A Hybrid Synchronous Language with Hierarchical
Automata
Static Typing and Translation to Synchronous Code

Albert Benveniste! Benoit Caillaud®
Timothy Bourke®? Marc Pouzet®!

1. INRIA

2. Ecole normale supérieure (LIENS)

in[ormaﬁrs,mmhemalics

EMSOFT 2011, ES Week, October 9-14, Taipei, Taiwan

Aim

Programming languages perspective:

purely discrete data-flow
purely continuous

hier. automata (disc.)
data-flow + hier. auto.

well understood
well understood
well understood
well understood

(
(
(
(

Lustre, SCADE 6)
Numerical solvers, Simulink)
Statecharts, Esterel)
SCADE 6, Esterel v7)

Aim

Programming languages perspective:

purely discrete data-flow well understood (Lustre, SCADE 6)

purely continuous well understood (Numerical solvers, Simulink)
hier. automata (disc.) well understood (Statecharts, Esterel)
data-flow + hier. auto. well understood (SCADE 6, Esterel v7)

Better understand the combination of discrete and continuous components

Aim

Programming languages perspective:

purely discrete data-flow well understood (Lustre, SCADE 6)

purely continuous well understood (Numerical solvers, Simulink)
hier. automata (disc.) well understood (Statecharts, Esterel)
data-flow + hier. auto. well understood (SCADE 6, Esterel v7)

Better understand the combination of discrete and continuous components

The usual questions (and techniques):

» Which programs make sense? (typing)

Benveniste et al. The Fundamentals

» How to reason about programs? (semantics, g io Medsiers. 1c56 2010)

» Efficient and faithful execution? (compilation)

Aim
Programming languages perspective:
purely discrete data-flow well understood (Lustre, SCADE 6)
purely continuous well understood (Numerical solvers, Simulink)
(
(

hier. automata (disc.) well understood (Statecharts, Esterel)
data-flow + hier. auto. well understood (SCADE 6, Esterel v7)

Better understand the combination of discrete and continuous components

The usual questions (and techniques):

» Which programs make sense? (typing)

Benveniste et al. The Fundamentals

» How to reason about programs? (semantics, g io Medsiers. 1c56 2010)

» Efficient and faithful execution? (compilation)

Our interest: a language for programming complex discrete systems
and modeling their physical environments

Approach
» Add Ordinary Differential Equations to an existing synchronous
language

» Two concrete reasons:

» Increase modeling power (hybrid programming)
» Exploit existing compiler (target for code generation)

Approach

» Add Ordinary Differential Equations to an existing synchronous
language

» Two concrete reasons:

» Increase modeling power (hybrid programming)
» Exploit existing compiler (target for code generation)

» Simulate with an external off-the-shelf numerical solver

H Hindmarsh et al. SUNDIALS: Suite of nonlinear and differential /algebraic equation
(Sundials CVODE, e ew Trans. Mathematical Softwarn 31(3):363-396, 2005.)

Approach

>

Add Ordinary Differential Equations to an existing synchronous
language
Two concrete reasons:

» Increase modeling power (hybrid programming)
» Exploit existing compiler (target for code generation)

Simulate with an external off-the-shelf numerical solver

H Hindmarsh et al. SUNDIALS: Suite of nonlinear and differential /algebraic equation
(Sundials CVODE, e ew Trans. Mathematical Softwarn 31(3):363-396, 2005.)

Conservative extension: synchronous functions are compiled,
optimized, and executed as per usual.

Extends previous work: add hierarchical automata to LCTES 2011

Approach

» Add Ordinary Differential Equations to an existing synchronous

language
» Two concrete reasons:
» Increase modeling power (hybrid programming)
» Exploit existing compiler (target for code generation)
» Simulate with an external off-the-shelf numerical solver
H Hindmarsh et al. SUNDIALS: Suite of nonlinear and differential /algebraic equation
(SUndlaIS CVODEY solvers. ACM Trans. Mathematical Software, 31(3):363—-396, 2005.)
» Conservative extension: synchronous functions are compiled,
optimized, and executed as per usual.
» Extends previous work: add hierarchical automata to LCTES 2011

Understand (continuous) automata and their parallel composition

from a synchronous language viewpoint
(causality relations, activations (clocks), semantics)

Lee and Zheng. Operational semantics of hybrid
systems. HSCC 2005.

