Divide and Recycle: Types and Compilation for a Hybrid Synchronous Language

Albert Benveniste1 Benoît Caillaud1
Timothy Bourke1 Marc Pouzet1,2,3

1. INRIA
2. Institut Universitaire de France
3. École normale supérieure (LIENS)

LCTES 2011, CPS Week, April 11–14, Chicago, IL, USA
Motivation

Hybrid Systems Modelers

- Platforms for simulation and development
- More and more important
 - Semantics
 - Efficiency and predictability
 - Fidelity / Consistency

Simulink
Ptolemy
...
Motivation

Hybrid Systems Modelers

- Platforms for simulation and development
- More and more important
 - Semantics
 - Efficiency and predictability
 - Fidelity / Consistency

Conservative extension of a synchronous data-flow language
Motivation

Hybrid Systems Modelers

- Platforms for simulation and **development**
- More and more important
 - Semantics
 - Efficiency and predictability
 - Fidelity / Consistency

Conservative extension of a synchronous data-flow language

What distinguishes our approach?

- Compilation with existing tools
 (after source-to-source transformation)
- Static typing
- Semantics based on non-standard analysis
Outline

Background

Hybrid Synchronous Language
 Semantics
 Compilation
 Execution
 Typing

Conclusion
Modeling

Model discrete systems with data-flow equations

Model physical systems with Ordinary Differential Equations (ODEs)
Modeling

Model **discrete** systems with data-flow equations

Model **physical** systems with Ordinary Differential Equations (ODEs)

\[\dot{y}(t) = f(t, y) \]

instantaneous derivatives

\[y(0) = y_i \]

initial values

(Causal) First-order ODEs

- Causal: inputs on right, outputs on left
- First-order: one equation = one variable
Bouncing ball model

\[F = m \cdot a \]

\[-g = m \cdot \frac{d^2 h(t)}{dt^2} \]

\[\frac{d^2 h(t)}{dt^2} = -\frac{g}{m} \]
Bouncing ball model

\[
F = m \cdot a
\]

\[
-g = m \cdot \frac{d^2 h(t)}{dt^2}
\]

\[
\frac{d^2 h(t)}{dt^2} = -\frac{g}{m}
\]

\[
\dot{v} = -\frac{g}{m} \quad v(0) = v_0
\]

\[
\dot{h} = v \quad h(0) = h_0
\]
Bouncing ball model

\[F = m \cdot a \]

\[-g = m \cdot \frac{d^2 h(t)}{dt^2} \]

\[\frac{d^2 h(t)}{dt^2} = -\frac{g}{m} \]

\[\dot{v} = -\frac{g}{m} \quad v(0) = v_0 \]

\[\dot{h} = v \quad h(0) = h_0 \]

\[v(t) = v_0 + \int_0^t (-\frac{g}{m}) \cdot d\tau \]

\[h(t) = h_0 + \int_0^t v(\tau) \cdot d\tau \]
Bouncing ball
model

\[F = m \cdot a \]

\[-g = m \cdot \frac{d^2 h(t)}{dt^2} \]

\[\frac{d^2 h(t)}{dt^2} = -\frac{g}{m} \]

\[\dot{v} = -\frac{g}{m} \]

\[h = v \]

\[v(0) = v_0 \]

\[h(0) = h_0 \]

\[v(t) = v_0 + \int_0^t (-\frac{g}{m}) \cdot d\tau \]

\[h(t) = h_0 + \int_0^t v(\tau) \cdot d\tau \]
Bouncing ball model

\[F = m \cdot a \]

\[-g = m \cdot \frac{d^2 h(t)}{dt^2} \]

\[\frac{d^2 h(t)}{dt^2} = -\frac{g}{m} \]

\[\dot{v} = -\frac{g}{m} \]

\[\dot{h} = v \]

\[v(0) = v_0 \]

\[h(0) = h_0 \]

\[v(t) = v_0 + \int_0^t (-\frac{g}{m}) \cdot d\tau \]

\[h(t) = h_0 + \int_0^t v(\tau) \cdot d\tau \]
Solver execution

1. Approximation error too large

2. Expression crosses zero

Bigger and bigger steps (bound by \(h_{\text{min}} \) and \(h_{\text{max}} \))

\(t \) does not necessarily advance monotonically

Ok for continuous states (managed by solver)

