Divide and Recycle: Types and Compilation for a
Hybrid Synchronous Language

Albert Benveniste! Benoit Caillaud'
Timothy Bourke! Marc Pouzet'?:3

1. INRIA
2. Institut Universitaire de France

3. Ecole normale supérieure (LIENS)

%I INRIA

LCTES 2011, CPS Week, April 11-14, Chicago, IL, USA

Motivation Simulink

Ptolem
Hybrid Systems Modelers é o Y

» Platforms for simulation and development
» More and more important

» Semantics
» Efficiency and predictability
» Fidelity / Consistency

Motivation Simulink

Ptolem
Hybrid Systems Modelers é o Y

» Platforms for simulation and development
» More and more important

» Semantics
» Efficiency and predictability
» Fidelity / Consistency

Conservative extension of a synchronous data-flow language

Motivation Simulink

Ptolem
Hybrid Systems Modelers é o Y

» Platforms for simulation and development
» More and more important

» Semantics
» Efficiency and predictability
» Fidelity / Consistency

Conservative extension of a synchronous data-flow language

What distinguishes our approach?
» Compilation with existing tools
(after source-to-source transformation)
» Static typing
» Semantics based on non-standard analysis

Outline

Background

Hybrid Synchronous Language
Semantics
Compilation
Execution
Typing

Conclusion

Modeling

Model discrete systems with data-flow equations

Model physical systems with Ordinary Differential Equations (ODEs)

Modeling

Model discrete systems with data-flow equations

Model physical systems with Ordinary Differential Equations (ODEs)

(Causal) First-order ODEs

y®=r[(t,y)

| » Causal: inputs on right,
instantaneous outputs on left
derivatives

» First-order:

one equation = one variable
y (0) =y

Bouncing ball

model

®
F=m-a
B d?h(t)
h g) dtZ
d?h(t)
gz~ 9Im

Bouncing ball

model
®
F=m-a
Pk
h - dtZ
e
a2z 9
I

V=-g/m v(0) = vo
' h(0) = ho

Il
<

Bouncing ball

model
o
F=m-a
Ca=m. d?h(t)
h 9= dtZ
d?h(t) — _g/m
az 9
[]
t
V=—g/m v(0) = vo v(t) = vo + Jo(—g/m) Wks

h=v h(0) = hg t

h(t) = ho + Jo v(T) .dTt

Bouncing ball

model

@
F=m-a
d?h(t)
h —g=m- dtZ
d?h(t)

az - 9m

’ Solver) .

approximation
t
V0) K vo vit) F vo + Jo(—g/m) AT

t

hQ) J o h(t) h0+J v(T).dt
0

Bouncing ball

model
up(-h)
@
F=m-a
o d?h(t)
B dt2
d?h(t) — _g/m
az 9

event!

Solver

approximation

t
Vo + IO(—g/m).dT

t
ho + J v(T).dT
0

Solver execution

Solver execution

Solver execution

Solver execution

frf

1l

Solver execution

frf

I

g

Solver execution

fff f

Solver execution

fff f f

» Bigger and bigger steps (bound by huyin and hpax)

Solver execution

1. approximation error too large

fff f f f

» Bigger and bigger steps (bound by huyin and hpax)

Solver execution

1. approximation error too large

fft f f f f

» Bigger and bigger steps (bound by huyin and hpax)

Solver execution

1. approximation error too large

fft f f ffFf

» Bigger and bigger steps (bound by huyin and hpax)

Solver execution

1. approximation error too large

ffft f f fffFf

» Bigger and bigger steps (bound by huyin and hpax)

Solver execution

1. approximation error too large

ffft f f fffFf f

» Bigger and bigger steps (bound by huyin and hpax)

Solver execution

1. approximation error too large

ffft f f fffFf f f

t
2. expression crosses zero

» Bigger and bigger steps (bound by huyin and hpax)

Solver execution

1. approximation error too large

ffft f f fffFf f f

t
2. expression crosses zero

» Bigger and bigger steps (bound by huyin and hpax)

Solver execution

1. approximation error too large

ffft f f fffFf f f

t
2. expression crosses zero

» Bigger and bigger steps (bound by huyin and hpax)

Solver execution

fff f

1. approximation error too large

f

frrf

f

—

99 99

» Bigger and bigger steps (bound by huyin and hpax)

t

2. expression crosses zero

Solver execution

1. approximation error too large

ffft f f fffFf f f

g g g 99 g 99 99

t
2. expression crosses zero

» Bigger and bigger steps (bound by huyin and hpax)
» t does not necessarily advance monotonically

» Ok for continuous states (managed by solver)
» Cannot change state within f or g

Basic Hybrid Language
Start with Lucid Synchrone (subset); add first-order ODEs with reset.