Lee and Zheng. Leveraging synchronous language
principles for heterogeneous modeling and design
of embedded systems. EMSOFT'07.

MATLAB
SIMULINK®

‘\ The MathWorks™

Accelerating th poco of engineering and scanca

Lee and Zheng. Operational semantics of hybrid Ptolemy and HyViSUaI
systems. HSCC 2005.

Lee and Zheng. Leveraging synchronous language
principles for heterogeneous modeling and design » Programming |anguages perspective
of embedded systems. EMSOFT'07.

» Numerical solvers as directors

» Working tool and examples

MATLAB
SIMULINK®

‘\ The MathWorks™

Accelerating the pace of engineering and scance

Simulink/Stateflow

» Simulation ~» development

Carloni et al. Languages and tools

for hrbrid aysteme e 2006, > two distinct simulation engines

» semantics & consistency: non-obvious

Our approach

» Source-to-source compilation
» Automata ~~ data-flow
» Extend other languages (SCADE 6)

Which programs make sense?

Given:

let node sum(x) = cpt where
rec cpt = x— (pre cpt +. x)

Which programs make sense?

Given:
let node sum(x) = cpt where
rec cpt = x— (pre cpt +. x)
Evaluate:

der time = 1.0 init 0.0

and
y = sum(time)

Which programs make sense?

Given:
let node sum(x) = cpt where
rec cpt = x— (pre cpt +. x)
Evaluate:

der time = 1.0 init 0.0
and
y = sum(time)

Interpretation:

10

time

Which programs make sense?

Given:
let node sum(x) = cpt where
rec cpt = x— (pre cpt +. x)
Evaluate:

der time = 1.0 init 0.0
and
y = sum(time)
Interpretation:
» Option 1: NCR

10

time

Which programs make sense?

Given: 10
let node sum(x) = cpt where 9
rec cpt = x— (pre cpt +. x) 5 e
Evaluate: !
der time = 1.0 init 0.0 ’
and ° R '
y = sum(time) 4 time

Interpretation:
» Option 1: NCR

» Option 2: depends on solver 0

-
-

Which programs make sense?

Given: 10
let node sum(x) = cpt where 9

rec cpt = x— (pre cpt +. x) 5
Evaluate: !

der tj = 1.0 init 0.0
andX ° '
y = um(time) 4 time

Interpretation:
» Option 1: NCR
» Option 2: depends on solver 0

» Option 3: type and reject 1

Which programs make sense?

Given:
let node sum(x) = cpt where
rec cpt = x— (pre cpt +. x)
Evaluate:

der time = 1.0 init 0.0
and
y = sum(time) every up(ez) init 0.0
Interpretation:
» Option 1: NCR
» Option 2: depends on solver

» Option 3: type and reject

10

time

ez

Which programs make sense?

Given: 10
let node sum(x) = cpt where 9
rec cpt = x— (pre cpt +. x) 5
Evaluate: !
der time = 1.0 init 0.0 ’
and 5 '
y = sum(time) every up(ez) init 0.0 4 -nno tme

ez

Interpretation:

2
» Option 1: NCR N _____‘/
» Option 2: depends on solver 0 A 4/
i) 0 /1 2 ?/ 4
» Option 3: type and reject 1

Explicitly relate simulation and logical time (using zero-crossings)
Try to minimize the effects of solver parameters and choices

Basic typing
The type language

bt = float | int | bool | zero D

t u= bt|txt|p \ /
o == VpBi,...,0nt LI

k == D|C|A A

Initial conditions

(+) . int x int — int
(=) : VB.8x B —bool
if . VB.bool x B x B — S

pre() : V5.5 0
fby- 1 VBB X B -2 B
up(-) : float —» zero

A
-on- . zero X bool — zero

What about continuous automata?

Stateflow User's Guide The Mathworks, pages 16-26 to 16-29, 2011.

