
A Timing Model for Synchronous Language
Implementations in Simulink∗

Timothy Bourke
School of CSE/National ICT Australia

University of NSW
Sydney 2052, Australia

tbourke@cse.unsw.edu.au

Arcot Sowmya
School of CSE, UNSW/National ICT Australia

Division of Engineering, Science and Technology
UNSW Asia, Singapore

sowmya@cse.unsw.edu.au

ABSTRACT
We describe a simple scheme for mapping synchronous lan-
guage models, in the form of Boolean Mealy Machines, into
timed automata. The mapping captures certain idealized
implementation details that are ignored, or assumed away,
by the synchronous paradigm. In this regard, the scheme
may be compared with other approaches such as the AASAP
semantics. However, our model addresses input latching and
reaction triggering differently. Additionally, the focus is not
on model-checking but rather on creating a semantic model
for simulating synchronous controllers within Simulink.

The model considers both sample-driven and event-driven
execution paradigms, and clarifies their similarities and dif-
ferences. It provides a means of analyzing the timing behav-
ior of small-scale embedded controllers. The integration of
the timed automata models into Simulink is described and
related work is discussed.

Categories and Subject Descriptors
C.3 [Special-purpose and application-based systems]:
Real-time and embedded systems

General Terms
Design

Keywords
Synchronous Languages, Simulink, Timed Automata

1. INTRODUCTION AND MOTIVATION
Embedded controllers interact with their environment in

real time. Complicated sequential behaviors able to oper-

∗This research was fully funded by National ICT Australia.
National ICT Australia is funded through the Australian
Government’s Backing Australia’s Ability initiative, in part
through the Australian Research Council.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EMSOFT’06, October 22–25, 2006, Seoul, Korea.
Copyright 2006 ACM 1-59593-542-8/06/0010 ...$5.00.

ate under a variety of conditions must be specified, sim-
ulated, verified and implemented. The MathWorks Mat-
lab/Simulink software is popular for generating simulation
runs of controllers within specific environments.

Simulink [12] is a platform for numerically simulating dis-
crete, continuous and hybrid models over time. Models are
constructed by connecting parameterized blocks with lines
representing signals. The Stateflow block allows reactive
controllers to be specified in a notation akin to Statecharts.
The Simulink/Stateflow combination is increasingly used as
a platform for model-based design, where code for embed-
ded systems is generated automatically and directly from
simulation models. Stateflow is practical and powerful, but
the underlying model and semantics are less tractable than
those of the synchronous languages.

The synchronous languages [2] combine domain specific
programming notations with a rigorous and tractable exe-
cution model. The model is based on the simplification that
computations on reactive controllers are so fast, relative to
the arrival rate of inputs, that they may be considered in-
stantaneous. In reality, computation time is finite and lim-
ited, and input and output signals must be latched.

We have developed [7] a prototype block for embedding
synchronous language programs within Simulink. The block
was perfectly synchronous in the sense that execution times
were not modeled and outputs occurred in the same simu-
lation step as, i.e. simultaneously with, triggering inputs.
While one normally reasons about synchronous language
programs under such assumptions, Simulink is often used
to simulate the effect of timing details, thus it is interest-
ing to examine how more detailed results may be obtained
from synchronous language programs. In this paper we de-
velop a formal model that accounts for some of the delays
that occur in synchronous language implementations. The
model specifies precisely how a Simulink block, or collection
of blocks, should respond during a simulation. It also pro-
vides a means of analyzing details not directly addressed by
the synchronous paradigm. Unlike the AASAP semantics [10],
the model is not intended as a basis for model-checking.

2. OVERVIEW
This paper focuses on the imperative synchronous lan-

guages Argos and Esterel. Two execution schemes are gener-
ally accepted for these languages. The scheme chosen affects
implementation timing behavior. Section 3 provides back-
ground information on the languages and execution schemes.

Section 4 describes and motivates the two parameters
upon which our timing model is based. The model itself

is specified as a mapping from a Boolean Mealy Machine—
representing a synchronous program—and the two timing
parameters, into a timed automaton. Section 5 begins by
showing how a simple example is transformed and then de-
fines the mapping formally.

The formal mapping greatly simplifies the development
of a Simulink block (or model) with the given timing prop-
erties. This motivating problem is addressed in Section 6
where the intricacies and design choices involved are made
clear by the timed automaton definition.

Finally, Section 7 discusses the similarities and differences
between the approach described and others in the literature,
most notably the AASAP semantics.

3. SYNCHRONOUS LANGUAGES
Our focus is the class of imperative synchronous languages

exemplified by Argos and Esterel.
Argos [11] is a simplification of Statecharts with a truly

synchronous, as opposed to microstep, execution model. Al-
though valued extensions have been sketched, Argos is es-
sentially limited to signals that are either true (present) or
false (absent) at any instant. Argos provides four operators
for composing programs from Mealy machines and each has
a graphical representation: synchronous product for parallel
composition, refinement for hierarchical structure, encapsu-
lation for enforcing synchronization and hiding signals, and
inhibition for selectively prohibiting the participation of sub-
components in reactions. The operators close over Mealy
machines, but do not in general preserve determinism nor
input-enabledness (often called reactivity) [11]. Watchdog
timers are sometimes used in Argos programs and are writ-
ten by adding an integer and signal name in square brackets
to a state, e.g. [5 SEC], and distinguishing a time-out tran-
sition. This notation is shorthand for an Argos subroutine
that counts signal occurrences and triggers timeout tran-
sitions when required. Any Argos program can be trans-
formed into a regular Mealy machine and vice versa.

