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The synchronous language Lustre [Caspi, Pilaud, Halbwachs, and Plaice (1987):
“Lustre: A Declarative Language for Program-
ming Synchronous Systems”

]
• Ideal for programming an important class of embedded controllers.

– Academic foundation of Scade Suite tool for critical industrial systems.

• Based on a discrete-time abstraction.
every trigger:

read inputs;
compute;
write outputs

R1 R2 R3 R4 R5

model: R1, R2, R3, R4, R5, . . .

But, ‘physical’ timing constraints are often required.

Timed (Safety) Automata [Alur and Dill (1994):
“A Theory of Timed
Automata”

] [Henzinger, Nicollin, Sifakis, and
Yovine (1994): “Symbolic Model
Checking for Real-Time Systems”

]
• Model the passage of time and timing non-determinism
– (tolerances in requirements / uncertainties in implementations).

• Verification and Symbolic Simulation in Uppaal [Behrmann, David, and Larsen
(2006): A tutorial on Uppaal 4.0 ]
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Dataflow synchronous language basics

let average(x, y) = (x + y) / 2 averagex
y

x 0 1 2 5 4 5 6 ⋯
y 4 3 4 2 0 2 2 ⋯

x + y / 2 2 2 3 3 2 3 4 ⋯

let h = 10.0
let node euler(x0, x') = x where

rec nx = x +. (h *. x')

and x = x0 fby nx

euler
x0
x’

x

x0 0 1 2 3 4 5 6 ⋯
x' 2 1 2 0 2 3 1 ⋯
nx 20 30 50 50 70 100 110 ⋯
x 0 20 30 50 50 70 100 ⋯

• Node: set of causal equations (variables at left).
• Semantic model: synchronized streams of values.
• A node defines a function between input and output streams.
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Zélus: synchronous language + ODEs [Bourke and Pouzet (2013): “Zélus: A
Synchronous Language with ODEs” ]

let node nat(v) = y where
rec y = v fby (y + 1)

let hybrid sawtooth(x', x0) = o where
rec init o = 0
and der x = x' init x0 reset z → x0
and z = up(x)
and present z → do o = nat(1) done

let hybrid main = sawtooth(0.5, -1.5)

t

−1.5

0
3 6 9

t
0

1

2

3 o

x

• Combine discrete-time and continuous-time behaviours
– A type system ensures that compositions are well-defined.
– Align discrete behaviours on ‘zero-crossing’ events.

• Source-to-source compilation for simulation with a numeric solver.
• Research focus on hybrid programming languages
– E.g., Simulink/Stateflow, Modelica, Ptolemy. . .

• Manual and compiler: http://zelus.di.ens.fr
4 / 26
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Example: quasi-periodic nodes [Caspi (2000): The Quasi-Synchronous
Approach to Distributed Control Systems ]

P1 P2

c1 c2

Two network nodes activated on clock inputs c1 and c2

• Each node is periodically triggered by a local clock.
• The difference between ticks i and i + 1 is bounded:

Tmin ≤ ti+1 − ti ≤ Tmax

• Easy to model a clock as a Timed Automaton: [Vaandrager and Groot (2006):
“Analysis of a Biphase Mark
Protocol with Uppaal and PVS”

]

c!
t >= t_min
t := 0

T0

t <= t_max

• What about combining with discrete controller code?
5 / 26



Clock in Zélus?

let hybrid clock(t_min, t_max) = c where
rec der t = 1.0 init 0.0 reset c() → 0.0

and present up(t - t_min) → do emit c done

c!
t >= t_min
t := 0

T0

t <= t_max

Programming Timed Automaton in Zélus

• Very restricted ODEs (ẋ = 1): no need for a numeric solver.
• Cannot express ‘timing non-determinism’.

• Very appealing to ‘embed’ discrete programs in continuous time.
• The discrete/continuous type system rejects meaningless compositions.