Cannot change state within \(f \) or \(g \)
Solver execution

1. Approximation error too large

2. Expression crosses zero

▶ Bigger and bigger steps (bound by h_{min} and h_{max})

▶ t does not necessarily advance monotonically

▶ Ok for continuous states (managed by solver)

▶ Cannot change state within f or g
Solver execution

1. Approximation error too large
2. Expression crosses zero

▶ Bigger and bigger steps (bound by h_{min} and h_{max})
▶ t does not necessarily advance monotonically
▶ Ok for continuous states (managed by solver)
▶Cannot change state within f or g
Solver execution

1. Approximation error too large

2. Expression crosses zero

▶ Bigger and bigger steps (bound by h_{\min} and h_{\max})

▶ t does not necessarily advance monotonically

▶ Ok for continuous states (managed by solver)

▶ Cannot change state within f or g
Solver execution

1. approximation error too large

2. expression crosses zero

- Bigger and bigger steps (bound by h_{\min} and h_{\max})
- t does not necessarily advance monotonically
- Ok for continuous states (managed by solver)
- Cannot change state within f or g
1. Approximation error too large

2. Expression crosses zero

- Bigger and bigger steps (bound by h_{min} and h_{max})
- t does not necessarily advance monotonically
- Ok for continuous states (managed by solver)
- Cannot change state within f or g
Bigger and bigger steps (bound by h_{min} and h_{max})
Solver execution

1. approximation error too large

- f f f f f
- g g g g g

- Bigger and bigger steps (bound by h_{min} and h_{max})
1. approximation error too large

- Bigger and bigger steps (bound by h_{min} and h_{max})
Solver execution

1. approximation error too large

- Bigger and bigger steps (bound by h_{min} and h_{max})
Solver execution

1. approximation error too large

- Bigger and bigger steps (bound by h_{min} and h_{max})
Solver execution

1. approximation error too large

- Bigger and bigger steps (bound by h_{min} and h_{max})
Solver execution

1. approximation error too large

2. expression crosses zero

- Bigger and bigger steps (bound by h_{min} and h_{max})
Solver execution

1. approximation error too large

\[f f f \quad f \]

2. expression crosses zero

\[g \quad g \]

- Bigger and bigger steps (bound by \(h_{min} \) and \(h_{max} \))
1. approximation error too large

2. expression crosses zero

- Bigger and bigger steps (bound by h_{min} and h_{max})
1. approximation error too large

2. expression crosses zero

- Bigger and bigger steps (bound by h_{min} and h_{max})
Solver execution

1. approximation error too large

2. expression crosses zero

▷ Bigger and bigger steps (bound by h_{min} and h_{max})

▷ t does not necessarily advance monotonically

▷ Ok for continuous states (managed by solver)

▷ Cannot change state within f or g
Basic Hybrid Language

Start with Lucid Synchrone (subset); add first-order ODEs with reset.

\[\dot{x}(t) = f(t, x) \]

- instantaneous derivatives
- variables
- initial values

Rather than \(\dot{x} = e \) and \(x(0) = x_i \), write

\[\text{der}_x = e_{\text{init}}x_i \]

reset every \(e_z_1 \)...

...\(\text{default}_{\text{init}}e_i \)...

purely sync every event

Very simple: no clocks, no automata, no higher-order without default

with default
Basic Hybrid Language
Start with Lucid Synchrone (subset); add first-order ODEs with reset.

\[\dot{x}(t) = f(t, x) \]
\[x(0) = x_i \]

Rather than \(\dot{x} = e_d \) and \(x(0) = x_i \), write

\[\text{der } x = e_d \text{ init } x_i \]
Basic Hybrid Language

Start with Lucid Synchrone (subset); add first-order ODEs with reset.

\[
\dot{x}(t) = f(t, x) \quad x(0) = x_i
\]

Rather than \(\dot{x} = e_d \) and \(x(0) = x_i \), write

\[
\text{der } x = e_d \text{ init } x_i \text{ reset } e_1 \text{ every } \text{up}(e_{z_1})
\]
Basic Hybrid Language
Start with Lucid Synchrone (subset); add first-order ODEs with reset.

\[\dot{x}(t) = f(t, x) \]

\[x(0) = x_i \]