Our prototype Simulink block [7] compiles and executes
Argos programs. The graphical notation of Argos gives a
useful comparison with Stateflow, the semantics makes com-
pilation relatively straight-forward, and the execution model
is easily understood from the state-based syntax. Esterel is
more complicated to compile and the execution model re-
quires more effort to follow. It does, however, have signif-
icant advantages, particularly because programs are struc-
tured in a domain-specific notation designed around key con-
cepts of the specification of embedded controllers.

Esterel provides statements for emitting, detecting, and
localizing signals. It includes operators for sequencing, loop-
ing, suspending, and parallelizing program components. Ex-
ceptions are used extensively to manage control flow. State-
ments either complete instantaneously, i.e. within the same
reaction, or block until a later reaction. Any pure and valid
Esterel program can be mapped to a Mealy Machine, using
the behavioral semantics of [3]: each state corresponding to
a program term, with behavioral transitions translated di-
rectly. Any Mealy Machine may be encoded as an Esterel
program. We do not consider valued Esterel in this paper.

While Argos and pure Esterel are neither as powerful, nor
as feature-rich as Stateflow their underlying model of com-
putation is easier to understand and reason about—a dis-
tinct advantage for embedded applications where accuracy
and correctness are paramount.

Implementations of synchronous programs loop continu-
ally: 1) reading inputs; 2) computing and emitting outputs;
and 3) computing and storing the next state. There are two
accepted execution schemes [2]:

• sample-driven: the program loop runs periodically.

• event-driven: input detection triggers the loop body.

The sample-driven mode is natural for clocked sequential
circuits and also for control domain applications [8]. The
event-driven scheme is more general (periodic clock ticks
are but one triggering input) and perhaps harder to realize.
An implementation could continuously poll for input sig-
nals (a degenerate form of sample-driven behavior) or the
program body could be attached to an interrupt, function
call, or a mechanism specific to a given operating system.
The translation of Section 5 distinguishes between the two
modes by employing the notion of urgency for event-driven
reactions. Synchronous programs operate at a higher-level
of abstraction than is typical for embedded control software.
The execution schemes abstract over the details of trigger-
ing and an interface layer [5] treats input and output signals
uniformly, ignoring issues of detection and latching. This
simplifies the programming task, and, in many cases, makes
programs more reusable. However, to simulate programs
in continuous time it will be necessary to be more explicit
about such details.

4. EXECUTION PARAMETERS
It will be useful to regard synchrony along two orthogonal

dimensions: one internal, relating to the semantics of lan-
guages and models, the other external and concerned with
the interaction of implementations and the environment.

The model of perfect synchrony shared by languages such
as Esterel, Argos and Lustre, is ‘perfect’ in both dimen-
sions. Internally, concurrent components communicate and
change state simultaneously in a single step. This fact has
challenged researchers to provide satisfying semantics de-
spite seeming paradoxes [3]. It yields deterministic behavior
with strong mathematical and physical foundations. Ex-
ternally, the assumption allows a mapping between system
function, in terms of input/output traces, and discrete in-
stants of time.

For the synchronous languages the two views are insepara-
ble and interrelated: the single step nature of the internals
justifies an instantaneous, or at least very fast, transfor-
mation of inputs to outputs. Instantaneous reactions imply
that internal events cannot be further ordered in time. Each
reaction is assigned a single, consistent set of signal valua-
tions. Data state changes depend only on the control state
and inputs. This coupling, however, is no fait accompli.

Statecharts and Stateflow typify the micro-step [2] alter-
native for reasoning about internal behavior while maintain-
ing the appearance of synchronous operation externally. At
each chart awakening, inputs trigger sequences of internal
transitions and logical signal emissions which culminate in
outputs and a new chart state. Since events are processed
one-by-one and may reoccur in a sense, notions of consis-
tency are less applicable. The transformation of associated
data state may depend on fine details of the evaluation or-
der. This scheme avoids the difficulties of synchronous lan-
guage compilation and, arguably, provides a clear sense of

reaction instant reaction
computation

output
instant

ti ti + δout ti+1 ti+1 + δout

τ

Figure 1: External timing parameters

cause and effect [17]. Unfortunately, it can also make reason-
ing about system behavior unnecessarily complicated, and
lead to brittle, target-dependent behaviors. Surely, design-
ing embedded controllers is already challenging enough!

Simulink is used by engineers to analyse the dynamic be-
havior of models containing both continuous and discrete
elements. Numerical techniques are employed to permit a
liberal mix of components and parameters within models,
making it feasible to experiment with low-level controller
detail and the idiosyncrasies of different environments. In
this spirit, a block for simulating synchronous language pro-
grams might remain true to the synchronous semantics in-
ternally, but admit more choice when modeling externally
observable behavior.