x(t)=f(t,x) x (0) = x;

instantaneous
derivatives

Basic Hybrid Language
Start with Lucid Synchrone (subset); add first-order ODEs with reset.

x(t)=f(t,x) x (0) = x;

instantaneous
derivatives

Rather than x = e; and x(0) = x;, write

der x = ey init X

Basic Hybrid Language
Start with Lucid Synchrone (subset); add first-order ODEs with reset.

x(t)=f(t,x) x (0) = x;

instantaneous
derivatives

Rather than x = e; and x(0) = x;, write

der x = e4 init Xx; reset e; every up(ez)

Basic Hybrid Language
Start with Lucid Synchrone (subset); add first-order ODEs with reset.

x(t)=f(t,x) x (0) = x;
instantaneous
derivatives
Rather than x = e; and x(0) = x;, write

der x = e4 init Xx; reset e; every up(ez)
| en every up(ez,)

Basic Hybrid Language
Start with Lucid Synchrone (subset); add first-order ODEs with reset.

x(t)=f(t,x) x (0) = x;
instantaneous
derivatives
Rather than x = e; and x(0) = x;, write

der x = e4 init Xx; reset e; every up(ez)
| en every up(ez,)

X = (preh+1) every up(e) init ¢;

Basic Hybrid Language
Start with Lucid Synchrone (subset); add first-order ODEs with reset.

x(t)=f(t,x) x (0) = x;
instantaneous
derivatives
Rather than x = e; and x(0) = x;, write

der x = e4 init Xx; reset e; every up(ez)
| en every up(ez,)

X = (preh+1) every up(e) init ¢;

| purely sync every event

Basic Hybrid Language
Start with Lucid Synchrone (subset); add first-order ODEs with reset.

x(t)=f(t,x) x (0) = x;
instantaneous
derivatives
- without default
Rather than x = e; and x(0) = x;, write —

der x = e4 init Xx; reset e; every up(ez)

—e——

| en every up(ez,) P

x = (preh+1) every up(e) default e init ¢ [“"

| purely sync every event

Basic Hybrid Language

Start with Lucid Synchrone (subset); add first-order ODEs with reset.

x(t)=f(t, x) x (0) = x

instantaneous
derivatives
Rather than x = e; and x(0) = x;, write
der x = e4 init Xx; reset e; every up(ez)

| en every up(ez,)

X = (preh+1) every up(e) default e, init eg;

| purely sync every event

Very simple: no clocks, no automata, no higher-order

- without default

—

——o

—_—_———— s
—0

- with default

Bouncing ball

program

o
V=-g/m v(0) = vy
h=v h(0) = hg

reset v to —0.8 - v when h becomes 0

let hybrid ball () =
let
rec der v = (—. g / m) init vO
reset (—. 0.8 =. lastv) every up(-. h)
and der h v init hO
in (v, h)

Semantics

reals non-standard reals

[R + infinitesimals (3) *[R

Semantics

reals non-standard reals
[R + infinitesimals (0) *[R
|

!

e < t—30<t—-20<t-0< t <t+0<t+20<t+30<"--

Semantics

reals non-standard reals
[R + infinitesimals (0) *[R
|

!

e < t—30<t—-20<t-0< t <t+0<t+20<t+30<"--

» dense and discrete
» base clock for both continuous and discrete behaviors
» Vt. °tis the previous instant, t° is the next instant

integr® (T)(s)(so) (hs)(t) = s'(t) where

s'(0) = sp(t) if t = min(T)

s'(t) = §(°t)+0s(°t) if handler” (T)(hs)(t) = NoEvent
s'(1) = v if handler” (T)(hs)(t) = Xcrossing(v)
up® (T)(s) (1) = false if t =min(T)

up™ (T)(s)(¢*) = true if (s(°1) <0) A (s(t) >0)and (t€T)
up® (T) (s)(t*) = false otherwise

Semantics

reals non-standard reals
[R + infinitesimals (0) *[R
|

!

e < t—30<t—-20<t-0< t <t+0<t+20<t+30<"--

» dense and discrete
» base clock for both continuous and discrete behaviors
» Vt. °tis the previous instant, t° is the next instant

integr® (T)(s)(so) (hs)(t) = s'(t) where

s'(0) = so(b) if t = min(T)

s'(t) = §(t)+0s(t) if handler” (T)(hs)(t) = NoEvent
s'(1) = v if handler” (T)(hs)(t) = Xcrossing(v)
up® (T)(s) (1) = false if t =min(T)

up™ (T)(s)(£*) = true if (s(°1) <0) A (s(t) >0)and (t€T)
up® (T) (s) (%) = false otherwise

Semantics

reals non-standard reals
[R + infinitesimals (0) *[R
|

!