Rather than \(\dot{x} = e_d \) and \(x(0) = x_i \), write

\[\text{der } x = e_d \text{ init } x_i \text{ reset } e_1 \text{ every } \text{up}(e_{z_1}) \]
\[\ldots \text{ init } x_i \text{ reset } e_n \text{ every } \text{up}(e_{z_n}) \]
Basic Hybrid Language

Start with Lucid Syntchrone (subset); add first-order ODEs with reset.

\[\dot{x}(t) = f(t, x) \]

\[x(0) = x_i \]

instantaneous derivatives

variables

initial values

Rather than \(\dot{x} = e_d \) and \(x(0) = x_i \), write

\[\text{der } x = e_d \quad \text{init } x_i \quad \text{reset } e_1 \quad \text{every } \text{up}(e_{z_1}) \]

\[\cdots \]

\[\text{init } e_i \quad \text{every } \text{up}(e_{z_n}) \]

\[x = (\text{pre } h + 1) \quad \text{every } \text{up}(e) \]
Basic Hybrid Language

Start with Lucid Synchrone (subset); add first-order ODEs with reset.

\[
\frac{dx}{dt} = f(t, x) \\
x(0) = x_i
\]

Rather than \(\frac{dx}{dt} = e_d \) and \(x(0) = x_i \), write

\[
\text{der} \ x = e_d \quad \text{init} \ x_i \quad \text{reset} \ e_1 \quad \text{every} \ \text{up}(e_{z_1}) \\
\quad \cdots \\
\quad \text{init} \ e_i \quad \text{every} \ \text{up}(e_{z_n})
\]

\[
x = (\text{pre } h + 1) \quad \text{every} \ \text{up}(e) \\
| \quad \text{purely sync} \quad \text{every} \ \text{event}
\]
Basic Hybrid Language

Start with Lucid Synchrone (subset); add first-order ODEs with reset.

\[
\dot{x}(t) = f(t, x) \\
x(0) = x_i
\]

Rather than \(\dot{x} = e_d \) and \(x(0) = x_i \), write

\[
\text{der } x = e_d \quad \text{init } x_i \quad \text{reset } e_1 \quad \text{every } \text{up}(e_{z_1}) \\
\cdots \quad | \quad e_n \quad \text{every } \text{up}(e_{z_n})
\]

\[
x = (\text{pre } h + 1) \quad \text{every } \text{up}(e) \quad \text{default } e_c \quad \text{init } e_i \\
| \quad \text{purely sync } \text{every } \text{event}
\]
Basic Hybrid Language
Start with Lucid Synchrone (subset); add first-order ODEs with reset.

\[
\dot{x}(t) = f(t, x) \\
x(0) = x_i
\]

instantaneous derivatives

variables

initial values

Rather than \(\dot{x} = e_d \) and \(x(0) = x_i \), write

\[
der x = e_d \text{ init } x_i \text{ reset } e_1 \text{ every } \text{up}(e_{z_1}) \\
\quad \ldots \quad | \quad e_n \text{ every } \text{up}(e_{z_n})
\]

\[
x = (\text{pre } h + 1) \text{ every } \text{up}(e) \text{ default } e_c \text{ init } e_i \\
\quad | \quad \text{purely sync} \text{ every } \text{event}
\]

Very simple: no clocks, no automata, no higher-order
Bouncing ball program

\[\dot{v} = -\frac{g}{m} \quad v(0) = v_0 \]

\[\dot{h} = v \quad h(0) = h_0 \]

reset \(v \) to \(-0.8 \cdot v\) when \(h \) becomes 0

```
let hybrid ball () =
  let
    rec der v = (-. g / m) init v0
    reset (-. 0.8 *. last v) every up(-. h)
    and der h = v init h0
  in (v, h)
```
Semantics

reals

\(\mathbb{R} \) + infinitesimals (\(\partial \))

non-standard reals

\(\star \mathbb{R} \)
Semantics

reals

\[\mathbb{R} \]

non-standard reals

\[\mathbb{R}^\ast \]

+ infinitesimals (\(\partial \))

\[\cdots < t - 3\partial < t - 2\partial < t - \partial < t < t + \partial < t + 2\partial < t + 3\partial < \cdots \]
Semantics

deals

\[\mathbb{R} \]

\[\mathbb{R} \] + infinitesimals \((\partial)\)

\[\mathbb{R} \star \]

\[\cdots < t - 3\partial < t - 2\partial < t - \partial < t < t + \partial < t + 2\partial < t + 3\partial < \cdots \]