We have chosen to parameterize our Simulink block with
two timing values:

1. (Minimum) Period, τ . In sample-driven mode this
is the exact time between reactions. In event-driven
mode it is the minimum time between reactions. τ ≥ 0.

2. Output lag, δout , is the delay between the instant that
a reaction is triggered and the instant that the result-
ing output values may be observed. 0 ≤ δout ≤ τ .

Figure 1 sketches the intuition behind the parameters. The
vertical open-arrowed lines mark program reactions at ti

and ti+1. Two reactions must be separated by, either a min-
imum or exactly, τ time units. Further, reaction computa-
tion takes time and system outputs do not change instanta-
neously, but rather with a delay of δout time units after the
initial reaction instant.

An event-driven system with both parameters set to zero
would be perfectly synchronous externally. Reactions would
occur precisely when triggered by input events, take zero
time, and yield outputs in the same instant.

Fixing δout at zero and choosing any τ > 0 implies a
finite number of otherwise perfectly synchronous reactions
in any interval of time. This blurs the line somewhat be-
tween event-driven and sample-driven systems. All of the
inputs that occur after one reaction are treated as a sin-
gle synchronous event at the subsequent reaction. Multiple
triggerings of an input, in violation of the assumption of
synchrony, reduce to a single observation.

With δout > 0 reactions have finite duration, i.e. the
instant of output emission is separated in time from the
triggering instant of reaction. To maintain atomicity inputs
that occur during this period will only be considered in the
subsequent reaction. When δout = τ outputs of the ith reac-
tion may be externally simultaneous with the inputs of the
(i + 1)th reaction. Internally, nothing changes, nor would

one want it to; that this behavior may not always be de-
sirable does not seem sufficient reason for its prohibition.
However, overlapping reactions are excluded (by the con-
straint δout ≤ τ) as there seems little practical gain from
allowing them and much added complexity for models and
implementations.

The timing parameters are deliberate simplifications. δout

encompasses the WCET (Worst Case Execution Time) for
computing a reaction. τ captures other inherent limitations
of the target platform. It may be non-trivial to acquire
such bounds despite the general assertion that they are rel-
atively easy to calculate for a synchronous program. Fur-
ther, it is assumed that all reaction computations are of
equal duration. More detailed alternatives are discussed in
Section 7. The δout parameter implies that output signals al-
ways change value simultaneously at a fixed time after each
reaction begins. This simplifying assumption could be met
by an implementation if necessary.

5. MAPPING TO TIMED AUTOMATA

5.1 Intuition
The semantics of the execution parameters, with respect

to a given synchronous language program, are formalized
by mapping from a Boolean Mealy Machine and the pa-
rameters themselves to a timed automaton. This makes the
model unambiguous, leads to an accurate Simulink block im-
plementation naturally (Section 6), and provides a precise
basis for thinking about how a controller implementation
operates over time. This section describes the process using
a small motivating example before a formal account is given
in Subsection 5.2.

Figures 2(a) and 2(b) show the ABRO program [4], in
Argos and Esterel respectively. It has three input signals,
a, b and r, and one output signal o. When both a and b
have been received, in any order or even simultaneously, an
o is emitted. The r signal resets the program prohibiting
o from being emitted and forgetting any as or bs that may
have already been received. The Argos version uses two
local signals, l1 and l2, to emulate the behavior of the Es-
terel parallel construct (‖). Both programs map to the same
Boolean Mealy Machine, shown in Figure 2(c).

Given parameters τ and δout , and an execution mode, in
this case sample-driven execution, the timed automaton of
Figure 2(d) may be produced. The cube-like structures,
positioned at each state of the original Boolean Mealy Ma-
chine, represent input latches. A single clock c constrains
the timed behavior of the automaton. Latch transitions
within the initial Boolean Mealy Machine state may hap-
pen at any time, but those in the other states may only
occur when 0 < c ≤ τ (for technical reasons discussed in
Subsection 5.2). The darker transition lines mark instants
of reaction occurring precisely when c = τ , except the initial
reaction which happens immediately at c = 0. The destina-
tion of the reaction transitions depends on the latch contents
and the original automaton, but it is always to an empty
latch state. The clock c is reset on each reaction transition
and thus measures the time elapsed since the last reaction.
The right-most original state is split in two, control stays in
the left-hand latch until the output o occurs then it shifts
into the right-hand latch. The connecting transitions encode
the emission of the output o when c = δout and they do not
change the input latch contents.