16 sobi o

> ‘Restricted subset of Stateflow chart semantics’

> restricts side-effects to major time steps
» supported by warnings and errors in tool (mostly)

» Our D/C/A/zero system extends naturally for the same effect

» For both discrete (synchronous) and continuous (hybrid) contexts

Automata

et hybrid ball(y0, y'0, start) = Automata a la Lucid Synchrone/SCADE 6
rec init y = y0
and
automaton
Await —
do
der y = 0.0

until start then Bounce(y'0)
done

| Bounce(v)—

local c, y' i
do

E]

der y' —9.81 init v
and der y

and ¢ = up

.
~y)

until c on (y' < eps) then Await
then Bounce(—0.9 . y')

~

3}

Automata

let hybrid ball(y0, y'0, start) =
let

rec init y = y0

and

automaton
| Await —
do

der y = 0.0

until start then Bounce(y'0)
done

| Bounce(v)—
local c, y' i
do

E]

der y' —9.81 init v
and der y

y
and ¢ = up(-. y)

until c on (y' < eps) then Await
| ¢ then Bounce(—0.9 x. y')
done
end

in
y

Automata a la Lucid Synchrone/SCADE 6

» (Parameterized) modes
contain definitions, incl. automata

Automata

let hybrid ball(y0, y'0, start) =
let

rec init y = y0

and

automaton
| Await —
do

der y = 0.0

until start then Bounce(y'0)
done

| Bounce(v)—
local c, y' i
do

E]

der y' —9.81 init v
and der y

y
and ¢ = up(-. y)

until c on (y' < eps) then Await
| ¢ then Bounce(—0.9 x. y')
done
end

in
y

Automata a la Lucid Synchrone/SCADE 6

» (Parameterized) modes
contain definitions, incl. automata

» mode-local definitions

Automata

let hybrid ball (y0

let
rec init y = y0
and

automaton
| Await —
do

der y = 0.

until start
done

| Bounce(v)—

local c, y' i

do

der y'
and der y

, y'0, start) =

0

then Bounce(y'0)

—9.81 initv

y
and ¢ = up(-. y)

until c on (y' < eps) | then Await
| ¢/ then Bounce(—0.9 x. y')

done
end
in
y

Automata a la Lucid Synchrone/SCADE 6

» (Parameterized) modes
contain definitions, incl. automata

» mode-local definitions
> until: weak preemption (test after)

> unless: strong preemption (test before)

Automata

let hybrid ball (y0

let
rec init y = y0
and

automaton
| Await —
do

der y = 0.

until start
done

| Bounce(v)—

local c, y' i

do

der y'
and der y

, y'0, start) =

0

then Bounce(y'0)

—9.81 initv
y'

and ¢ = up(-. y)

until c on (y' < eps) then Await

c¢ then Bounce(—0.9 *. y')

Automata a la Lucid Synchrone/SCADE 6

» (Parameterized) modes
contain definitions, incl. automata

» mode-local definitions

> until: weak preemption (test after)

> unless: strong preemption (test before)
> then: enter-with-reset

> continue: entry-by-history

Automata

let hybrid ball(y0, y'0, start) = 1
L Typing rules
rec init y = y0
and
automaton
| Await —

do

der y = 0.0

until start then Bounce(y'0)
done

| Bounce(v)—

local c, y' in
do
der y' = —9.81 initv
and der y = vy’

y
and ¢ = up(-. y)

until c on (y' < eps) then Await
| ¢ then Bounce(—0.9 x. y')

done
end

Automata
C

let hybrid ball(y0, y'0,

let
rec init y = y0
and

automaton
| Await —
do

der y = 0.0

until start
done

| Bounce(v)—
local c, y’
do

der y'

and der y

and ¢ = up(-

until c on (y' < eps) then Await
| ¢ then Bounce(—0.9 x. y')

done
end
in
y

E]

start) =

then Bounce(y'0)

—9.81 initv

Typing rules

» mode body: same kind as outer context

Automata

let hybrid ball(y0, y'0, start) = 1
et hybrid ball(y0, y'0, start) Typing rules
rec init y = y0
and » mode body: same kind as outer context
automaton .
| Await — > until

d

° » guard : zero :: C/D

der y = 0.0 D » action :: D
until [start| then Bounce(ly'0J)
done
zero :: C

Bounce(v) —
local c, y' in
do

—9.81 initv

der y' =
and der y =y
and ¢ = up(-. y)

until [c on (y' < eps) then Await
| |c| then Bounce(—0.9 =. y'|)
done

end zero :: C D

in

y

Automata

let hybrid ball(y0, y'0, start) = ;
et hybrid ball(y0, y'0, start) Typing rules
rec init y = y0
and » mode body: same kind as outer context
automaton .
| Await — > until

d

° » guard : zero :: C/D

der y = 0.0 D » action :: D
until [start| then Bounce(ly'0J)
done > unless
zero :: C

