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Programming languages perspective:
purely discrete data-flow well understood (Lustre, SCADE 6)
purely continuous well understood  (Numerical solvers, Simulink)
(
(

hier. automata (disc.) well understood  (Statecharts, Esterel)
data-flow + hier. auto. well understood  (SCADE 6, Esterel v7)

Better understand the combination of discrete and continuous components

The usual questions (and techniques):

» Which programs make sense? (typing)

Benveniste et al. The Fundamentals

» How to reason about programs? (semantics, g io Medsiers. 1c56 2010 )

» Efficient and faithful execution? (compilation)

Our interest: a language for programming complex discrete systems
and modeling their physical environments
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Approach

» Add Ordinary Differential Equations to an existing synchronous

language
» Two concrete reasons:
» Increase modeling power (hybrid programming)
» Exploit existing compiler (target for code generation)
» Simulate with an external off-the-shelf numerical solver
H Hindmarsh et al. SUNDIALS: Suite of nonlinear and differential /algebraic equation
(SUndlaIS CVODEY solvers. ACM Trans. Mathematical Software, 31(3):363—-396, 2005. )
» Conservative extension: synchronous functions are compiled,
optimized, and executed as per usual.
» Extends previous work: add hierarchical automata to LCTES 2011

Understand (continuous) automata and their parallel composition

from a synchronous language viewpoint
(causality relations, activations (clocks), semantics)
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Lee and Zheng. Operational semantics of hybrid Ptolemy and HyViSUaI
systems. HSCC 2005.

Lee and Zheng. Leveraging synchronous language
principles for heterogeneous modeling and design » Programming |anguages perspective
of embedded systems. EMSOFT'07.

» Numerical solvers as directors

» Working tool and examples



MATLAB
SIMULINK®

‘\ The MathWorks™

Accelerating the pace of engineering and scance

Simulink/Stateflow

» Simulation ~» development

Carloni et al. Languages and tools

for hrbrid aysteme e 2006, > two distinct simulation engines

» semantics & consistency: non-obvious



Our approach

» Source-to-source compilation
» Automata ~~ data-flow
» Extend other languages (SCADE 6)
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Which programs make sense?

Given:
let node sum(x) = cpt where
rec cpt = x— (pre cpt +. x)
Evaluate:

der time = 1.0 init 0.0
and
y = sum(time) every up(ez) init 0.0
Interpretation:
» Option 1: NCR
» Option 2: depends on solver

» Option 3: type and reject

10

time
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Which programs make sense?

Given: 10
let node sum(x) = cpt where 9
rec cpt = x— (pre cpt +. x) 5
Evaluate: !
der time = 1.0 init 0.0 ’
and 5 '
y = sum(time) every up(ez) init 0.0 4 -nno tme

ez

Interpretation:

2
» Option 1: NCR N _____‘/
» Option 2: depends on solver 0 A 4/
i ) 0 /1 2 ?/ 4
» Option 3: type and reject 1

Explicitly relate simulation and logical time (using zero-crossings)
Try to minimize the effects of solver parameters and choices



Basic typing
The type language

bt = float | int | bool | zero D

t u= bt|txt|p \ /
o == VpBi,...,0nt LI

k == D|C|A A

Initial conditions

(+) . int x int — int
(=) : VB.8x B —bool
if . VB.bool x B x B — S

pre() : V5.5 0
fby- 1 VBB X B -2 B
up(-) : float —» zero

A
-on- . zero X bool — zero



What about continuous automata?

Stateflow User's Guide The Mathworks, pages 16-26 to 16-29, 2011.