ABRO(a,b, r)(o)

a/l1

/l1

b/l2

/l2

l1 · l2 · ¬r/o r

r

l1, l2

(a) Argos

module ABRO:
input a , b , r ;
output o ;

loop
[

await a
| |

await b
] ;
emit o

each r

end module
(b) Esterel

a ·
¬b

· ¬
r

¬a · b · ¬r

a · b · ¬r/o

b · ¬r/o

a · ¬r/or + ¬a · ¬b

¬b · ¬r

¬a · ¬r

¬r

1

r

r

r

(c) Boolean Mealy Machine

a ·
¬b

· ¬
r

¬a · b · ¬r

a · b · ¬r/o

b · ¬r/o

a · ¬r/or + ¬a · ¬b

¬b · ¬r

¬a · ¬r

¬r

1

r

r

r

bb

rrbb

rr aarr

aa

aa
bb

aa bbrr

bb

rrbb

rr aarr

aa

aa
bb

aa bbrr

bb

rrbb

rr aarr

aa

aa
bb

aa bbrr

bb

rrbb

rr aarr

aa

aa
bb

aa bbrr

bb

rrbb

rr aarr

aa

aa
bb

aa bbrr

bb

rrbb

rr aarr

aa

aa
bb

aa bbrr

oooo
oo

oo oo

oo oo

oo

c > 0 ∧ c ≤ τ

c = δout

react, c = τ, c := 0react, c = 0, c := 0

tt

(startup state transitions)

signals already in latch

(d) Timed Automata (trigger = sample)

Figure 2: Translation of ABRO to a sample-driven system

bb

rrbb

rr aarr

aa

aa
bb

aa bbrr

bb

rrbb

rr aarr

aa

aa
bb

aa
bb

rr

react, x = τ, x := 0 react, x = 0

x ≤ τ x = 0

x > τ, x := 0

Figure 3: Urgent inputs (trigger = event)

When an event-driven mode is chosen, the translation
works somewhat differently. If events are received while
c ≤ τ , they are latched and a reaction occurs when c = τ ,
as illustrated by the left-hand side of Figure 3. However,
events occurring when c > τ trigger a switch to an urgent
latch, the right-hand side of Figure 3, where further events
may be captured before a reaction occurs in the same in-
stant (time may not progress between the first such event
and a reaction).

5.2 Details
The intricacies of the proposal in Section 4 are made more

clear by a mapping from Boolean Mealy Machines, given
certain timing and execution-mode parameters, into Timed
Automata. Boolean Mealy Machines [11] are the basic se-
mantic model for pure (no valued signals) Argos programs.
Pure Esterel programs may be treated in a similar way.

Definition 5.1 A Boolean Mealy Machine 〈S, s0, I, O, T 〉
is a 5-tuple where S is a set of states, s0 ∈ S is the ini-
tial state, I is a set of input signals, O is a set of output
signals (I ∩ O = ∅), and T is a transition relation. Each
transition is labeled with a boolean formula over I, the set
of such formulas being written AB(I), and a subset of O:
T ⊆ S × AB(I) ×P(O) × S.

The combination of program and implementation in dense
time will be expressed using the timed transition systems
of [1]. This formalism is a minimal and adequate framework
for describing the mapping. The type of urgent action re-
quired by event-driven execution is also easily constructed.

Definition 5.2 A timed transition system 〈Σ, L, L0, C, E〉
is a 5-tuple where Σ is a finite alphabet, L is a set of control
locations of which those in a subset L0 are the initial control
locations, C is a finite set of clocks, and E is a transition
relation. Each transition is labeled with an element of Σ, a
set of clocks to be reset, and a guard expression over clocks:
E ⊆ L × Σ × P(C) × Φ(C) × L. Each δ ∈ Φ(C) is formed
from the grammar: δ := x ≤ c | c ≤ x | ¬δ | δ1 ∧ δ2, where
x ∈ C and the constants c ∈

�
(the rationals).

Given a Boolean Mealy Machine fixed values for the pa-
rameters τ and δout , and a choice of either sample-driven or
event-driven execution, a timed transition system incorpo-
rating the intuitions of Section 4 can be constructed. In the
chosen notation, � = {tt, ff} and

� +

0 is the set of positive

rationals including zero. The notation ls
σ, φ
−−−→

R
ld is an ab-

breviation for the 5-tuple: (ls, σ, R, φ, ld) ∈ L ×Σ ×P(C)×

Φ(C) × L. The symbol
.

∪ stands for disjoint union.

Definition 5.3 For any set I, define a valuation with re-
spect to J ⊆ I, νJ : I −→ � , by:

∀i ∈ I : νJ(i) = tt iff i ∈ J

A valuation is lifted to an interpretation with respect to J
over Boolean formulas in I, νJ : AB(I) −→ � , by structural
induction.

Definition 5.4 Given a Boolean Mealy Machine, AB =
〈S, s0, I, O, T 〉, and parameters τ ∈

� +

0 , δout ∈
� +

0 , and
trigger ∈ {sample, event}, such that:

(C1) δout ≤ τ , and,

(C2) trigger = event ∨ τ > 0,

the timed transition system Atrigger

τ,δout
= 〈Σ, L, L0, C, E〉 is de-

fined:

• Σ = I
.

∪ O
.

∪ {react}

• L = S
.