» guard : zero i A

Bounce(v) —

local c, y' in » action :: D
do
der y' = —9.81 initv
and der y = vy’

y
and ¢ = up(-. y)

until [c on (y' < eps) then Await
| |c| then Bounce(—0.9 =. y'|)
done

end zero :: C D

in

y

Automata

Ixit hybrid ball(y0, y'0, start) = Zero_crossing events
et
rec init y = y0
and
automaton
| Await —

do

der y = 0.0

until start then Bounce(y'0)
done

| Bounce(v)—

local c, y' in
do
der y' = —9.81 initv
and der y = vy’

y
and ¢ = up(-. y)

until c on (y' < eps) then Await
| ¢ then Bounce(—0.9 x. y')

done
end

Automata

Ixit hybrid ball(y0, y'0, start) = Zero_crossing events
et
rec init y = y0
and » Detected by the solver
automaton . . .
| Await — » Constant mode during integration
do
der y = 0.0

until start then Bounce(y'0)
done

| Bounce(v)—
local c, y' i
do

E]

der y' —9.81 init v
and der y

y
and ¢ = up(-. y)

until c on (y' < eps) then Await
| ¢ then Bounce(—0.9 x. y')
done
end

in
y

Automata

Ixit hybrid ball(y0, y'0, start) = Zero_crossing events

et

rec init y = y0

and » Detected by the solver

automaton . . .

| Await — » Constant mode during integration
do

» Cannot be negated

der y = 0.0 . .
_ (i.e. no reaction to absence)
until start then Bounce(y'0)

done

| Bounce(v)—
local c, y' i
do

E]

der y' —9.81 init v
and der y

y
and ¢ = up(-. y)

until c on (y' < eps) then Await
| ¢ then Bounce(—0.9 x. y')
done
end

in
y

Automata

let hybrid ball(y0, y'0, start) =
let

rec init y = y0

and

automaton
| Await —
do

der y = 0.0

until start then Bounce(y'0)
done

| Bounce(v)—
local c, y' i
do

E]

der y' —9.81 init v
and der y

y
and ¢ = up(-. y)

until [c on (y' < eps) then Await
| ¢ then Bounce(—0.9 x. y')

done
end

in
y

Zero-crossing events

> Detected by the solver
» Constant mode during integration
» Cannot be negated
(i.e. no reaction to absence)
» Less convenient than booleans?
> up(if b then 1.0 else —1.0)
» -on-:zero X bool i> zZero

Strong and weak transitions

transition discrete

e unless z e

Strong and weak transitions

transition discrete

‘ unless z .)‘\

Ey

Strong and weak transitions

transition discrete

oy ||

Ey 51

Strong and weak transitions

transition discrete

z

o—o L1

Ey E Ey

Strong and weak transitions

transition discrete

z

o= 1111

Ey E Ey E>

Strong and weak transitions

transition discrete

z

o= L 11]]

Ey E Ey E; Ey

Strong and weak transitions

transition discrete continuous
z z
E E Ep Ey Ep E ol Ep

» Synchronous languages ignore the gaps between reactions
» But a hybrid language cannot

» Strong preemption: (state entry on discrete step)

Strong and weak transitions

transition discrete continuous
z z
. unless z .)‘\ T)‘\ T)‘\ T T T T)‘\
E E Ep Ey Ep E o 23

» Synchronous languages ignore the gaps between reactions
» But a hybrid language cannot

» Strong preemption: (state entry on discrete step)

Strong and weak transitions

transition discrete continuous
V4 V4
Ey Ey Ep Ep Ep E ol; Ep

» Synchronous languages ignore the gaps between reactions
» But a hybrid language cannot

» Strong preemption: (state entry on discrete step)

Strong and weak transitions

transition discrete continuous
V4 V4
@ unless z (>)‘\]\)‘\]\)‘\ I]\ I]\)‘\
E E Ep Ep Ep Ey ol; Ep

a e e

» Weak preemption: ...