- dense and discrete
- base clock for both continuous and discrete behaviors
- \(\forall t. \) \(t^* \) is the previous instant, \(t^* \) is the next instant

\[
\text{integ}_{\#}(T)(s)(s_0)(hs)(t) = s'(t) \quad \text{where}
\]

\[
s'(t) = s_0(t) \quad \text{if } t = \min(T)
\]

\[
s'(t) = s'(^* t) + \partial s(^* t) \quad \text{if } \text{handler}_{\#}(T)(hs)(t) = \text{NoEvent}
\]

\[
s'(t) = v \quad \text{if } \text{handler}_{\#}(T)(hs)(t) = \text{Xcrossing}(v)
\]

\[
\text{up}_{\#}(T)(s)(t) = \text{false} \quad \text{if } t = \min(T)
\]

\[
\text{up}_{\#}(T)(s)(t^*) = \text{true} \quad \text{if } (s(^* t) \leq 0) \land (s(t) > 0) \text{ and } (t \in T)
\]

\[
\text{up}_{\#}(T)(s)(t^*) = \text{false} \quad \text{otherwise}
\]

\[
\cdots \quad \cdots \quad \cdots
\]
Semantics

*real*ns non-standard real*ns

\[R + \text{infinitesimals } (\partial) \quad \rightarrow \quad \star R \]

\[\cdots < t - 3\partial < t - 2\partial < t - \partial < t < t + \partial < t + 2\partial < t + 3\partial < \cdots \]

- dense and discrete
- base clock for both continuous and discrete behaviors
- \(\forall t. \ ^{\bullet}t \text{ is the previous instant, } t^{\bullet} \text{ is the next instant} \)

\[
\begin{align*}
\text{integr}^{\#}(T)(s)(s_0)(hs)(t) &= s'(t) \quad \text{where} \\
&s'(t) = s_0(t) \quad \text{if } t = \text{min}(T) \\
&s'(t) = s'(^{\bullet}t) + \partial s(^{\bullet}t) \quad \text{if } \text{handler}^{\#}(T)(hs)(t) = \text{NoEvent} \\
&s'(t) = v \quad \text{if } \text{handler}^{\#}(T)(hs)(t) = \text{Xcrossing}(v)
\end{align*}
\]

\[
\begin{align*}
\text{up}^{\#}(T)(s)(t) &= \text{false} \quad \text{if } t = \text{min}(T) \\
\text{up}^{\#}(T)(s)(^{\bullet}t) &= \text{true} \quad \text{if } (s(^{\bullet}t) \leq 0) \land (s(t) > 0) \land (t \in T) \\
\text{up}^{\#}(T)(s)(t^{\bullet}) &= \text{false} \quad \text{otherwise}
\end{align*}
\]

...
Semantics

\[\mathbb{R} + \text{infinitesimals} (\partial) \quad \text{to} \quad \star \mathbb{R} \]

\[\cdots < t - 3\partial < t - 2\partial < t - \partial < t < t + \partial < t + 2\partial < t + 3\partial < \cdots \]

- dense and discrete
- base clock for both continuous and discrete behaviors
- \(\forall t. \) \(\ast t \) is the previous instant, \(t^* \) is the next instant

\[
\begin{align*}
\text{integr}^\#(T)(s)(s_0)(hs)(t) &= s'(t) & \text{where} \\
\hspace{1cm} s'(t) &= s_0(t) & \text{if} \ t = \text{min}(T) \\
\hspace{1cm} s'(t) &= s'(\ast t) + \partial s(\ast t) & \text{if} \ \text{handler}^\#(T)(hs)(t) = \text{NoEvent} \\
\hspace{1cm} s'(t) &= v & \text{if} \ \text{handler}^\#(T)(hs)(t) = \text{Xcrossing}(v) \\
\text{up}^\#(T)(s)(t) &= \text{false} & \text{if} \ t = \text{min}(T) \\
\text{up}^\#(T)(s)(t^*) &= \text{true} & \text{if} \ (s(\ast t) \leq 0) \land (s(t) > 0) \land (t \in T) \\
\text{up}^\#(T)(s)(t^*) &= \text{false} & \text{otherwise} \\
\end{align*}
\]
Semantics

reals

\[\mathbb{R} \]

\[+ \text{ infinitesimals } (\partial) \]

\[\star \mathbb{R} \]

\[\cdots < t - 3\partial < t - 2\partial < t - \partial < t < t + \partial < t + 2\partial < t + 3\partial < \cdots \]