∪ {startup} ×P(I) ×P(O) × �
• L0 = {(startup, ∅, ∅, ff)}

• C = {c}

• E is the smallest set defined by the conjunction of:

1. ∃i ∈ I : J ∪ {i} = J ′

=⇒ (s, J, P, ff)
i, c>0 ∧ c≤τ
−−−−−−−−−→

∅
(s, J ′, P, ff) ∈ E

2. trigger = event

=⇒ (s, ∅, P, ff)
i, c>τ
−−−−→

{c}
(s, {i}, P, tt) ∈ E

3. ∃i ∈ I : J ∪ {i} = J ′

=⇒ (s, J, P, tt)
i, c=0
−−−−→

∅
(s, J ′, P, tt) ∈ E

4. ∃P ∈ P(O) : ∃m ∈ AB(I) :
∧ (trigger = sample ∨ J 6= ∅)
∧ (s,m, P, s′) ∈ T
∧ νJ(m)

=⇒ (s, J, ∅, ff)
react, c=τ
−−−−−−→

{c}
(s′, ∅, P, ff) ∈ E

5. ∃P ∈ P(O) : ∃m ∈ AB(I) :
∧ (s,m, P, s′) ∈ T
∧ νJ(m)

=⇒ (s, J, ∅, tt)
react, c=0
−−−−−−→

∅
(s′, ∅, P, ff) ∈ E

6. o 6∈ P

=⇒ (s, J, P ∪ {o}, ff)
o, c=δout−−−−−−→

∅
(s, J, P, ff) ∈ E

7. trigger = event

=⇒ (startup, ∅, ∅, ff)
i, tt

−−−→
{c}

(s0, {i}, ∅, tt) ∈ E

8. trigger = sample

∧ ∃i ∈ I : J ∪ {i} = J ′

=⇒ (startup, J, ∅, ff)
i, tt

−−−→
∅

(startup, J ′, ∅, ff) ∈ E

9. ∃P ∈ P(O) : ∃m ∈ AB(I) :
∧ (trigger = sample)
∧ (s0, m, P, s) ∈ T
∧ νJ(m)

=⇒ (startup, J, ∅, ff)
react, c=0
−−−−−−→

{c}
(s′, ∅, P, ff) ∈ E

Essentially, the timed transition system of Definition 5.4 is
derived from a Boolean Mealy Machine by adding latches for
inputs and outputs, and a react symbol to mark the start
of a reaction. A distinguished marker, startup, indicates
that the program is in the initial state s0, and a reaction
has yet to occur; in which case transition timing is slightly
different. The fourth component of the state tuple is a flag
used to model actions that must occur urgently, after the
techniques of [6]. The transitions coordinate latching and
reacting while respecting the timing and trigger parameters.
The end of a reaction is not marked by a special action but
a similar effect can be obtained by adding a special output
to each transition of the source Boolean Mealy Machine.

The conjuncts of the definition characterizing E can be
understood:

1. Input latching after a reaction in the period (0, τ].

2. When event-driven, a first input strictly after the pe-
riod (0, τ] causes a reaction urgently.

3. Input latching during an urgent reaction.

4. For sample-driven systems, or event-driven systems
where at least one input has been latched, reactions
occur when c = τ .

5. Urgent reactions must occur before time can progress.

6. Outputs occur one-by-one when c = δout .

7. An initial input triggers an urgent reaction in event-
driven systems.

8. Inputs are allowed at t = 0 for sample-driven systems.

9. A reaction occurs at t = 0 for sample-driven systems.

A single clock c measures the time elapsed since system
startup to the first reaction, and thereafter the time since
the last reaction.

The react symbol represents the beginning of a reaction.
All inputs that have occurred since the last reaction are
grouped into a single synchronous event. Inputs that occur
afterward are latched for the next reaction, thus maintaining
atomicity of reaction processing. Multiple input events may
occur simultaneously with react, i.e. have the same time tag.
There are essentially three ways of treating these events:

1. A closed time guard would have such inputs latched
until the next reaction.

2. An open time guard considers all such inputs as part
of the simultaneous reaction.

3. Although all inputs occur at the same time, some occur
in sequence before react, and form part of the immedi-
ate reaction, and some afterward, and are latched for
the next reaction.

Item 1 is problematic for event-driven systems where inputs
may in fact cause simultaneous reactions. It may be rea-
sonable for sample-driven systems and could be used to add
feedback delays of sorts. For Item 3, the meaning of an or-
der on events sharing the same time tag must be considered.
For the present, this option is rejected, though further con-
sideration may be warranted. Definition 5.4 respects Item 2
by forbidding—the c > 0 component of Conjunct 1, since

c is reset at each reaction—timed words where simultane-
ous inputs occur after react. This choice necessitates some
consideration of the initial state where c = 0 even though a
reaction has yet to occur. Note that duplicate input events
between reactions are effectively ignored.

Event-driven systems react urgently, that is, as soon as
possible once an input event occurs. If an input is received
while a reaction is being processed, the corresponding reac-
tion will occur when c = τ (Conjunct 4). Otherwise, a reac-
tion occurs simultaneously by switching to an urgent state,
the last component of the state tuple is set to true by Con-
junct 2, where inputs may still be latched (Conjunct 3) but
time may not, in a sense, advance until react has occurred
(Conjunct 5).