6 / 26



let hybrid clock(t_min, t_max) = c where
rec timer t init 0.0 reset c() → 0.0
and emit c when {t ≥ t_min}

and always {t ≤ t_max}

c!
t >= t_min
t := 0

T0

t <= t_max

let hybrid scheduler(t_min, t_max) = c1, c2 where
rec c1 = clock(t_min, t_max)
and c2 = clock(t_min, t_max)

P1 P2

c1 c2

let hybrid quasinodes(t_min, t_max) = o1, o2 where
rec c1, c2 = scheduler(t_min, t_max)
and o1 = present c → node1(channel(o2)) init oi
and o2 = present c → node2(channel(o1)) init oi
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Zsy: syntax
d ∶∶= let hybrid f (p) = e

∣ let node f (p) = e
∣ let f (p) = e
∣ d d

e ∶∶= x ∣ v ∣ op(e)
∣ (e, e)
∣ f (e)
∣ e fby e
∣ e where rec E

E ∶∶= x = e
∣ E and E
∣ x = present h init e
∣ x = present h else e
∣ timer x init e reset h
∣ always { c }
∣ emit x when { c }

• A program is a list of declarations.
• A node is defined by an expression.
• Expressions refer to sets of equations.

New features

• Timers (time elapsing)
• Invariants (must)
• Guards (may)

p ∶∶= x ∣ (p, p)

h ∶∶= e → e | ⋯ | e → e
c ∶∶= ∆ ∼ e ∣ c && c

∆ ∶∶= x ∣ x − x
∼ ∶∶= < ∣ ≤ ∣ ≥ ∣ >
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Concrete Simulation Trace

t1 t2

A . . .

B

Ai Ai+1 Ai+n

Bj Bj+1

Tmin Tmin

Tmax

⌧min ⌧max

A . . .

B . . .

n + 1 times

Fig. 7: Witness for QS =) QT
and the associated discretization.

Note that condition 2 is only required if there is no cycle in the communication
graph. Otherwise condition CD of theorem 1 implies ?? and there is no possible
message inversion (??). Also, if the transmission delay is significantly shorter
than the period of the nodes (⌧max ⌧ Tmin) theorem 2 states that a node cannot
be more than n-times faster than another one.

A classic property of the quasi-synchronous abstraction is the existence of
bounds on the numbers of successive overwrites (message losses) and oversam-
plings (message duplications) [3, §3.2.3]. These properties follow directly from the
n-quasi-synchronous model (definition 7). Figure 8 shows the worst acceptable
case: a chain of n activations of a node A between two successive activations of
another node B.

A . . .

B . . .

n times

Fig. 8: Maximal overwrites and oversamplings.

Proposition 3 (Overwrites, Oversamples). The maximum number of suc-
cessive overwrites or oversamplings in an n-quasi-synchronous system is n � 1.

Proof. Consider a pair of nodes A and B such that A ◆ B and A ✓ B. The
proof is straightforward given definition 5 and the worst acceptable case shown
in figure 8:

Bj ! Ai ! Ai+1 ! . . . ! Ai+n�1 ! Bj+1.

For the maximum number of overwrites, the n�1 messages sent at Ai, Ai+1, . . . , Ai+n�2

are overwritten by the message sent at Ai+n�1 which is received by B at Bj+1.
For the maximum number of oversamplings, the n�1 activations Ai+1, Ai+2, . . . , Ai+n�1

oversample the value sent by B at Bj which is received by A at Ai.
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Concrete Simulation
Example: 2-node quasi-periodic architecture

x

Random testing: test one execution, using numerical solvers

33

Tmin = 30 Tmax = 45

t2

t1
30 45

30
45
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Note that condition 2 is only required if there is no cycle in the communication
graph. Otherwise condition CD of theorem 1 implies ?? and there is no possible
message inversion (??). Also, if the transmission delay is significantly shorter
than the period of the nodes (⌧max ⌧ Tmin) theorem 2 states that a node cannot
be more than n-times faster than another one.
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Proof. Consider a pair of nodes A and B such that A ◆ B and A ✓ B. The
proof is straightforward given definition 5 and the worst acceptable case shown
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For the maximum number of overwrites, the n�1 messages sent at Ai, Ai+1, . . . , Ai+n�2

are overwritten by the message sent at Ai+n�1 which is received by B at Bj+1.
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Note that condition 2 is only required if there is no cycle in the communication
graph. Otherwise condition CD of theorem 1 implies ?? and there is no possible
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Note that condition 2 is only required if there is no cycle in the communication
graph. Otherwise condition CD of theorem 1 implies ?? and there is no possible
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Note that condition 2 is only required if there is no cycle in the communication
graph. Otherwise condition CD of theorem 1 implies ?? and there is no possible
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be more than n-times faster than another one.
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Note that condition 2 is only required if there is no cycle in the communication
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Difference Bound Matrices [Dill (1990): “Timing assumptions and verification of
finite-state concurrent systems” ]

Set of constraints

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

t1 < 20
6 ≤ t2

5 < t3 ≤ 12
4 ≤ t1 − t2 ≤ 8

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

The corresponding DBM

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 2 3

0 (0,≤) (0,≤) (−6,≤) (−5,<)
1 (20,<) (0,≤) (8,≤) (∞,<)
2 (∞,<) (−4,≤) (0,≤) (∞,<)
3 (12,≤) (∞,<) (∞,<) (0,≤)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

• Represents a set of possible clock values.

