
Formal models in industry standard tools: An

Argos block within Simulink
IEHSC, May 2005, Singapore.

Timothy Bourke Arcot Sowmya
School of Computer Science and Engineering

University of New South Wales, Sydney

and National ICT Australia




Date: 2005/05/22 07:16:17 Revision: 1.5



HYBRID = CONTINUOUS + DISCRETE

system clock

feed

print

pin2

pin1

print motor
controller

pin2 output

pin1 output

two pulses

shaky pulses

Signal Builder

STEP

step01

on every(3, TICK): send(step)
warmup

[feed==1]/stepunsynced

cycle 1

[(feed==1) & (print==1)]

print

TICK

slowup

TICK

paperfeed
[(feed==1) & (print==0)] / step

[print==0]
TICK [feed==0]

rushstop

after(10, TICK)

TICK [feed==0]

go [feed==1] / step
rushstart

[feed==1]

every(10, TICK) [feed == 0] after(48, TICK)

stopped

entry: pin1=1; pin2=1
step11

stepper

STEP entry: pin1=0; pin2=1 STEP entry: pin1=0; pin2=0
step00 STEP entry: pin1=1; pin2=0

step10
2



Stateflow

power

power

motor 2

on

off

switch/power

switching

oneswitch

none

1

after(2, SEC)

Many Statecharts features:

• hierarchy

• parallelism

• history junctions

Flowchart-like transitions:

• sequencing

• branching

• loops



Thinking/communicating about designs is involved:

1. intricate ordering rules

2. queued event processing

3. stacking of communications

4. implicit assumption of synchrony



Argos: a synchronous language

Statecharts

Argos

Synchronous Approach

• Mealy machines

• Hierarchy

• Parallelism

• Discrete reactions

• Well-defined internal behaviour

• Esterel, Lustre, Signal

• CMA, INRIA, Verimag, IRISA

Argos is a synchronous version of Statecharts.

• Developed by Maraninchi and Rémond [Mar91, MR01].

• Well suited to some reactive programming tasks.



An Argos block: Syncblock

system clock

tick

feed

print

(clock)

pin2

pin1

print motor controller

pin2 output

pin1 output

two pulses

shaky pulses

Signal Builder

unsynced feed/step

warmup

[48 tick]

rushstart

go.feedstopped

feed

[3 tick]
/step

/go
[10 tick]

go.feed/step slowup tick.feed.print print
· · ·

tick.feed.print/step

paperfeed

tick.feed

rushstop
[10 tick]

tick.feed

print
tick.feed.print

tick.feed
.print/steppaperfeed

step/pin2

step

step/pin1

step/pin1, pin2

step11

step/pin1, pin2

step01

step/pin2

step00

step

step10

step/pin1

[CCM+03, SSC+04]



Syncblock Implementation

Simulink

syncblock

S-function

graphical

editor

makeflows

Argos

program

as text
runflows

Boolean

equations

as text

cc

C source code

program

FIFOs

interaction during simulation



Syncblock Implementation

Simulink

syncblock

S-function

graphical

editor

makeflows

Argos

program

as text
runflows

Boolean

equations

as text

cc

C source code

program

FIFOs

interaction during simulation



Syncblock Implementation

Simulink

syncblock

S-function

graphical

editor

makeflows

Argos

program

as text
runflows

Boolean

equations

as text

cc

C source code

program

FIFOs

interaction during simulation



Syncblock Implementation

Simulink

syncblock

S-function

graphical

editor

makeflows

Argos

program

as text
runflows

Boolean

equations

as text

cc

C source code

program

FIFOs

interaction during simulation



Syncblock Implementation

Simulink

syncblock

S-function

graphical

editor

makeflows

Argos

program

as text
runflows

Boolean

equations

as text

cc

C source code

program

FIFOs

interaction during simulation



Syncblock Implementation

Simulink

syncblock

S-function

graphical

editor

makeflows

Argos

program

as text
runflows

Boolean

equations

as text

cc

C source code

program

FIFOs

interaction during simulation



Syncblock Implementation

Simulink

syncblock

S-function

graphical

editor

makeflows

Argos

program

as text
runflows

Boolean

equations

as text

cc

C source code

program

FIFOs

interaction during simulation



Syncblock Implementation

Simulink

syncblock

S-function

graphical

editor

makeflows

Argos

program

as text
runflows

Boolean

equations

as text

cc

C source code

program

FIFOs

interaction during simulation



Compilation [MH96]

none off

on
[2 SEC]

power

switch

powerswitch / power

one

power = (one && switch)

none’ = (one && timeout && !switch) || (one && switch)

|| (none && !switch)

one’ = (none && switch) || (one && !timeout && !switch)

off’ = (off && !power) || (on && power)

on’ = (on && !power) || (off && power)



Block interfacing

rising

falling

transition

counter

In
pu

tL
at

ch
es Argos

Program

misc.