Outputs are emitted simultaneously δout units after a re-
action. While it would be possible to represent this emis-
sion with a single symbol, chosen from P(O), we prefer to
represent each output individually and in arbitrary order,
though all share the same time tag (Conjunct 6). Timed
words where some outputs are not emitted are forbidden
by constraining react transitions to those states where the
output buffer component is empty (Conjuncts 4 and 5).

The system state before any reaction has occurred is dis-
tinguished by the startup element. For event-driven systems,
Conjunct 7 ensures that the first event triggers a simultane-
ous reaction even if it occurs when c = 0. For sample-driven
systems, Conjunct 8 permits input latching at time c = 0
and afterward. Conjunct 9 mandates that the first sample-
driven reaction occurs at t = 0. An additional parameter
specifying the time of the first sample-driven reaction could
be introduced. Only the clock guard of the transition im-
plied by Conjunct 9 need change. A simpler alternative
would be to assume that the first reaction occurs at or after
c = τ . In this case, Conjuncts 7, 8 and 9 will be removed, L
becomes S ×P(I)×P(O)× � and L0 becomes {(s0, ∅, ∅, ff}.

Definition 5.4 is effectively an interface between a dense-
time model where inputs and outputs are interleaved, though
simultaneous events may have identical time tags, and the
synchronous model where multiple, distinct inputs may be
consumed at a reaction as a single event. Implementation
details are modeled to some degree. The abstract program
is effectively executed by evaluating the guards of potential
transitions against the contents of the input latch, i.e. by
νJ (m) for each (s, m, O, s′) matching the current state.

The mapping defined in Definition 5.4 simplifies several
issues. Inputs are latched instantaneously as soon as they
occur. Event detection is idealized: for instance, to detect
changes it may be necessary to continuously sample an input
value. Perfect timing is assumed, neither clock digitization
nor drift are modeled. All reactions take an exact and equal
amount of time to compute.

5.3 Liveness
Definition 5.4 gives rise to timed transition systems that

specify safety constraints alone. For timed Büchi automata,
a set of accepting states, F ⊆ L, must also be defined. Since
reactions must occur infinitely often, and when they do oc-
cur the input latch is emptied, a natural choice is:

F = {(s, ∅, ∅, ff) | s ∈ S}

For event-driven systems this constraint excludes timed
words where inputs do not occur infinitely often (with non-
converging time components).

s
im

u
la

t
io

n
in

p
u
t
s

ev
en

t
d
et

ec
ti
o
n

in
p
u
t

la
tc

h

sy
n
c.

k
er

n
el

o
u
tp

u
t

la
tc

h

o
u
tp

u
t

su
st

a
in

simulation time

triggering

s
im

u
la

t
io

n
o
u
t
p
u
t
s

latch

react

latchreset

Figure 4: Simulation components

6. EMBEDDING WITHIN SIMULINK
We now describe how the timed transition system of Def-

inition 5.4 relates to the operations of Simulink. There are
at least three possible approaches:

1. Adopt a semantics for Simulink (either in terms of the
simulation engine, or the presumed intent of a model).
Timed automata could then be interpreted within the
given setting.

2. Relate Simulink models, via informal descriptions of
the tool, and test simulations, to another, better (math-
ematically) defined model of computation, as is done
in [16]. The results of applying Definition 5.4 could
then, for instance, be translated to Lustre subpro-
grams.

3. Restrict attention to a single component and view its
interaction with Simulink through a mix of conceptual
and low-level operations.

We pursue the last, which provides sufficient guidance to
implement a block or model, but does not directly describe
interactions with other components nor the functioning of
an entire model.

A realization in Simulink of the desired timing behav-
ior could comprise the subcomponents depicted in Figure 4.
The timed automata given by Definition 5.4 describe the
sync. kernel that implements the original program, the in-
put latch and output latch, and the triggering logic. Addi-
tionally, some event detection is necessary to translate from
Simulink signal changes into discrete events, for example,
polling signal values to detect rising or falling edges.

The pure signals used within Argos and Esterel to syn-
chronize program components are subject to the perfectly
synchronous semantics. Their effect outside of a synchronous
kernel depends on a specific implementation. They might
trigger an external event and could, for example, be com-
municated by Simulink’s function-call triggering mechanism.
They could generate a rising, falling, or pulse signal. Or they
could be treated as valued, emitting a zero/false when absent
and a one/true when present, though consecutive emissions
might then be obscured. The output sustain subcomponent
of Figure 4 models such details.

There is some merit in implementing each subcomponent
of Figure 4 separately within Simulink, using a mix of built-
in and custom blocks. Definition 5.4 would still function as
a specification. In the following, we assume that all sub-
components except event detection and output sustain, i.e.
everything inside the dashed region of Figure 4, is part of a
single custom Simulink block. Event detection and output
handling logic can then be constructed as required.

Simulink processes a model, a set of blocks and their in-
terconnections, by increasing a global time parameter t in
steps. At each step, blocks are polled in sequence to deter-
mine new signal and state values. When (if) a stable value
is found for every signal, t is increased.