- dense and discrete
- base clock for both continuous and discrete behaviors
- \(\forall t. \) \(\ast t \) is the previous instant, \(t^* \) is the next instant

\[\text{integr}^\# (T)(s)(s_0)(hs)(t) = s'(t) \]
where

\[s'(t) = s_0(t) \]
if \(t = \min(T) \)

\[s'(t) = s'(*t) + \partial s(*t) \]
if \(\text{handler}^\# (T)(hs)(t) = \text{NoEvent} \)

\[s'(t) = v \]
if \(\text{handler}^\# (T)(hs)(t) = \text{Xcrossing}(v) \)

\[\text{up}^\# (T)(s)(t) = \text{false} \]
if \(t = \min(T) \)

\[\text{up}^\# (T)(s)(t^*) = \text{true} \]
if \((s(*t) \leq 0) \land (s(t) > 0) \) and \(t \in T \)

\[\text{up}^\# (T)(s)(t^*) = \text{false} \]
otherwise

\[\cdots \]

\[\cdots \]
let hybrid ball () =
 let
 rec der v = (−. g / m) init v0
 reset (−. 0.8 *. last v) every up(−. h)
 and der h = v init h0
 in (v, h)
let hybrid ball () =
 let
 rec der v = (−. g / m) init v0
 reset (−. 0.8 *. last v) every up(−. h)
 and der h = v init h0
 in (v, h)

let node ball (z1, (lh, lv), ()) =
 let rec i = true fby false
 and dv = (−. g / m)
 and v = if i then v0
 else if z1 then −. 0.8 *. lv
 else lv
 and dh = v
 and h = if i then h0 else lh
 and upz1 = −. h
 in ((v, h), upz1, (h, v), (dh, dv))
let hybrid ball () =
 let
 rec der v = (−. g / m) init v0
 reset (−. 0.8 *. last v) every up(−. h)
 and der h = v init h0
 in (v, h)

let node ball (z1, (lh, lv), ()) =
 let rec i = true fby false

 and dv = (−. g / m)
 and v = if i then v0
 else if z1 then −. 0.8 *. lv
 else lv

 and dh = v
 and h = if i then h0 else lh

 and upz1 = −. h

 in ((v, h), upz1, (h, v), (dh, dv))
let hybrid ball () =
 let rec der v = (−. g / m) init v0
 reset (−. 0.8 *. last v) every up(−. h)
 and der h = v init h0
 in (v, h)

let node ball (z1, (lh, lv), ()) =
 let rec i = true fby false
 and dv = (−. g / m)
 and v = if i then v0
 else if z1 then −. 0.8 *. lv
 else lv
 and dh = v
 and h = if i then h0 else lh
 and upz1 = −. h
 in ((v, h), upz1, (h, v), (dh, dv))

transform continuous variables
let hybrid ball () =
 let
 rec der v = (−. g / m) init v0
 reset (−. 0.8 *. last v) every up(−. h)
 and der h = v init h0
 in (v, h)

let node ball (z1, (lh, lv), ()) =
 let rec i = true fby false

 and dv = (−. g / m)
 and v = if i then v0
 else if z1 then −. 0.8 *. lv
 else lv

 and dh = v
 and h = if i then h0 else lh

 and upz1 = −. h

 in ((v, h), upz1, (h, v), (dh, dv))
let hybrid ball () =
let rec der v = (−. g / m) init v0
 reset (−. 0.8 *. last v) every up(−. h)
and der h = v init h0
in (v, h)

let node ball (z1, (lh, lv), ()) =
let rec i = true fby false

and dv = (−. g / m)
and v = if i then v0
 else if z1 then −. 0.8 *. lv
 else lv

and dh = v
and h = if i then h0

All continuous parts execute in 1st instant
 ▶ type system prevents C inside D
 ▶ no branching or activations

in ((v, h), upz1, (h, v), (dh, dv))
Execution (Simulation)

\[(upz, y, dy) = main_{\sigma}(z, y)\]

\[f(t, y) = \text{let } (_, _, dy) = main_{\sigma}(false, y) \text{ in } dy\]

\[g(t, y) = \text{let } (upz, _, _) = main_{\sigma}(false, y) \text{ in } upz\]

\[d(z, y) = \text{let } (upz, y, _) = main_{\sigma}(z, y) \text{ in } (upz, y)\]

▶ Only \(d\) may have side effects
▶ Neither \(f\), nor \(g\) may change the (internal) discrete state
This compilation/execution scheme only works for some programs!
Typing
Motivation

This compilation/execution scheme only works for some programs!