• Two-dimensional array of difference constraints: ti − tj ⪯ n
where ⪯ ∈ {<,≤} and n ∈ Z ∪ {∞}.

• One dimension for each clock in the system.
– row = upper bounds on differences with other clocks.
– column = lower bounds on differences with other clocks.

• The t0 clock is always equal to zero (for lower and upper bounds).
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Source-to-source transformation of hybrid nodes into discrete ones.
• Replace timers, guards, and invariants.
• Use a small library of Difference Bound Matrices (DBMs).
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New inputs
Add ‘buttons’ that push choice (non-determinism) outside the program.
• sv : (boolean vector) specifies guards to fire.
• wait: (boolean) specifies a wait transition.

New outputs
Add ‘light bulbs’ that show which buttons are valid.
• bv : (boolean vector) indicates enabled guards.
• bw : (boolean) indicates that wait is possible.
• zc : the current symbolic zone.
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Compute trigger zone of fired guards.
let node ztrig(sv, zcp, gvp) = zg where

rec fv = filter(gvp, sv)
and zg = zinter(zcp, zinterfold(fv))

• Filter enabled guard zones according to user inputs.
• Intersect them with the previous symbolic state.

t2

t1

G2

zcp

G1

Fire G1 only t2

t1

G2

zcp

G1

Fire G1 and G2
t2

t1

G2

zcp G1

Exclusive guards?
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Source-to-source transformation
Defined as 5 mutually recursive functions over syntax.
TraDef (d) translates declarations. Only continuous-time declarations

introduced by hybrid are modified.
Tra(zi , e) translates expressions using a variable zi to pass the currently

computed version of the initial zone.
TraEq(zi ,E) translates equations.
TraZ(zi , c) translates constraints.
TraH(zi , h) translates handlers.
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let hybrid clock(t_min, t_max) = c where
rec timer t init 0.0 reset c() → 0.0
and emit c when {t ≥ t_min}
and always {t ≤ t_max}

let node clock_symb(t, wait, c, zg, (t_min, t_max)) = c, zi, za, [zs] where
rec zit = present (true fby false) → zreset(zg, t, 0)

| c → zreset(zg, t, 0)
else zg

and zs = zmake({t ≥ t_min})
and zb = zmake({t ≤ t_max})
and za = zinterfold([zb])
and zi = if wait then (zall fby zi) else zit
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let hybrid scheduler(t_min, t_max) = c1, c2 where
rec c1 = clock(t_min, t_max)
and c2 = clock(t_min, t_max)

let node scheduler_symb((t1, t2), wait, (c1, c2), zg, (t_min, t_max))
= (c1', c2'), zi, za, gv1 @ gv2 where

rec c1', zi1, za1, gv1 = clock_symb(t1, wait, c1, zg, (t_min, t_max))
and c2', zi2, za2, gv2 = clock_symb(t2, wait, c2, zi1, (t_min, t_max))
and za = zinterfold([za1; za2])
and zi = if wait then (zall fby zi) else zi2
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Compute next symbolic state and enabled transitions

• Take initial zone zi, invariant conjunction za, and guard zone vector gv.
• Compute the symbolic state and the transition ‘lights’.

let node znext(wait, zi, za, gv) = zc, bv, bw where
rec dp = if wait then (dzero fby d) else dzero
and dl = zdistmap(zi, gv)
and d = mindist(dl, dp)
and zn = zsweep(zi, dp, d)
and zc = zinter(zn, za)
and bv = zenabled(zc, gv)
and zm = zinter(zup(zn), za)

and bw = (zc ≠ zm)

dzero = (0,≤)

Z

G

t2

t1

din(Z ,G)

d
ou

t(
Z
,G

)
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Compute next symbolic state and enabled transitions

• Take initial zone zi, invariant conjunction za, and guard zone vector gv.
• Compute the symbolic state and the transition ‘lights’.