In particular [13, p. 3-36 and 3-37], a model is initialized
before simulation by flattening the hierarchy of blocks, de-
termining an execution order based on signal dependencies,
and collecting details related to sampling. The simulation
then proceeds in a loop where, for each iteration, termed
a major time step, the value of t is fixed and the blocks
are processed in sequence to determine signal values and
the next value for t. There is another loop (of minor time
steps) within each major time step for calculating the values
of continuous signals and their derivatives.

Conceptually, each block represents, and must compute,
three functions [13, p. 1-6]:

y = fo(t, x, u)

x′
d = fu(t, x, u)

ẋ = fd(t, x, u)

Given a simulation time t, state vector x and input vec-
tor u: f0 determines the output values, fu the next discrete
state, and fd the derivatives of continuous state elements.
The latter function will not concern this paper further. The
simulation engine can only sample a finite number of values
of t. It is assumed that the functions fo and fu are constant
between sample points, i.e. given consecutive sample times
ti and ti+1:

∀t′. ti ≤ t′ < ti+1 :

fo(t
′, x, u) = fo(ti, x, u)

fu(t′, x, u) = fu(ti, x, u)

The sample times chosen for a simulation run depend both
on the blocks comprising a model and the global param-
eters. The parameters allow compromises between accu-
racy and speed when performing simulations, but, as noted
in [16], they affect the semantics, in terms of signal traces
over time, of a model. We now describe how a synchronous
block specifies sample times and how it responds at other
times, and assume that the simulation engine will not skip
instants where the state changes.

The clock c of a timed automaton produced according
to Definition 5.4 is tied to the simulation time t by tracking
the clock value and previous sample time tp as discrete state
variables. At any sample instant, c = xc+(t−tp), where xc is
the stored clock value. The clock value to be stored depends
on whether a reaction has occurred:

x′
c =

�
0 if react
c otherwise

where at any sample point, after processing inputs, react is
calculated:

react =

�
c = τ ∨ t = 0 if trigger = sample

(c ≥ τ ∨ init) ∧ J 6= ∅ if trigger = event

where init is true only until the first reaction, and J repre-
sents the input latch contents.

The block must use port based [13, p. 7-20] inherited
sample times to ensure that all input changes are detected
and latched. Block based variable sample times [13, p. 7-
17] are required to schedule output emissions and reactions N

o
t
qu

it
e.

P
le
a
se

re
fe

r
to

th
e

la
st

pa
ge

.

.

The next required sample hit is calculated:

tv = ����
���

t + δout − c′ if c′ < δout

t + τ − c′ if c′ ≥ δout ∧ (trigger = sample

∨ J 6= ∅)
∞ otherwise

When δout = 0 the outputs depend instantaneously upon
the inputs and may thus cause algebraic loops (paths of in-
stantaneous feedback) within the model. The block warns
Simulink of this possibility.

7. RELATED WORK
Of the recent publications on the synchrony hypothesis

with more timing detail, or synchronous languages mixed
with Simulink, we choose three to discuss and compare in
this section: the AASAP semantics [10], the Simulink to Lus-
tre translation [9, 14], and the TAXYS framework [15].

7.1 AASAP Semantics
The Almost As Soon as Possible (AASAP) semantics [10]

supports the verification and implementation of controllers
modeled by timed automata. Two imperfections of real im-
plementations are considered:

1. There is a delay between the occurrence of an event
and its detection as an input.

2. Controller computations take time.

Both are modeled by a single parameter ∆. The delay be-
tween input occurrence and detection necessitates a form of
latching which also tracks the age of an event.

The program semantics considers that controller clocks
are digital and proposes an execution scheme: 1) read the
time; 2) update input latches; 3) if possible, take a tran-
sition updating the state and possibly emitting an output.
∆ is refined to two properties, ∆L the loop execution de-
lay and ∆P the digital clock precision. The transition may
be non-deterministic, allowing for more abstract specifica-
tions, whereas most synchronous language designers have
focused on ensuring determinism for reasons of compilation
and trouble-shooting.

The AASAP approach is different to the synchronous lan-
guage paradigm exemplified by Esterel and Argos. The ex-
ecution scheme is not necessarily sample-driven, since the
period is bounded but not specified by ∆L, though such an
implementation would be a correct refinement. An AASAP

controller is not necessarily event-driven, less so because of
the constant polling, but more because it may act sponta-
neously by emitting outputs or taking internal steps.

The use of a digital clock contrasts with the notion of
multi-form time, where event counters are used to measure
intervals, promoted by the synchronous languages [4].

The biggest difference is in the treatment of events. The
AASAP and related semantics queue input events and process
them one-by-one, output events are also distinct, whereas a
synchronous language event is more structured, consisting
of bundled input and output signals.