16 sobi o

> ‘Restricted subset of Stateflow chart semantics’

> restricts side-effects to major time steps
» supported by warnings and errors in tool (mostly)

» Our D/C/A/zero system extends naturally for the same effect

» For both discrete (synchronous) and continuous (hybrid) contexts



Automata

et hybrid ball(y0, y'0, start) = Automata a la Lucid Synchrone/SCADE 6
rec init y = y0
and
automaton
Await —
do
der y = 0.0

until start then Bounce(y'0)
done

| Bounce(v)—

local c, y' i
do

E]

der y' —9.81 init v
and der y

and ¢ = up

.
~y)

until c on (y' < eps) then Await
then Bounce(—0.9 . y')

~

3}
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let hybrid ball (y0

let
rec init y = y0
and

automaton
| Await —
do

der y = 0.

until start
done

| Bounce(v)—

local c, y' i

do

der y'
and der y

, y'0, start) =

0

then Bounce(y'0)

—9.81 initv
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Automata

let hybrid ball (y0

let
rec init y = y0
and

automaton
| Await —
do

der y = 0.

until start
done

| Bounce(v)—

local c, y' i

do

der y'
and der y

, y'0, start) =

0

then Bounce(y'0)

—9.81 initv
y'

and ¢ = up(-. y)

until c on (y' < eps) then Await

c¢ then Bounce(—0.9 *. y')

Automata a la Lucid Synchrone/SCADE 6

» (Parameterized) modes
contain definitions, incl. automata

» mode-local definitions

> until: weak preemption (test after)

> unless: strong preemption (test before)
> then: enter-with-reset

> continue: entry-by-history



Automata

let hybrid ball(y0, y'0, start) = 1
L Typing rules
rec init y = y0
and
automaton
| Await —

do

der y = 0.0

until start then Bounce(y'0)
done

| Bounce(v)—

local c, y' in
do
der y' = —9.81 initv
and der y = vy’
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and ¢ = up(-. y)
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Automata
C

let hybrid ball(y0, y'0,

let
rec init y = y0
and

automaton
| Await —
do

der y = 0.0

until start
done

| Bounce(v)—
local c, y’
do

der y'

and der y

and ¢ = up(-

until c on (y' < eps) then Await
| ¢ then Bounce(—0.9 x. y')

done
end
in
y

E]

start) =

then Bounce(y'0)

—9.81 initv

Typing rules

» mode body: same kind as outer context
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let hybrid ball(y0, y'0, start) = 1
et hybrid ball(y0, y'0, start) Typing rules
rec init y = y0
and » mode body: same kind as outer context
automaton .
| Await — > until

d

° » guard : zero :: C/D

der y = 0.0 D » action :: D
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done
zero :: C

Bounce(v) —
local c, y' in
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Automata

let hybrid ball(y0, y'0, start) = ;
et hybrid ball(y0, y'0, start) Typing rules
rec init y = y0
and » mode body: same kind as outer context
automaton .
| Await — > until

d

° » guard : zero :: C/D

der y = 0.0 D » action :: D
until [start| then Bounce(ly'0J)
done > unless
zero :: C

» guard : zero i A

Bounce(v) —

local c, y' in » action :: D
do
der y' = —9.81 initv
and der y = vy’

y
and ¢ = up(-. y)

until [c on (y' < eps) then Await
| |c| then Bounce(—0.9 =. y'|)
done

end zero :: C D

in

y
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Automata

Ixit hybrid ball(y0, y'0, start) = Zero_crossing events

et

rec init y = y0

and » Detected by the solver

automaton . . .

| Await — » Constant mode during integration
do

» Cannot be negated

der y = 0.0 . .
_ (i.e. no reaction to absence)
until start then Bounce(y'0)

done

| Bounce(v)—
local c, y' i
do
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der y' —9.81 init v
and der y

y
and ¢ = up(-. y)
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Automata

let hybrid ball(y0, y'0, start) =
let

rec init y = y0

and

automaton
| Await —
do

der y = 0.0

until start then Bounce(y'0)
done

| Bounce(v)—
local c, y' i
do

E]

der y' —9.81 init v
and der y

y
and ¢ = up(-. y)

until [c on (y' < eps) then Await
| ¢ then Bounce(—0.9 x. y')

done
end

in
y

Zero-crossing events

> Detected by the solver
» Constant mode during integration
» Cannot be negated
(i.e. no reaction to absence)
» Less convenient than booleans?
> up(if b then 1.0 else —1.0)
» -on-:zero X bool i> zZero
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Strong and weak transitions

transition discrete continuous
V4 V4
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Strong and weak transitions

transition discrete continuous
V4 V4
E E E Ey Ep Ey 16 Ep

» Weak preemption: trickier
> state exit on discrete step

» need an extra discrete step for state entry



Execution (Simulation)