Strong and weak transitions

transition discrete continuous
V4 V4
unless z
E E Ep Ep Ep Ey f Ep

e e e

» Weak preemption: ...

Strong and weak transitions

transition discrete continuous
V4 V4
unless z
—
Eqy E> Ey E> Eq ; E>

N

E

» Weak preemption: ...

Strong and weak transitions

transition discrete continuous
V4 V4
unless z
—
E E» E E> E F E>

oo L]

E E

» Weak preemption: ...

Strong and weak transitions

transition discrete continuous
V4
E E E E Ey ; Ep
V4
o= 1]
E E Ey

» Weak preemption: ...

Strong and weak transitions

transition discrete continuous
V4 V4
unless z
Ey E Ep Ep Ey ; E>
V4
o= 1111
E E E E

» Weak preemption: ...

Strong and weak transitions

transition discrete continuous
V4 V4
unless z
Ey E Ep Ep Ey ; E>
V4
o= L[]
E E E E E;

» Weak preemption: ...

Strong and weak transitions

transition discrete continuous
V4 V4
@ unless z @]\]\]\]\]\]\]\]\]\
————
E £ E, E> E, E f Ey
V4 V4
E E E E E Ey i Ey

» Weak preemption: trickier

Strong and weak transitions

transition discrete continuous
V4 V4
unless z @]\]\]\]\]\]\]\]\
—
E E Ep E, Ep 55—
V4 V4
E E E E E Ey i Ey

» Weak preemption: trickier

> state exit on discrete step

Strong and weak transitions

transition discrete continuous
V4
E E; E E Ep E —)
V4 V4
E E E E E Ey i Ep

» Weak preemption: trickier

> state exit on discrete step

Strong and weak transitions

transition discrete continuous
V4 V4
E E E Ey Ep Ey 16 Ep

» Weak preemption: trickier
> state exit on discrete step

» need an extra discrete step for state entry

Execution (Simulation)

» Only d may have side effects and change the discrete state (o)
» Both f, nor g must be combinatorial
» D' ensures correct initialization after weak transitions

Execution (Simulation)

v

Only d may have side effects and change the discrete state (o)
Both f, nor g must be combinatorial
D' ensures correct initialization after weak transitions

v

v

v

Cf. Simulink: major and minor time steps, time always advances
Cf. Ptolemy: iteration in D until o is stable (no need for D)

v

Solver execution
Give solver two functions: dy = f,(t,y), upz = g,(t,y)

Solver execution
Give solver two functions: dy = f,(t,y), upz = g,(t,y)

Solver execution
Give solver two functions: dy = f,(t,y), upz = g,(t,y)

Solver execution
Give solver two functions: dy = f,(t,y), upz = g,(t,y)

Frf

Il

Solver execution
Give solver two functions: dy = f,(t,y), upz = g,(t,y)

ff

Il

|

Solver execution
Give solver two functions: dy = f,(t,y), upz = g,(t,y)

frff

Solver execution
Give solver two functions: dy = f,(t,y), upz = g,(t,y)

fiE £ f

» Bigger and bigger steps (bound by hmin and hpmax)

Solver execution
Give solver two functions: dy = f,(t,y), upz = g,(t,y)

1. approximation error too large

fiE £ f f

» Bigger and bigger steps (bound by hmin and hpmax)

Solver execution
Give solver two functions: dy = f,(t,y), upz = g,(t,y)

1. approximation error too large

fiE £ f f f

» Bigger and bigger steps (bound by hmin and hpmax)

Solver execution
Give solver two functions: dy = f,(t,y), upz = g,(t,y)

1. approximation error too large

fiEF f fff

» Bigger and bigger steps (bound by hmin and hpmax)

Solver execution
Give solver two functions: dy = f,(t,y), upz = g,(t,y)

1. approximation error too large

ffE £ f ffff

g g g g 8

4

» Bigger and bigger steps (bound by hmin and hpmax)

Solver execution
Give solver two functions: dy = f,(t,y), upz = g,(t,y)

1. approximation error too large

ffE £ f ffff f

» Bigger and bigger steps (bound by hmin and hpmax)

Solver execution
Give solver two functions: dy = f,(t,y), upz = g,(t,y)

1. approximation error too large

ffE £ f ffff f f

t
2. expression Crosses zero

» Bigger and bigger steps (bound by hmin and hpmax)