e < t—30<t—-20<t-0< t <t+0<t+20<t+30<"--

» dense and discrete
» base clock for both continuous and discrete behaviors
» Vt. °tis the previous instant, t° is the next instant

integr® (T)(s)(so) (hs)(t) = s'(t) where

s'(0) = so(t) if t = min(T)

s'(t) = §(Ct)+0s(°t) if handler” (T)(hs)(t) = NoEvent
s'(1) = v if handler” (T)(hs)(t) = Xcrossing(v)
up® (T)(s) (1) = false if t =min(T)

up™ (T)(s)(¢*) = true if (s(°1) <0) A (s(t) >0)and (t€T)
up® (T) (s)(t*) = false otherwise

Semantics

reals non-standard reals
[R + infinitesimals (0) *[R
|

!

e < t—30<t—-20<t-0< t <t+0<t+20<t+30<"--

» dense and discrete
» base clock for both continuous and discrete behaviors
» Vt. °tis the previous instant, t° is the next instant

integr® (T)(s)(so) (hs)(t) = s'(t) where

s'(0) = sp(t) if t = min(T)

s'(t) = §(°t)+0s(°t) if handler” (T)(hs)(t) = NoEvent
s'(1) = v if handler” (T)(hs)(t) = Xcrossing(v)
up® (T)(s) (1) = false if t =min(T)

up™ (T)(s)(¢*) = true if (s("t) <0) A (s(t) > 0) and (te T)
up® (T) (s)(t*) = false otherwise

Compilation

let hybrid ball () =

let
rec der v

and der h
in (v, h)

(-. g / m) init vO
reset (—. 0.8 =.
v init hO

lastv) every up(-. h)

Compilation

® let hybrid ball () =
let
rec der v = (—. g / m) init vO
reset (—. 0.8 «. lastv) every up(-. h)
h and der h = v init hO
in (v, h)
— let node ball (z1, (lh, Iv), () =

let rec i = true fby false

and dv = (-. g / m)
and v = if i then vO

else if z1 then —. 0.8 «. Iv
else |v

and dh = v

and h = if i then hO else I|h

and upzl = —. h

in ((v, h), upzl, (h, v), (dh, dv))

Compilation

® let hybrid ball () =
let
rec/der v = (—. g / m) init vO
reset (—. 0.8 «. lastv) every up(-. h)

h and| der h = v init hO

in {v, h)
fr—— let node b_aII (z1, (Ih, Iv), () =

let rec i = true fby false

and dv = (-. g / m)
and v = if i then vO

else if z1 then —. 0.8 =. Iv
else |v
transform into discrete subset
and dh = v
and h = if i then hO else I|h
and upzl = —. h

in ((v, h), upzl, (h, v), (dh, dv))

Compilation

® let hybrid ball () =

let

rec der,v = (—. g / m) init vO

reset (—. 0.8 «. lastv) every up(-. h)
v init hO

—— let [nod pall (z1, (Ih7 vy,) =
ldt relc i = true fby false

an v=1(-.g/m
and v = if i then vO

else if z1 then —. 0.8 =. Iv

else |v

transform continuous variables

and dh = v
and h = if i then hO else I|h
and upzl = —. h

in ((v, h), upzl, (h, v), (dh, dv))

Compilation

let hybrid ball () =
let

rec der v = (—. g / m) init vO

reset (—. 0.8~%. lastv) every up(-. h)

v ini

and der h =
in (v, h)

let node ball (z1, (lh, Iv),
let rec i = true fby false

0) 5

and dv = (-. g / m)
and v = if i then v
else if z1 then
else |v

70.8 =. Iv

transform zero-crossings
and dh =
and h

I
- <

hen hO else |h

and upzl = —. h

in ((v, h), upzl, (h, v), (dh, dv))

Compilation

® let hybrid ball () =
let
rec der v =

h and der h =
in (v, h)

— let node

and dv = (-.

and v = if i
else if z1 then —. 0.8 =. Iv
else |v

a"g ﬁh All continuous parts execute in 1st instant
an
» type system prevents C inside D

and up » no branching or activations

in ((v, h), upzl, (h, v), (dh, dv))

Execution (Simulation)

(upz,y,dy) = maing(z,y)

f(t,y) = let (_,_,dy) = maing(false,y) indy
g(t,y) = let (upz,_,_) = maing(false,y) in upz
d(z,y) = let (upz,y,_) = maing(z,y) in (upz,y)

fag S d

d
@ / init

—zc / reinit
—ZC zC

» Only d may have side effects
» Neither f, nor g may change the (internal) discrete state

Typing

Motivation

This compilation/execution scheme only works for some programs!

Typing

Motivation
This compilation/execution scheme only works for some programs!

We need a type system to:
» Reject programs that do not respect the invariant:

» discrete computations in @ only

» continuous evolutions in @ only

Typing

Motivation
This compilation/execution scheme only works for some programs!