We need a type system to:

- Reject programs that do not respect the invariant:
 - discrete computations in \(D \) only
 - continuous evolutions in \(C \) only
Typing
Motivation

This compilation-execution scheme only works for some programs!

We need a type system to:

- Reject programs that do not respect the invariant:
 - discrete computations in \mathbb{D} only
 - continuous evolutions in \mathbb{C} only
- Reject unreasonable programs
 - where behavior depends ‘too much’ on simulation parameters (like the step size, or number of iterations)
Typing
Unreasonable programs

\[\text{der } y = 1.0 \text{ init } 0.0 \quad \text{and} \quad x = (0.0 \rightarrow \text{ pre } x) + y \]

\[x = 0.0 \rightarrow (\text{ pre } x + . 1.0) \quad \text{and} \quad \text{der } y = x \text{ init } 0.0 \]

- y is a variable that changes *continuously*
- x is *discrete* register
- The relationship between the two is ill-defined
Typing

The type language

\[
\begin{align*}
bt & ::= \text{float} \mid \text{int} \mid \text{bool} \mid \text{zero} \\
t & ::= bt \mid t \times t \mid \beta \\
\sigma & ::= \forall \beta_1, \ldots, \beta_n. t \xrightarrow{k} t \\
k & ::= D \mid C \mid A
\end{align*}
\]
Typing

The type language

\[
bt ::= \text{float} | \text{int} | \text{bool} | \text{zero} \\
t ::= bt | t \times t | \beta \\
\sigma ::= \forall \beta_1, ..., \beta_n. t \rightarrow^k t \\
k ::= D | C | A
\]

Initial conditions

\[
(+) : \text{int} \times \text{int} \xrightarrow{A} \text{int} \\
(=) : \forall \beta. \beta \times \beta \xrightarrow{A} \text{bool} \\
\text{if} : \forall \beta. \text{bool} \times \beta \times \beta \xrightarrow{A} \beta \\
\text{pre}(.) : \forall \beta. \beta \xrightarrow{D} \beta \\
\text{fby} . : \forall \beta. \beta \times \beta \xrightarrow{D} \beta \\
\text{up}(.) : \text{float} \rightarrow \text{zero}
\]
Typing

\[G, H \vdash_{C} \text{der } y = 1.0 \text{ init } 0.0 \quad G, H \vdash_{D} x = (0.0 \text{ fby } (x + 1)) \]
Typing

\[G, H \vdash_c \text{der } y = 1.0 \text{ init } 0.0 \quad G, H \vdash_D x = (0.0 \text{ fby } (x + 1)) \]

\[G, H \vdash_? \text{der } y = \cdots \text{ and } x = \cdots \]
Typing

\[
G, H \vdash_c \text{der } y = 1.0 \text{ init } 0.0 \quad G, H \vdash_D x = (0.0 \text{ fby } (x + 1))
\]

\[
G, H \vdash ? \text{ der } y = \cdots \text{ and } x = \cdots \quad \times
\]
Typing

\[G, H \vdash_C \text{der } y = 1.0 \text{ init } 0.0 \]
\[G, H \vdash_D x = (0.0 \text{ fby } (x + 1)) \]
\[G, H \vdash_C x' = (0.0 \text{ fby } (x + 1)) \]
\[\text{every } \text{up(ez)} \text{ init } 0.0 \]

\[G, H \vdash? \text{der } y = \cdots \text{ and } x = \cdots \]

\[X \]
Typing

\(G, H \vdash_C \text{der } y = 1.0 \text{ init } 0.0 \)

\(G, H \vdash D x = (0.0 \text{ fby } (x + 1)) \)

\(G, H \vdash_C x' = (0.0 \text{ fby } (x + 1)) \)

\(G, H \vdash ? \text{ der } y = \cdots \text{ and } x = \cdots \)

\(G, H \vdash ? \text{ der } y = \cdots \text{ and } x' = \cdots \)