Solver execution
Give solver two functions: dy = f,(t,y), upz = g,(t,y)

1. approximation error too large

ffE £ f ffff f f

t
2. expression Crosses zero

» Bigger and bigger steps (bound by hmin and hpmax)

Solver execution
Give solver two functions: dy = f,(t,y), upz = g,(t,y)

1. approximation error too large

ffE £ f ffff f f

t
2. expression Crosses zero

» Bigger and bigger steps (bound by hmin and hpmax)

Solver execution
Give solver two functions: dy = f,(t,y), upz = g,(t,y)

1. approximation error too large

ffE £ f ffff f f

g g g g 8 g g8 88

t
2. expression Crosses zero

» Bigger and bigger steps (bound by hmin and hpmax)

Solver execution
Give solver two functions: dy = f,(t,y), upz = g,(t,y)

1. approximation error too large

ffE £ f ffff f f

g g g g 8 g g8 88

t
2. expression Crosses zero

» Bigger and bigger steps (bound by hmin and hpmax)
» t does not necessarily advance monotonically

» Cannot change state within f or g
» Guaranteed for well-typed programs

Source-to-source transformation

lexing/
parsing

A\

typing/
caus./init.

Y

automata

—>

scheduling

Y

code gen.

(d{T)

Source-to-source transformation

?

ODEs
[]
lexing/ typing/ .
Rk & - »| automata — -+ —| scheduling »| code gen.
parsing caus. /init.
(fo, 8o\ dor)
ode
Data-flow + Auto. + ODE ———— > Data-flow + Auto.
auto
ode codegen

Data-flow + ODE

>

Data-flow —————— Imperative code

Source-to-source transformation

ODEs
Iexm_g/ = typlng'/. »>| automata -+« —{ scheduling »| code gen.
parsing caus. /init.
(fo, 8o\ dor)
ode
Data-flow + Auto. + ODE ——— Data-flow + Auto.
auto auto
ode codegen
Data-flow + ODE > Data-flow ——————— Imperative code

» Pro: simpler definition of ODE

» Con: subtle invariant over intermediate language

Source-to-source transformation

ODEs

Iexm_g/ & typlng'/. ‘(: automata — -+ —| scheduling »| code gen.
parsing caus. /init.
(fo, 8o\ dor)

ode

Data-flow + Auto. + ODE —— > Data-flow + Auto.

auto auto
ode codegen
Data-flow + ODE » Data-flow ————— Imperative code

» Pro: intermediate result is well-typed

» Pro/Con: ODE code must include cases for automata

Source-to-source transformation

let hybrid ball(y0, y'0, start) =
let

rec init y = y0

and automaton

| Await —
do
der y = 0.0
until start then Bounce(y’'0)
done

| Bounce(v)—
local c, y’
do

E]

’ —9.81 initv

y
y)

der y
and der y
u

and ¢ = up(-.

until c on (y' < eps) then Await
c¢ then Bounce(—0.9 *. y')

|
done
end

details

Source-to-source transformation details

let hybrid ball(y0, y'0, start) =
let

rec init y = y0

and automaton

| Await —
do
der y = 0.0
until start then Bounce(y’'0)
done

| Bounce(v)—
local c, y' i
do

E]

—9.81 init v
y'
y

)

der y'
and der y
and ¢ = up(-.

until c on (y' < eps) then Await
| ¢ then Bounce(—0.9 *. y')
done
end

» Source-to-source transformation

let node ball((y0, y'0, start), ((ly, ly'), z))

let
rec y = y0 -> ly
and automaton

| Await —
do
dy’ = 0.0
and vy’ =ly’
and dy = 0.0
and upz = (0.0, false)

=

until start then Bounce(y’'0) done

| Bounce(v)—
local c in

do
dy' = —9.81
and y' =v -> Iy
and dy =y’
and ¢ = z

and upz = (—. y, true)
until ¢ & (y' < eps) then Await
| ¢ then Bounce(—0.9 *. y')
done
end
in
(v. ((y. y). (dy, dy'), upz))

(to give 5, go, ds)