Z

G

I

t2

t1

wait

Z

G

I

t2

t1

wait

Z

G

I

t2

t1

19 / 26



f
i o ⟹

sv

wait

i o

f_symbgvp

zcp

ztrig
zg zi

za
gv znext

zc

bv
bw

gv
[] fby ⋅

zc
zall fby ⋅

f

Compute next symbolic state and enabled transitions

• Take initial zone zi, invariant conjunction za, and guard zone vector gv.
• Compute the symbolic state and the transition ‘lights’.

let node znext(wait, zi, za, gv) = zc, bv, bw where
rec dp = if wait then (dzero fby d) else dzero
and dl = zdistmap(zi, gv)
and d = mindist(dl, dp)
and zn = zsweep(zi, dp, d)
and zc = zinter(zn, za)
and bv = zenabled(zc, gv)
and zm = zinter(zup(zn), za)

and bw = (zc ≠ zm)

t2

t1

C

up(C)
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Feedback is key to the scheme’s simplicity

• Avoid multiple passes by calculating in one cycle and using in the next.
• Remember the next active guard zones.
• Remember the next active symbolic state.
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Express compositions and delays in discrete subset of language
let node clock(wait, c, (t_min, t_max)) = c', bv, bw, zc where

rec zg = ztrig([c], zcp, gvp)
and c', zi, za, gv = clock_symb(1, wait, c, zg, (t_min, t_max))
and zc, bv, bw = znext(wait, zi, za, gv)
and zcp = zall fby zc
and gvp = [] fby gv

let node scheduler(wait, (c1, c2), (t_min, t_max))
= (c1', c2'), bv, bw, zc where

rec zg = ztrig([c1; c2], zcp, gvp)
and (c1', c2'), zi, za, gv =

scheduler_symb((1, 2), wait, (c1, c2), zg, (t_min, t_max))
and zc, bv, bw = znext(wait, zi, za, gv)
and zcp = zall fby zc
and gvp = [] fby gv
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Summary of 3 execution phases

1. From current zone zcp and vector of guard activation zones gvp (from
previous step), ztrig computes the trigger zone zg .

2. f_symb triggers discrete-time computations and returns zi obtained by
applying resets to zg , the conjunction of active invariants za, and the
new vector of guard zones gv .

3. znext computes the new zone zc by letting time elapse from zi until the
set of enabled guards changes.
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DBM interface
Prototype implemented in OCaml.

• zall The complete space (unconstrained zone).
• zmake(c) Builds a DBM from a single constraint c.
• is_zempty(z) Returns true if DBM z denotes an empty zone.
• zreset(z,t,v) Resets a timer t to the value v in zone z.
• zinter(z1, z2) Returns the intersection of zones z1 and z2.
• zinterfold(zv) Returns the intersection of a list of zones zv.
• zup(z) Lets time elapse indefinitely from zone z (drops upper bounds).
• zenabled(zc, gv) Returns a list of booleans characterizing the set of
enabled guards in the list gv. A guard is enabled if its activation zone
gvi intersects the current zone zc.

• zdist(zi, g) Returns the activation and deactivation distances of a
guard activation zone g from the initial zone zi.

• zdistmap(zi, gv) Returns the list of distances between an initial
zone zi and a list of guard activation zones gv.

• zsweep(zi, d1, d2) Sweeps zi between distances d1 and d2.
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Comparison

Uppaal

• First-rate graphical interface and simulator.
• Verification by model-checking.
• Highly-optimized DBM library.
• Single-level of parallel composition of instantiated templates.
• C-like language for combinatorial functions.
• Sophisticated semantics implemented inside tool.

Zsy

• Hierarchical parallel compositions.
• Lustre-like language for stateful functions.
• Semantics encoded by source-to-source transformation.
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Conclusion

Contributions

• A novel Lustre-like language with Timed Automaton features.
• Source-to-source compilation schema for symbolic simulations.
• Novel ‘sweeping’ construct for explicit wait transitions
• Prototype implementation: https://github.com/gbdrt/zsy/tree/fdl17

Future directions

• Generate C and link with Uppaal DBM library?
• Incorporate richer domains? [Miné (2006): “The octagon abstract domain” ]
• Implement support for state machines? [Baudart (2017): “A Synchronous Ap-

proach to Quasi-Periodic Systems” ]
• Verification by symbolic model-checking?

[Hagen and Tinelli (2008): “Scaling up the
formal verification of Lustre programs with
SMT-based techniques”

] [Isenberg and Wehrheim (2014):
“Timed Automata Verification via
IC3 with Zones”

].
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