O
ut

pu
tL

at
ch

es

syncblock



Example: Fault-Tolerant Fuel Control System [Mat]

throttle sensor

throttle
command

speed sensor

throttle

engine speed

EGO

MAP

fuel rate

fuel rate
controller

engine speed

throttle angle

fuel

o2_out

MAP

air/fuel ratio

engine 
gas

dynamics

engine
speed

air/fuel
mixture ratio

300

Nominal
Speed

Metered FuelMAP sensor

700
High 

Speed
(rad./Sec.)

EGO sensor

0

0

12

0



Warmup

[in(speed_norm) & ...

Overspeed

Fuel_Disabled
entry: fuel_mode = DISABLED

[in(FL0)]

[in(FL1)]
Single_Failure

6

Shutdown

  [!in(MultiFail)]

enter(MultiFail)

exit(MultiFail)

[in(O2_normal)]

[in(FL1)]

Normal

Running

Fueling_Mode
[ speed > max_speed ]

entry: fuel_mode = RICH
Rich_Mixture

H

H
Low_Emissions
entry: fuel_mode = LOW

    [in(MultiFail)]

speed < (max_speed − hys)]

DEC

FL2FL1

5Sens_Failure_Counter

INC

DEC

FL0
INC

MultiFail INC

DEC

FL4FL3INC

DEC

speed_norm

Sens_Failure_Counter.INC
[speed==0 & press < zero_thresh]/

Speed_Sensor_Mode

speed_fail
entry: fail_state[SPEED] = 1

Sens_Failure_Counter.DEC
[speed > 0] /

4

entry: fail_state[SPEED] = 0

[throt> max_throt | throt < min_throt]/
Sens_Failure_Counter.INC

Throttle_Sensor_Mode

throt_norm
entry: fail_state[THROT] = 0;

[throt >  min_throt & throt < max_throt]
/ Sens_Failure_Counter.DEC

entry: fail_state[THROT] = 1;
throt_fail

3

[press > min_press & press < max_press] /

press_norm
entry:  fail_state[PRESS] = 0 entry: fail_state[PRESS] = 1

press_fail

[press > max_press | press < min_press]
/Sens_Failure_Counter.INC

Pressure_Sensor_Mode 2

Sens_Failure_Counter.DEC

O2_warmup

1

[Ego > max_ego]/
Sens_Failure_Counter.INC

O2_normal
entry: fail_state[O2] = 0;

entry: fail_state[O2] = 1;
O2_fail

Sens_Failure_Counter.DEC
[Ego < max_ego] /

[t > o2_t_thresh]

entry: fail_state[O2] = 1;

Oxygen_Sensor_Mode



2
fuel_mode

1
fail_state

>

toofast

speed_under_hys

Moving

toofast

Throt_inrange

Press_underthresh

Ego_inrange

TSEC

Press_inrange

(clock)

FAIL_O2

FAIL_PRESS

FAIL_THROT

FAIL_SPEED

fuel_mode_low

fuel_mode_rich

fuel_mode_disabled

syncblock

<

speed_under_hys

>= 3

min_throt

>= 0.001

min_press

<= 90

max_throt

628

max_speed

<= 1

max_press

25

hys

AND

Throt_inrange

< 250

Press_underthresh

AND

Press_inrange

> 0

Moving

3

Gain1

2

Gain

<= 1.2

Ego_inrange

Add

100ms clock

4
press

3
Ego

2
speed

1
Throt



O2 cold, ZERO, SINGLE, MULTI

SINGLE/fuel mode rich
+gorich/fuel mode rich

O2 cold.gorich
/fuel mode lowWarmup

Normal Single Failure

SINGLE.gorich

〈fuel mode disabled〉

SINGLE/fuel mode rich
+gorich/fuel mode rich

/fuel mode low

+gorich
/fuel mode rich

O2 cold.SINGLE

/fuel mode rich

SINGLE.gorich/fuel mode low

gorich

OverspeedRunning

Shutdown

toofast
/fuel mode disabled FAIL SPEED.speed under hys

.MULTI/fuel mode disabled

+FAIL SPEED

speed under hys
/fuel mode disabled

/fuel mode disabled

toofast.MULTI

MULTI/go rich

FAIL SPEED.speed under hys.MULTI

/fuel mode disabled
/fuel mode disabled MULTI

O2 cold.SINGLE.gorich

/fuel mode low

FAIL 02.FAIL PRESS.FAIL SPEED.FAIL THROT/SINGLE+
FAIL 02.FAIL PRESS.FAIL SPEED.FAIL THROT/ZERO

ZERO.SINGLE/MULTI

FAIL 02.FAIL PRESS.FAIL SPEED.FAIL THROT/SINGLE+

FAIL 02.FAIL PRESS.FAIL SPEED.FAIL THROT/SINGLE+

FAIL 02.FAIL PRESS.FAIL SPEED.FAIL THROT/SINGLE

Moving
Moving/FAIL SPEED

Moving.Press underthresh/FAIL SPEED

speed failspeed normthrot norm

Throt inrange/FAIL THROT

Throt inrange/FAIL THROT

throt fail

Throt inrange

Press inrange/FAIL PRESS
Press inrange

press failpress norm

Press inrange/FAIL PRESS

Ego inrange/FAIL O2
O2 normal

[48 TSEC]