Source-to-source transformation details

let hybrid ball(y0, y'0, start) =
let

rec init y = y0

and automaton

| Await —
do
der y = 0.0
until start then Bounce(y’'0)
done

| Bounce(v)—
local c, y' in
do
der y' = —9.81 initv
and der y =y’
and ¢ = up(-. y)

until c on (y' < eps) then Await
| ¢ then Bounce(—0.9 *. y')
done
end

let node ball ((yo, y'0, start), ((ly, ly'),
let
rec y = y0 -> ly
and automaton

| Await —
do
dy’ = 0.0
and vy’ =ly’
and dy = 0.0

and upz = (0.0, false)
until start then Bounce(y’'0) done

| Bounce(v)—
local c in

do
dy' = —9.81
and y' =v -> Iy
and dy =y’
and ¢ = z

and upz = (—. y, true)
until ¢ & (y' < eps) then Await
| ¢ then Bounce(—0.9 *. y')
done
end
in
(v. ((y. y). (dy, dy'), upz))

» Source-to-source transformation (to give f,, g,, d.)

» Transform each hybrid function into a discrete one

z))

Source-to-source transformation details

let hybrid ball(y0, y'0, start) =
let

rec init y = y0

and automaton

| Await —
do
der y = 0.0
until start then Bounce(y’'0)
done

| Bounce(v)—
local c, y' i
do

S

der y' = —9.81 initv
and der y =y
and ¢ = up(-. y)

until c on (y' < eps) then“Await
| ¢ then Bounce(—0.9 *. y")
done
end

let node ball((y0, y'0, start), ((lyp ly'), z))

let
rec y = y0 -> ly
and automaton

J"Await —
do
dy’ = 0.0
and vy’ =ly’
and dy = 0.0

and upz = (0.0, false)
until start then Bounce(y’'0) done

| Bounce(v)—
local c in

do
*dy = —9.81
and y' =v -> Iy
and dy =y’
and ¢ = z

and upz = (—. y, true)
until ¢ & (y' < eps) then Await
| ¢ then Bounce(—0.9 *. y')
done
end
i" ¥ ¥
(v, ((yi y'). (dy, dy'), upz))

» Continuous-state definitions are ‘externalized’ via inputs and outputs

Source-to-source transformation details

let hybrid ball(y0, y'0, start) =
let

rec init y = y0

and automaton

| Await —
do
der y = 0.0
until start then Bounce(y’'0)
done

| Bounce(v)—
local c, y' in
do
—9.81(init v

)

der y' =
and der y =y
and ¢ = up(-. vy

until c on (y' < eps) then Await
| ¢ then Bounce(—0.9 *. y')
done
end

let node ball((y0, y'0, start), ((ly, ly'), z))

let
rec y = y0 -> ly
and automaton

| Await —
do
dy’ = 0.0
and vy’ =ly’
and dy = 0.0

and upz = (0.0, false)
until start then Bounce(y’'0) done

| Bounce(v)—
local c in

do
dy' = —9.81
and y' =v -> Iy
and dy = y"
and ¢ = z

and upz = (—. y, true)
until ¢ & (y' < eps) then Await
| ¢ then Bounce(—0.9 *. y')
done
end
in
(v. ((y. y). (dy, dy'). upz))

» Continuous-state definitions are ‘externalized’ via inputs and outputs

» Initialization is a discrete action; branch entry must be restricted

Source-to-source transformation details

let hybrid ball(y0, y'0, start) =
let

reclinit y = y0

and automaton

| Await —
do
der y = 0.0
until start then Bounce(y’'0)
done

| Bounce(v)—
local c, y' in
do
—9.81 init v

)

der y' =
and der y =y
and ¢ = up(-. vy

until c on (y' < eps) then Await
| ¢ then Bounce(—0.9 *. y')
done
end

let node ball((y0, y'0, start), ((ly, ly'), z))

let
recly = y0 -> ly
and automaton

| Await —
do
dy’ = 0.0
and vy’ =ly’
and dy = 0.0

and upz = (0.0, false)
until start then Bounce(y’'0) done

| Bounce(v)—
local c in

do
dy' = —9.81
and y' =v -> Iy
and dy =y’
and ¢ = z

and upz = (—. y, true)
until ¢ & (y' < eps) then Await
| ¢ then Bounce(—0.9 *. y')
done
end
in
(v. ((y. y). (dy, dy'). upz))