» Only d may have side effects and change the discrete state (o)
» Both f, nor g must be combinatorial
» D' ensures correct initialization after weak transitions



Execution (Simulation)

v

Only d may have side effects and change the discrete state (o)
Both f, nor g must be combinatorial
D' ensures correct initialization after weak transitions

v

v

v

Cf. Simulink: major and minor time steps, time always advances
Cf. Ptolemy: iteration in D until o is stable (no need for D)

v
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Solver execution
Give solver two functions: dy = f,(t,y), upz = g,(t,y)

1. approximation error too large

ffE £ f  ffff f f

g g g g 8 g g8 88

t
2. expression Crosses zero

» Bigger and bigger steps (bound by hmin and hpmax)
» t does not necessarily advance monotonically

» Cannot change state within f or g
» Guaranteed for well-typed programs



Source-to-source transformation

lexing/
parsing

A\

typing/
caus./init.

Y

automata

—>

scheduling

Y

code gen.

(d{T)




Source-to-source transformation

?

ODEs
[ ]
lexing/ typing/ .
Rk & - »| automata — -+ —| scheduling »| code gen.
parsing caus. /init.
(fo, 8o\ dor)
ode
Data-flow + Auto. + ODE ———— > Data-flow + Auto.
auto
ode codegen

Data-flow + ODE

>

Data-flow —————— Imperative code




Source-to-source transformation

ODEs
Iexm_g/ = typlng'/. »>| automata -+« —{ scheduling »| code gen.
parsing caus. /init.
(fo, 8o\ dor)
ode
Data-flow + Auto. + ODE ——— Data-flow + Auto.
auto auto
ode codegen
Data-flow + ODE > Data-flow ——————— Imperative code

» Pro: simpler definition of ODE

» Con: subtle invariant over intermediate language



Source-to-source transformation

ODEs

Iexm_g/ & typlng'/. ‘(: automata — -+ —| scheduling »| code gen.
parsing caus. /init.
(fo, 8o\ dor)

ode

Data-flow + Auto. + ODE —— > Data-flow + Auto.

auto auto
ode codegen
Data-flow + ODE » Data-flow ————— Imperative code

» Pro: intermediate result is well-typed

» Pro/Con: ODE code must include cases for automata



Source-to-source transformation

let hybrid ball(y0, y'0, start) =
let

rec init y = y0

and automaton

| Await —
do
der y = 0.0
until start then Bounce(y’'0)
done

| Bounce(v)—
local c, y’
do

E]

’ —9.81 initv

y
y)

der y
and der y
u

and ¢ = up(-.

until c on (y' < eps) then Await
c¢ then Bounce(—0.9 *. y')

|
done
end

details



Source-to-source transformation details

let hybrid ball(y0, y'0, start) =
let

rec init y = y0

and automaton

| Await —
do
der y = 0.0
until start then Bounce(y’'0)
done

| Bounce(v)—
local c, y' i
do

E]

—9.81 init v
y'
y

)

der y'
and der y
and ¢ = up(-.

until c on (y' < eps) then Await
| ¢ then Bounce(—0.9 *. y')
done
end

» Source-to-source transformation

let node ball((y0, y'0, start), ((ly, ly'), z))

let
rec y = y0 -> ly
and automaton

| Await —
do
dy’ = 0.0
and vy’ =ly’
and dy = 0.0
and upz = (0.0, false)

=

until start then Bounce(y’'0) done

| Bounce(v)—
local c in

do
dy' = —9.81
and y' =v -> Iy
and dy =y’
and ¢ = z

and upz = (—. y, true)
until ¢ & (y' < eps) then Await
| ¢ then Bounce(—0.9 *. y')
done
end
in
(v. ((y. y). (dy, dy'), upz))

(to give 5, go, ds)