We need a type system to:
» Reject programs that do not respect the invariant:

» discrete computations in @ only

» continuous evolutions in @ only

» Reject unreasonable programs

» where behavior depends ‘too much’ on simulation parameters
(like the step size, or number of iterations)

Typing

Unreasonable programs

der y = 1.0 init 0.0 and x = (0.0 — pre x) + vy

x = 0.0 - (pre x +. 1.0) and der y = x init 0.0

» y is a variable that changes continuously
» X is discrete register
» The relationship between the two is ill-defined

Typing

The type language

bt
t

o
k

float | int | bool | zero
bt|txt]|p

k
vB],...,ﬁn.t_’ t
DIC|A

\/

Typing
The type language

bt ::= float]|int|bool | zero D
t = bt|txt|B

o = VB],...,Bn.t—k> t

k == D|C|A

Initial conditions

(+)
(=)
if
pre(.)
. fby.
up(.)

intx*inti»'int
VB.B % B 2 bool
VB.bool x B x B 2 B
VBB B
VBBxB B

C
float — zero

\/

A

C

Typing
G,Ht+c dery = 1.0init 0.0 G,Hp x = (0.0 fby (x + 1))

Typing
G,Ht+c dery = 1.0init 0.0 G,Hp x = (0.0 fby (x + 1))

G H+7>dery =--- and X = - -

Typing
G,Ht+c dery = 1.0init 0.0 G,Hp x = (0.0 fby (x + 1))

G,H+7 dery =---and x =--- X

Typing
G,Ht+c dery = 1.0init 0.0 G, Hp x (0.0 fby (x + 1))

G Hrc X (0.0 fby (x + 1))
every up(ez) init 0.0

G,H+7 dery =---and x =--- X

Typing

G,Ht+c dery = 1.0init 0.0 G,Hp x = (0.0 fby (x + 1))
G,H-c x' = (0.0 fby(x+1))
every up(ez) init 0.0
G,Hr7 dery =--- and x = X

G,H+7 dery=--- and x" = ---

Typing

G,Ht+c dery = 1.0init 0.0 G,Hp x = (0.0 fby (x + 1))
G,H-c x' = (0.0 fby(x+1))
every up(ez) init 0.0
G,Hr7 dery =--- and x = X

G,Htc dery=:--- and X' = - - .

Typing

G,Ht+c dery = 1.0init 0.0 G,Hp x = (0.0 fby (x + 1))
G,H-c x' = (0.0 fby(x+1))
every up(ez) init 0.0
G,Hr7 dery =--- and x = X
G,H+c dery=--- and x' = --

GH+~? x=--- and x="---

Typing

G,Ht+c dery = 1.0init 0.0 G,Hp x = (0.0 fby (x + 1))
G,H-c x' = (0.0 fby(x+1))
every up(ez) init 0.0
G,Hr7 dery =--- and x = X
G,H+c dery=--- and x' = --

C’H|—D X =" -- and X =---

Typing

G,Ht+c dery = 1.0init 0.0 G,Hp x = (0.0 fby (x + 1))
G,H-c x' = (0.0 fby(x+1))
every up(ez) init 0.0
G,Hr72dery =--- and X =+ X
G,Htc dery=--- and X' =
C’H|—D X =" -- and X =---

Typing of function body gives its kind k € {C,D,A}:

h: float x float < float x float
Less expressive but simpler than ‘per-wire’ kinds, e.g. Simulink

j: (floatp) x (floatc) — (floatp) x (floatc)

Conclusion

» Simple extension of a synchronous data-flow language

» Add first-order ODEs
» and zero-crossing events

Non-standard semantics

» Gives a ‘continuous base clock’
» Simplifies definitions, clarifies certain features

Static block-based typing system
» Divide system into continuous and discrete parts
Compilation

» Source-to-source transformation
» Recycle existing compilers

» Execution
» Simulate using Sundials CVODE solver

v

v

v

Conclusion

» Simple extension of a synchronous data-flow language

» Add first-order ODEs
» and zero-crossing events

Non-standard semantics

» Gives a ‘continuous base clock’
» Simplifies definitions, clarifies certain features

Static block-based typing system
» Divide system into continuous and discrete parts
Compilation

» Source-to-source transformation
» Recycle existing compilers

» Execution
» Simulate using Sundials CVODE solver

v

v

v

Conclusion

» Simple extension of a synchronous data-flow language

» Add first-order ODEs
» and zero-crossing events

Non-standard semantics

» Gives a ‘continuous base clock’
» Simplifies definitions, clarifies certain features

Static block-based typing system
» Divide system into continuous and discrete parts
Compilation

» Source-to-source transformation
» Recycle existing compilers

» Execution
» Simulate using Sundials CVODE solver

v

v

v

Ocaml Sundials CVODE interface and compiler available

	Background
	Hybrid Synchronous Language
	Semantics
	Compilation
	Execution
	Typing

	Conclusion