» Continuous-state definitions are ‘externalized’ via inputs and outputs

» Initialization is a discrete action; branch entry must be restricted

Source-to-source transformation details

let hybrid ball(y0, y'0, start) = let node ball ((y0, y'0, start), ((ly, ly'), z))
let let
rec init y = y0 rec y = y0 -> ly
and automaton and automaton
| Await — | Await —
do do
der y = 0.0 dy’ = 0.0
until start then Bounce(y'0) and.y' = ly’
done and dy ==70.0

and upz = (0.0, false)
until start then Bounce(y’'0) done

| Bounce(v)— | Bounce(v)—
local c, y' in local c in
do do
der y' = —9.81 initv dy' = —9.81
and der y =y’ and y' =v -> ly
and ¢ = up(-.y) and dy =y’
and ¢ = z
and upz = (—. y, true)
until c on (y' < eps) then Await until ¢ & (y' < eps) then Await
| ¢ then Bounce(—0.9 *. y') | ¢ then Bounce(—0.9 *. y')
done done
end end
in in
y (v, ((y. y'). (dy, dy'), upz))

» Continuous-state definitions are ‘externalized’ via inputs and outputs
» Initialization is a discrete action; branch entry must be restricted

» Extending the scope mandates additional definitions for other modes

Source-to-source transformation details

let hybrid ball(y0, y'0, start) =
let
rec init y = y0
and automaton
| Await —
do
der y = 0.0
until start then Bounce(y'0)
done
| Bounce(v)—
local c, y' in
do
der y' —9¢81 init v

)

and der y = y
and ¢ = up(-. y

until c on (y' < eps) thea_Await
| ¢ then Bounce(—0.9 *.)
done
end

let node ball ((y0, y'0,
let
rec y = y0 -> ly
and automaton

| Await—
do
dy’ = 0.0
and vy’ =ly’
and dy = 0.0

and upz = (0.0, false)
until start then Bounce(y’'0) done

| Bounce(v)—
local c in

do
dy' = —9.81
and y' =v -> Iy
and dy =y’
and ¢ = z

and upz = (—. y, true)
until ¢ & (y' < eps) then Await
| ¢ then Bounce(—0.9 *. y')
done
end
in
(v. ((y. y). (dy, dy)@ upz))

» Zero-crossing operators, up(-), are also ‘externalized’

» Detection always occurs externally; boolean values internally

start), ((ly, ly)% z))

Source-to-source transformation details

let hybrid ball(y0, y'0, start) = let node ball ((y0, y'0, start), ((ly, ly'), z))
let let
rec init y = y0 rec y = y0 -> ly
and automaton and automaton
| Await — | Await —
do do
der y = 0.0 dy’ = 0.0
until start then Bounce(y'0) and y' = ly’
done and dy _=_0.0

andCupz = (0.0, false)
until start=then=Bdlnce(y’'0) done

| Bounce(v)— | Bounce(v)—
local c, y' in local c in
do do
der y' = —9.81 initv dy' = —9.81
and der y =y’ and y' =v -> ly
and ¢ = up(-. y) and dy =y’
and ¢ = z
and upz = (—. y, true)
until c on (y' < eps) then Await until ¢ & (y' < eps) then Await
| ¢ then Bounce(—0.9 *. y') | ¢ then Bounce(—0.9 *. y')
done done
end end
in in
y (v, ((y. y). (dy, dy'). upz))

» Zero-crossing operators, up(-), are also ‘externalized’
» Detection always occurs externally; boolean values internally

» Additional definitions in inactive modes involve a slight technicality

Demonstrations

v

Bouncing ball (standard)

v

Bang-bang temperature controller (Simulink/Stateflow)
Sticky Masses (Ptolemy)

v

Conclusions and Future Work

Conclusions

» Synchronous languages should and can properly treat hybrid systems
» There are three good reasons for doing so:

1. To exploit existing compilers and techniques

2. For programming the discrete subcomponents

3. To clarify underlying principles and guide language design/semantics

» A prototype compiler in OCaml using Sundials CVODE solver

Future Work

» clock calculus, higher order functions
> integrate multiple solvers

» real-time simulation (compromise accuracy and execution time)

	Aims and approach
	Language and typing
	Compilation and simulation
	Demonstration and conclusion

