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Simulink is widely used within industry for simulation and model-driven development, and reactive
behaviors are often modeled using an add-on called Stateflow. Argos is one of the synchronous lan-
guages that have been proposed for the specification, validation and implementation of reactive sys-
tems. It is a rigorously defined graphical notation which, though not as powerful as Stateflow, is
much less complicated. This paper describes the implementation of an Argos block for Simulink.
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1. Introduction and Background

Simulink” is a popular simulation environment that includes tools for code generation. In
this way it serves as a platform for model-driven development of embedded systems. The
Stateflow package allows reactive behaviors to be modeled within Simulink using a nota-
tion that looks like Statecharts [5]. Stateflow is powerful, but its semantics is intricate.

The synchronous languages [1] also address the design of reactive systems, but they
benefit from an underlying formal model that facilitates verification, synthesis, and man-
ual reasoning. This minimizes differences between implementations and free designers to
concentrate on application functionality rather than details of program interpretation.

This paper proposes embedding the restricted but rigorously defined Argos [7] syn-
chronous language into the Simulink environment. Prototype tools and a Simulink block
for Argos have been developed to evaluate our approach. Although it is not a complete

" Matlab, Simulink and Stateflow are products and registered trademarks of The MathWorks, Inc.
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environment (there is yet no graphical editor), we think that the work to date could pro-
vide a practical solution where other tools are unnecessarily powerful and complex. Prac-
titioners can describe executable models, which have precise and easily understood be-
haviors, for use within the familiar Simulink system.

The remainder of this section provides background and outlines related work. Section
2 describes the synchronous block for Argos that we have developed. In Section 3 we
demonstrate our approach with an example. Conclusions follow in Section 4.

1.1. Simulink and Stateflow

Simulink models comprise interconnected blocks which have ports for input and output,
e.g. Fig. 3(a). Blocks may be discrete or continuous. They are abstract entities which are
connected to model system elements. Lines, or signals, connect outputs to inputs.

Stateflow provides a block whose reactive behavior is specified using Statecharts-like
diagrams. Behaviors are either triggered implicitly as a simulation progresses, or in re-
sponse to input changes. Internal functions and transitions between states may be given in
a flowchart-like language that allows sequencing, branching and iteration.

Stateflow has been described as a graphical sequential imperative language [4]. Dia-
grams are executed by an interpreting algorithm, the operation of which, in combination
with natural language descriptions and examples [8], defines the behavior of a program.

1.2. The Synchronous Language Argos

The synchronous languages [1] assume that computations, or reactions, occur in response
to input events and produce state changes and output events in the same instant. In prac-
tice a system is synchronous if it processes input events quickly enough so that none are
missed. Reactions are atomic and each corresponds to a discrete instant of time.

Argos [7] is uncompromising in adapting Statecharts to the synchronous model. Ar-
gos programs combine Mealy machines with operators for hierarchy, parallelism, encap-
sulation and inhibition. Timed states are available as macros. Argos does not have history
junctions, incoming multi-level transitions, or conditional default states. The pure version
has no variables and is limited to Boolean signals. Unlike Stateflow, Argos has no con-
cept of an input event queue, rather all simultaneous inputs present as a single event. A
reaction transforms this event, relative to the current state, into output values.

The austerity of Argos contrasts with the impressive features of Stateflow. The sim-
pler Argos semantics allow tractable reasoning about designs, both on-paper and auto-
matically. Programs may be compiled into code or silicon with minimum infrastructure.

1.3. Related work

Of the other formal approaches to Simulink and Stateflow, two are most directly relevant.

The first [3] translates the discrete controller part of a Simulink model, usually simu-
lated in feedback with a hybrid model of the environment, into the Scade/Lustre language
for validation and synthesis and a later extension [9] includes a subset of Stateflow.
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Other work [4] clarifies the operation of a large subset of Stateflow with an opera-
tional semantics, thereby permitting formal reasoning about unmodified programs. Such
an approach is compelling but does not alleviate the underlying complexity of Stateflow.

Our approach complements current research proposals and Stateflow itself. Instead of
trying to match the power of Statecharts, or to convert models into an external tool, we
propose using a simpler language, suitable for a subset of tasks, within a Simulink model.

2. A Synchronous Block

We have implemented a tool-chain to assess our approach. The key component is a syn-
chronous block, or syncblock, that provides a bridge between a Simulink model and an
Argos program. It encompasses elements from two of three implementation layers [2]: an
interface for turning Simulink signals into logical signals, and a reactive kernel defined
by an Argos program. It does not currently support data-handling functions.

2.1. Implementation

The prototype system is composed of several distinct programs (Fig. 1).
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Fig. 1. Toolchain

An Argos compiler, argos2bool, converts a textual Argos program into Boolean
equations using the technique of [6]. It is implemented in C using a yacc generated parser
and a BDD package. Reachability analysis ensures that programs are deterministic and
reactive. Cyclic dependencies are detected but not yet resolved. The equations are trans-
formed into C source code by a second program, runflows. This code is linked with a
library implementing a stream-based interface. It could easily be compiled for an embed-
ded platform, but glue code would be required to interface with the logical signals. The
syncblock is implemented as a Simulink s-function, it spawns the compiled Argos pro-
gram and communicates with it over FIFO channels.