\(\text{every up(ez) init } 0.0 \)
Typing

\[G, H \vdash_C \text{der } y = 1.0 \text{ init } 0.0 \]

\[G, H \vdash_D x = (0.0 \text{ fby } (x + 1)) \]

\[G, H \vdash_C x' = (0.0 \text{ fby } (x + 1)) \]

\[\text{every up(ez) init } 0.0 \]

\[G, H \vdash? \text{ der } y = \cdots \text{ and } x = \cdots \]

\[G, H \vdash_C \text{ der } y = \cdots \text{ and } x' = \cdots \]
Typing

\(G, H \vdash C\> \text{der} \> y = 1.0 \text{ init} \> 0.0 \)

\(G, H \vdash D\> x = (0.0 \> \text{fby} \> (x + 1)) \)

\(G, H \vdash C\> x' = (0.0 \> \text{fby} \> (x + 1)) \)

every up(ez) init 0.0

\(G, H \vdash ?\> \text{der} \> y = \cdots \) and \(x = \cdots \) \(\times \)

\(G, H \vdash C\> \text{der} \> y = \cdots \) and \(x' = \cdots \) \(\checkmark \)

\(G, H \vdash ?\> x = \cdots \) and \(x = \cdots \)
Typing

\[G, H \vdash_C \text{der } y = 1.0 \text{ init } 0.0 \quad G, H \vdash_D x = (0.0 \text{ fby } (x + 1)) \]

\[G, H \vdash_C x' = (0.0 \text{ fby } (x + 1)) \quad \text{every up(ez) init } 0.0 \]

\[G, H \vdash? \text{ der } y = \cdots \text{ and } x = \cdots \quad \text{x} \]

\[G, H \vdash_C \text{ der } y = \cdots \text{ and } x' = \cdots \quad \text{✓} \]

\[G, H \vdash_D x = \cdots \text{ and } x = \cdots \quad \text{✓} \]
Typing

\[G, H \vdash_c \text{der } y = 1.0 \text{ init } 0.0 \]
\[G, H \vdash_D x = (0.0 \ fby (x + 1)) \]
\[G, H \vdash_C x' = (0.0 \ fby (x + 1)) \]
\[\text{every up(ez) init } 0.0 \]

\[G, H \vdash? \text{der } y = \cdots \text{ and } x = \cdots \]
\[G, H \vdash_C \text{der } y = \cdots \text{ and } x' = \cdots \]
\[G, H \vdash_D x = \cdots \text{ and } x = \cdots \]

Typing of function body gives its kind \(k \in \{C, D, A\} \):

\[h : \text{float} \times \text{float} \rightarrow^k \text{float} \times \text{float} \]

Less expressive but simpler than ‘per-wire’ kinds, e.g. Simulink

\[j : (\text{float}_D) \times (\text{float}_C) \rightarrow (\text{float}_D) \times (\text{float}_C) \]
Conclusion

- Simple extension of a synchronous data-flow language
 - Add first-order ODEs
 - and zero-crossing events
- Non-standard semantics
 - Gives a ‘continuous base clock’
 - Simplifies definitions, clarifies certain features
- Static block-based typing system
 - Divide system into continuous and discrete parts
- Compilation
 - Source-to-source transformation
 - Recycle existing compilers
- Execution
 - Simulate using Sundials CVODE solver
Conclusion

- Simple extension of a synchronous data-flow language
 - Add first-order ODEs
 - and zero-crossing events
- Non-standard semantics
 - Gives a ‘continuous base clock’
 - Simplifies definitions, clarifies certain features
- Static block-based typing system
 - Divide system into continuous and discrete parts
- Compilation
 - Source-to-source transformation
 - Recycle existing compilers
- Execution
 - Simulate using Sundials CVODE solver

Ocaml Sundials CVODE interface and compiler available
Conclusion

- Simple extension of a synchronous data-flow language
 - Add first-order ODEs
 - and zero-crossing events
- Non-standard semantics
 - Gives a ‘continuous base clock’
 - Simplifies definitions, clarifies certain features
- Static block-based typing system
 - Divide system into continuous and discrete parts
- Compilation
 - Source-to-source transformation
 - Recycle existing compilers
- Execution
 - Simulate using Sundials CVODE solver

Ocaml Sundials CVODE interface and compiler available