl, (h, v), (dh, dv))



Compilation

® let hybrid ball () =
let
rec der v =

h and der h =
in (v, h)

— let node

and dv = (-.

and v = if i
else if z1 then —. 0.8 =. Iv
else |v

a"g ﬁh All continuous parts execute in 1st instant
an
» type system prevents C inside D

and up  » no branching or activations

in ((v, h), upzl, (h, v), (dh, dv))



Execution (Simulation)

(upz,y,dy) = maing(z,y)

f(t,y) = let (_,_,dy) = maing(false,y) indy
g(t,y) = let (upz,_,_) = maing(false,y) in upz
d(z,y) = let (upz,y,_) = maing(z,y) in (upz,y)

fag S d

d
@ / init

—zc / reinit
—ZC zC

» Only d may have side effects
» Neither f, nor g may change the (internal) discrete state
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Typing

Motivation
This compilation/execution scheme only works for some programs!

We need a type system to:
» Reject programs that do not respect the invariant:

» discrete computations in @ only

» continuous evolutions in @ only

» Reject unreasonable programs

» where behavior depends ‘too much’ on simulation parameters
(like the step size, or number of iterations)



Typing

Unreasonable programs

der y = 1.0 init 0.0 and x = (0.0 — pre x) + vy

x = 0.0 - (pre x +. 1.0) and der y = x init 0.0

» y is a variable that changes continuously
» X is discrete register
» The relationship between the two is ill-defined
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The type language

bt
t

o
k

float | int | bool | zero
bt|txt]|p

k
vB],...,ﬁn.t_’ t
DIC|A

\/



Typing
The type language

bt ::= float]|int|bool | zero D
t = bt|txt|B

o = VB],...,Bn.t—k> t

k == D|C|A

Initial conditions

(+)
(=)
if
pre(.)
. fby.
up(.)

intx*inti»'int
VB.B % B 2 bool
VB.bool x B x B 2 B
VBB B
VBBxB B

C
float — zero

\/

A

C
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Typing

G,Ht+c dery = 1.0init 0.0 G,Hp x = (0.0 fby (x + 1))
G,H-c x' = (0.0 fby(x+1))
every up(ez) init 0.0
G,Hr72dery =--- and X =+ X
G,Htc dery=--- and X' =
C’H|—D X =" -- and X =---

Typing of function body gives its kind k € {C,D,A}:

h: float x float < float x float
Less expressive but simpler than ‘per-wire’ kinds, e.g. Simulink

j: (floatp) x (floatc) — (floatp) x (floatc)
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Conclusion

» Simple extension of a synchronous data-flow language

» Add first-order ODEs
» and zero-crossing events

Non-standard semantics

» Gives a ‘continuous base clock’
» Simplifies definitions, clarifies certain features

Static block-based typing system
» Divide system into continuous and discrete parts
Compilation

» Source-to-source transformation
» Recycle existing compilers

» Execution
» Simulate using Sundials CVODE solver

v

v

v

Ocaml Sundials CVODE interface and compiler available
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