2.2. Inputs and Outputs

In order for a program within the syncblock to interact within a model, values from Simu-
link must be mapped to logical signals and vice versa. Input signals may represent any
discrete event of interest. Output signals trigger actions. Any change in the value of a
Simulink signal could be regarded as a triggering event, the syncblock only detects the
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subset of these events shown in Fig. 2(a). A rising event occurs when an input changes
from zero to one in consecutive simulation steps. Falling and transition events are defined
similarly. This approach mimics that of Stateflow. A sampled input signal is read, and
marked true if non-zero, when an event occurs on a clocking signal. Sensors inputs are
sampled at instants of reaction.
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Fig. 2. syncblock implementation (a) Signal mapping (b) State vector

Events are registered for the counter mode whenever the input signal is incremented
by at least one, or decremented by more than one (i.e. A > 1 or A <-1). This mode allows
clocking from either a rising edge signal or a counter that resets on overflow.

Block outputs are set to one (zero) when a signal is emitted (not emitted), they are
latched between reactions. The block allows program states to be signaled, but given that
Argos state names have no semantic value [7] it is a debugging mechanism only.

2.3. Clocking and general operation

Synchronous programs are either event-driven, triggered by input events, or sample-
driven [1], triggered periodically with input latching. The latter case may be clocked from
either the simulation time or an explicit signal. Explicit signals are to be preferred as they
clarify the modeling of time and any synchronization assumptions.

The reactive program state is a subset of the syncblock state vector, shown in Fig.
2(b). Elements for clocking, detecting inputs, and latching are required. It is possible,
though not effective, to implement these elements with other Simulink blocks.

Four operations occur at each step of a simulation:

(i) Update latch ( X, ) by comparing inputs (U ) to those of the previous step ( X pre(u) )-
(if) Increment the clock count ( X, ) if necessary.
(iii) In reaction instants — based on clock count, simulation time, or latched inputs — up-
date the Argos state ( X ¢ ) and latched outputs ( X y) before clearing the input latch.
(iv) Transfer latched outputs to Simulink outputs.

3. Experience

Stateflow is supplied with a number of example diagrams. As part of evaluating the fea-
sibility of our approach we have modeled some using our tool-set.

Fig. 3(a) shows a subsystem for fuel system sensor modeling. The comparison blocks
implement predicates over valued Simulink signals. These are necessary when using pure
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Argos. Some predicates were altered to simplify the presentation (for instance Ego <
max_ego and Ego > max_ego become Ego < max_ego). Other blocks either merge mul-
tiple signals into a vector or encode them in a single value.

Frans_iaraags/FALLFIESS

Fig. 3. Fuel control subsystem (a) Simulink interface (b) Argos controller

The syncblock in Fig. 3(a) is sample-driven by an external 100ms clock. The Argos
program within is shown in Fig. 3(b) (a textual version was created manually). Moore-
style outputs are fabricated with self-loops, the 02_warmup state has the self-loop on a
refining state to avoid resetting the timer, which itself responds to an explicit input signal
rather than the simulation time. This is a subtle difference between modeling reactive
behavior for simulation and specifying it for implementation. The failure counter is re-
placed by three self-looping states — as multiple failures can occur simultaneously (Argos
is without Esterel-style combinations) — whose formulae are evaluated at each reaction.

Argos uses labeled rectangles as unary operators, for instance encapsulation declares
signals to be local, the box labeled gorich in Fig. 3(b) is an example. Within this box is
another labeled <fuel_mode_disabled>, the angle braces indicate the inhibition op-
erator; the program inside such a box will only participate in reactions where the given
signal is false. Inhibition is used in the example to simulate entry-by-history for the Run-
ning mode. The gorich signal replaces a multi-level transition between the Shutdown
state and the Single_Fai lure state.

Several transitions in the example are triggered by conjunctions of signals and ne-
gated signals (over-lined). Such triggers are irrelevant in an event-queue model, but are
otherwise necessary for programs to behave deterministically. For example, of the two
transitions leaving the Runniing state it is clear which is taken for any combination of the
toofast and MULTI signals. Prioritizing by relative graphical position may be less cum-
bersome, but it is also less explicit and more susceptible to inadvertent change.
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4. Concluding Remarks

We have implemented tools to embed a synchronous language within Simulink, in order
to compare an approach with strong formal underpinnings to that of the feature-rich but
complicated Stateflow product. The pure Argos language can cope with simple examples
of reactive behavior but the paucity of features can make modeling awkward. Moore ma-
chine outputs, conditional default states, and outputs on default transitions would mitigate
some difficulties, as would valued signals, variables, and predicate labels on transitions.
It may be better, however, to maintain the simplicity of pure Argos for the systems to
which it is suited and to examine other reactive programming languages for more com-
plex instances. We are confident that the syncblock could be easily adapted to work with
other synchronous languages that have base periods, such as Lustre and Esterel.
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