Source-to-source transformation details

let hybrid ball(y0, y'0, start) =
let

rec init y = y0

and automaton

| Await —
do
der y = 0.0
until start then Bounce(y’'0)
done

| Bounce(v)—
local c, y' in
do
der y' = —9.81 initv
and der y =y’
and ¢ = up(-. y)

until c on (y' < eps) then Await
| ¢ then Bounce(—0.9 *. y')
done
end

let node ball ((yo, y'0, start), ((ly, ly'),
let
rec y = y0 -> ly
and automaton

| Await —
do
dy’ = 0.0
and vy’ =ly’
and dy = 0.0

and upz = (0.0, false)
until start then Bounce(y’'0) done

| Bounce(v)—
local c in

do
dy' = —9.81
and y' =v -> Iy
and dy =y’
and ¢ = z

and upz = (—. y, true)
until ¢ & (y' < eps) then Await
| ¢ then Bounce(—0.9 *. y')
done
end
in
(v. ((y. y). (dy, dy'), upz))

» Source-to-source transformation (to give f,, g,, d.)

» Transform each hybrid function into a discrete one

z))



Source-to-source transformation details

let hybrid ball(y0, y'0, start) =
let

rec init y = y0

and automaton

| Await —
do
der y = 0.0
until start then Bounce(y’'0)
done

| Bounce(v)—
local c, y' i
do

S

der y' = —9.81 initv
and der y =y
and ¢ = up(-. y)

until c on (y' < eps) then“Await
| ¢ then Bounce(—0.9 *. y")
done
end

let node ball((y0, y'0, start), ((lyp ly'), z))

let
rec y = y0 -> ly
and automaton

J"Await —
do
dy’ = 0.0
and vy’ =ly’
and dy = 0.0

and upz = (0.0, false)
until start then Bounce(y’'0) done

| Bounce(v)—
local c in

do
*dy = —9.81
and y' =v -> Iy
and dy =y’
and ¢ = z

and upz = (—. y, true)
until ¢ & (y' < eps) then Await
| ¢ then Bounce(—0.9 *. y')
done
end
i" ¥ ¥
(v, ((yi y'). (dy, dy'), upz))

» Continuous-state definitions are ‘externalized’ via inputs and outputs



Source-to-source transformation details

let hybrid ball(y0, y'0, start) =
let

rec init y = y0

and automaton

| Await —
do
der y = 0.0
until start then Bounce(y’'0)
done

| Bounce(v)—
local c, y' in
do
—9.81(init v

)

der y' =
and der y =y
and ¢ = up(-. vy

until c on (y' < eps) then Await
| ¢ then Bounce(—0.9 *. y')
done
end

let node ball((y0, y'0, start), ((ly, ly'), z))

let
rec y = y0 -> ly
and automaton

| Await —
do
dy’ = 0.0
and vy’ =ly’
and dy = 0.0

and upz = (0.0, false)
until start then Bounce(y’'0) done

| Bounce(v)—
local c in

do
dy' = —9.81
and y' =v -> Iy
and dy = y"
and ¢ = z

and upz = (—. y, true)
until ¢ & (y' < eps) then Await
| ¢ then Bounce(—0.9 *. y')
done
end
in
(v. ((y. y). (dy, dy'). upz))

» Continuous-state definitions are ‘externalized’ via inputs and outputs

» Initialization is a discrete action; branch entry must be restricted



Source-to-source transformation details

let hybrid ball(y0, y'0, start) =
let

reclinit y = y0

and automaton

| Await —
do
der y = 0.0
until start then Bounce(y’'0)
done

| Bounce(v)—
local c, y' in
do
—9.81 init v

)

der y' =
and der y =y
and ¢ = up(-. vy

until c on (y' < eps) then Await
| ¢ then Bounce(—0.9 *. y')
done
end

let node ball((y0, y'0, start), ((ly, ly'), z))

let
recly = y0 -> ly
and automaton

| Await —
do
dy’ = 0.0
and vy’ =ly’
and dy = 0.0

and upz = (0.0, false)
until start then Bounce(y’'0) done

| Bounce(v)—
local c in

do
dy' = —9.81
and y' =v -> Iy
and dy =y’
and ¢ = z

and upz = (—. y, true)
until ¢ & (y' < eps) then Await
| ¢ then Bounce(—0.9 *. y')
done
end
in
(v. ((y. y). (dy, dy'). upz))