/O2 cold,
FAIL O2

Ego inrange

Ego inrange/FAIL O2

O2 fail

O2 warmup



Ego inrange/FAIL O2
O2 normal

[48 TSEC]

/O2 cold,
FAIL O2

Ego inrange

Ego inrange/FAIL O2

O2 fail

O2 warmup

O2_warmup

1

[Ego > max_ego]/
Sens_Failure_Counter.INC

O2_normal
entry: fail_state[O2] = 0;

entry: fail_state[O2] = 1;
O2_fail

Sens_Failure_Counter.DEC
[Ego < max_ego] /

[t > o2_t_thresh]

entry: fail_state[O2] = 1;

Oxygen_Sensor_Mode



FAIL 02.FAIL PRESS.FAIL SPEED.FAIL THROT/SINGLE+
FAIL 02.FAIL PRESS.FAIL SPEED.FAIL THROT/ZERO

ZERO.SINGLE/MULTI

FAIL 02.FAIL PRESS.FAIL SPEED.FAIL THROT/SINGLE+

FAIL 02.FAIL PRESS.FAIL SPEED.FAIL THROT/SINGLE+

FAIL 02.FAIL PRESS.FAIL SPEED.FAIL THROT/SINGLE

DEC

FL2FL1

5Sens_Failure_Counter

INC

DEC

FL0
INC

MultiFail INC

DEC

FL4FL3INC

DEC



SINGLE/fuel mode rich
+gorich/fuel mode rich

O2 cold.gorich
/fuel mode lowWarmup

Normal Single Failure

SINGLE.gorich

〈fuel mode disabled〉

SINGLE/fuel mode rich
+gorich/fuel mode rich

/fuel mode low

+gorich
/fuel mode rich

O2 cold.SINGLE

/fuel mode rich

SINGLE.gorich/fuel mode low

gorich

OverspeedRunning

Shutdown

toofast
/fuel mode disabled FAIL SPEED.speed under hys

.MULTI/fuel mode disabled

+FAIL SPEED

speed under hys
/fuel mode disabled

/fuel mode disabled

toofast.MULTI

MULTI/go rich

FAIL SPEED.speed under hys.MULTI

/fuel mode disabled
/fuel mode disabled MULTI

O2 cold.SINGLE.gorich

/fuel mode low

Warmup

[in(speed_norm) & ...

Overspeed

Fuel_Disabled
entry: fuel_mode = DISABLED

[in(FL0)]

[in(FL1)]
Single_Failure

6

Shutdown

  [!in(MultiFail)]

enter(MultiFail)

exit(MultiFail)

[in(O2_normal)]

[in(FL1)]

Normal

Running

Fueling_Mode
[ speed > max_speed ]

entry: fuel_mode = RICH
Rich_Mixture

H

H
Low_Emissions
entry: fuel_mode = LOW

    [in(MultiFail)]

speed < (max_speed − hys)]



Summary

• Stateflow is powerful but has shortcomings

• Existing research might help

• Argos block developed:

– contrast with Stateflow

– simple examples possible

– paucity of features has pros and cons

Need the right tool for the task at hand.



References

[CCM+03] Paul Caspi, Adrian Curic, Aude Maignan, Christos Sofronis, Stavros Tripakis, and Peter

Niebert. From Simulink to SCADE/Lustre to TTA: a layered approach for distributed

embedded applications. In Proc. 2003 ACM SIGPLAN conference on Languages,

Compilers, and Tools for Embedded Systems (LCTES ’03), pages 153–162. ACM Press,

2003.

[Mar91] F. Maraninchi. The Argos language: Graphical representation of automata and description

of reactive systems. In Proc. IEEE Workshop on Visual Languages, pages 254–259,

October 1991.

[Mat] Mathworks. Fault-tolerant fuel control system. Matlab/Simulink/Stateflow example model.

[MH96] F. Maraninchi and N. Halbwachs. Compiling Argos into boolean equations. In Bengt

Jonsson and Joachim Parrow, editors, Proc. 4th International Symposium on Formal

Techniques for Real-Time and Fault-Tolerance (FTRTFT ’96), volume 1135 of Lecture

Notes in Computer Science, pages 72–89, Uppsala, Sweden, September 1996.

Springer-Verlag.

[MR01] Florence Maraninchi and Yann Rémond. Argos: an automaton-based synchronous



language. Computer Languages, 27(1–3):61–92, 2001.

[SSC+04] N. Scaife, C. Sofronis, P. Caspi, S. Tripakis, and F. Maraninchi. Defining and translating a

“safe” subset of Simulink/Stateflow into Lustre. In G. Buttazzo and S. Edwards, editors,

Proc. 4th ACM International Conference on Embedded Software (EMSOFT’04), pages 259

– 268, Pisa, Italy, September 2004. ACM, ACM Press.