» Continuous-state definitions are ‘externalized’ via inputs and outputs

» Initialization is a discrete action; branch entry must be restricted



Source-to-source transformation details

let hybrid ball(y0, y'0, start) = let node ball ((y0, y'0, start), ((ly, ly'), z))
let let
rec init y = y0 rec y = y0 -> ly
and automaton and automaton
| Await — | Await —
do do
der y = 0.0 dy’ = 0.0
until start then Bounce(y'0) and.y' = ly’
done and dy ==70.0

and upz = (0.0, false)
until start then Bounce(y’'0) done

| Bounce(v)— | Bounce(v)—
local c, y' in local c in
do do
der y' = —9.81 initv dy' = —9.81
and der y =y’ and y' =v -> ly
and ¢ = up(-.y) and dy =y’
and ¢ = z
and upz = (—. y, true)
until c on (y' < eps) then Await until ¢ & (y' < eps) then Await
| ¢ then Bounce(—0.9 *. y') | ¢ then Bounce(—0.9 *. y')
done done
end end
in in
y (v, ((y. y'). (dy, dy'), upz))

» Continuous-state definitions are ‘externalized’ via inputs and outputs
» Initialization is a discrete action; branch entry must be restricted

» Extending the scope mandates additional definitions for other modes



Source-to-source transformation details

let hybrid ball(y0, y'0, start) =
let
rec init y = y0
and automaton
| Await —
do
der y = 0.0
until start then Bounce(y'0)
done
| Bounce(v)—
local c, y' in
do
der y' —9¢81 init v

)

and der y = y
and ¢ = up(-. y

until c on (y' < eps) thea_Await
| ¢ then Bounce(—0.9 *. )
done
end

let node ball ((y0, y'0,
let
rec y = y0 -> ly
and automaton

| Await—
do
dy’ = 0.0
and vy’ =ly’
and dy = 0.0

and upz = (0.0, false)
until start then Bounce(y’'0) done

| Bounce(v)—
local c in

do
dy' = —9.81
and y' =v -> Iy
and dy =y’
and ¢ = z

and upz = (—. y, true)
until ¢ & (y' < eps) then Await
| ¢ then Bounce(—0.9 *. y')
done
end
in
(v. ((y. y). (dy, dy)@ upz))

» Zero-crossing operators, up(-), are also ‘externalized’

» Detection always occurs externally; boolean values internally

start), ((ly, ly)% z))



Source-to-source transformation details

let hybrid ball(y0, y'0, start) = let node ball ((y0, y'0, start), ((ly, ly'), z))
let let
rec init y = y0 rec y = y0 -> ly
and automaton and automaton
| Await — | Await —
do do
der y = 0.0 dy’ = 0.0
until start then Bounce(y'0) and y' = ly’
done and dy _=_0.0

andCupz = (0.0, false)
until start=then=Bdlnce(y’'0) done

| Bounce(v)— | Bounce(v)—
local c, y' in local c in
do do
der y' = —9.81 initv dy' = —9.81
and der y =y’ and y' =v -> ly
and ¢ = up(-. y) and dy =y’
and ¢ = z
and upz = (—. y, true)
until c on (y' < eps) then Await until ¢ & (y' < eps) then Await
| ¢ then Bounce(—0.9 *. y') | ¢ then Bounce(—0.9 *. y')
done done
end end
in in
y (v, ((y. y). (dy, dy'). upz))

» Zero-crossing operators, up(-), are also ‘externalized’
» Detection always occurs externally; boolean values internally

» Additional definitions in inactive modes involve a slight technicality



Demonstrations

v

Bouncing ball (standard)

v

Bang-bang temperature controller (Simulink/Stateflow)
Sticky Masses (Ptolemy)

v



Conclusions and Future Work

Conclusions

» Synchronous languages should and can properly treat hybrid systems
» There are three good reasons for doing so:

1. To exploit existing compilers and techniques

2. For programming the discrete subcomponents

3. To clarify underlying principles and guide language design/semantics

» A prototype compiler in OCaml using Sundials CVODE solver

Future Work

» clock calculus, higher order functions
> integrate multiple solvers

» real-time simulation (compromise accuracy and execution time)
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