Our model is similar to those of [10] in that it is param-
eterized by delay values representing platform limitations.
It differs, however, in both intent and detail. Our approach
focuses on generating simulation traces and provides no sup-
port for verification. The AASAP semantics gives a means for
modeling, verifying and implementing controllers. We have

focused on details related to the classical synchronous lan-
guage execution schemes and address signal-bundling explic-
itly. Although input and output events are split, one of the
former always precedes one of the latter. The model of Def-
inition 5.4 ignores duplicate input events should they occur,
whereas the AASAP semantics would detect such possibilities
as a receptiveness problem in a given environment. Finally,
the time to urgent action in the AASAP model depends on
how long an individual input event has been latched, while
in our model it depends on how much time has passed since
the last reaction.

7.2 Simulink to Lustre
Although conceived as simulation software, Simulink is

also used to design and generate implementations for em-
bedded controllers. In [9] the authors show how to convert
the discrete time components of Simulink models into the
Lustre synchronous language. Controllers may then be ver-
ified using formal techniques and/or implemented using a
certified compiler. An extension [14] handles aspects of the
Stateflow tool.

Implementation concerns are also addressed by [9], where
a time-triggered execution platform is assumed. Timing
analysis and synthesis/scheduling makes use of annotations
giving lower and upper bounds on task execution times.

We approach the application of synchronous languages to
Simulink from a different perspective. Rather than convert
a Simulink model into a synchronous program, we describe
how to embed such a program within Simulink. Rather
than utilizing the assumption of synchrony implicit to many
Simulink blocks, we seek to model delays explicitly. It is con-
ceivable that simulated controllers given in Argos or Esterel
could be incorporated into the Simulink to Lustre transla-
tion scheme. The two execution parameters might then be
passed on for timing analysis and compilation.

7.3 TAXYS framework
In [15] a notion of correctness between application soft-

ware specified in logical time and a corresponding imple-
mentation as a real-time system is formally defined. TAXYS
applies this general methodology to Esterel programs that
are annotated with lower and upper bounds on the execution
time of external functions. The running time of the control
skeleton is ignored. Systems are verified in closed loop with
an environment which is also specified in Esterel and an-
notated with clock constraints. Correctness is checked and
a timing analysis performed by compiling both controller
and environment models into timed automata, along with
routines from KRONOS, to produce a verification engine.

The methodology specifies an execution platform involv-
ing multiple asynchronous tasks, a scheduler, and an event-
handler that generalizes the event detection and input latch
components of Section 6. An event-handler for synchronous
languages is described, that bundles individual inputs into
synchronous inputs based on separator events, others are
given for interrupts and sampled signals.

The methodology of [15] is for verifying system properties.
The model presented by this paper aims to address simula-
tion issues, it does not require the addition of information
to Argos or Esterel programs but instead that two param-
eters be estimated and given. It might be useful to enable
simulations based on annotated TAXYS models, where the
timing behavior would then be more dynamic and poten-

tially more accurate. Since Simulink traces a single path
through a model, some mechanism for choosing between,
or averaging, the lower and upper time bounds would be
required.

8. CONCLUDING REMARKS
We have described an approach for simulating controllers

specified in a synchronous language such as Argos or Es-
terel within Simulink. Simplified implementation details are
modeled by two timing parameters. We have given a se-
mantics in terms of timed automata that may in turn be
embedded within Simulink.

9. REFERENCES
[1] R. Alur and D. L. Dill. Automata for modeling

real-time systems. In Proc. 17th International
Colloquium on Automata, Languages and
Programming, Lecture Notes in Computer Science,
pages 322–335, Warwick, England, July 1990.
Springer-Verlag.

[2] A. Benveniste, P. Caspi, S. Edwards, N. Halbwachs,
P. Le Guernic, and R. de Simone. The synchronous
languages 12 years later. Proc. IEEE, 91(1):64–83,
Jan. 2003.

[3] G. Berry. The Constructive Semantics of Pure Esterel.
ftp://ftp-sop.inria.fr/meije/esterel/papers/

constructiveness3.ps, draft book, current version
3.0 edition, July 1999.

[4] G. Berry. The Esterel v5 Language Primer. Ecole des
Mines and INRIA, version 5.92 edition, June 2000.

[5] G. Berry and G. Gonthier. The Esterel synchronous
programming language: Design, semantics,
implementation. Science of Computer Programming,
19(2):87–152, Nov. 1992.

[6] S. Bornot, J. Sifakis, and S. Tripakis. Modeling
urgency in timed systems. In W. P. de Roever,
H. Langmaack, and A. Pnueli, editors, International
Symp. Compositionality: The Significant Difference
(COMPOS ’97), volume 1536 of Lecture Notes in
Computer Science, pages 103–129, Bad Malente,
Germany, Sept. 1997. Springer-Verlag.

[7] T. Bourke and A. Sowmya. Formal models in industry
standard tools: An Argos block within Simulink. In
F. E. Tay, editor, Int. J. Software Engineering and
Knowledge Engineering: Selected Papers from the
2005 International Conference on Embedded and
Hybrid Systems, volume 15, pages 389–395, Singapore,
Mar. 2005. World Scientific.

[8] P. Caspi. Embedded control: From asynchrony to
synchrony and back. In T. A. Henzinger and C. M.
Kirsch, editors, Proc. 1st International Conference on
Embedded Software (EMSOFT’01), volume 2211 of
Lecture Notes in Computer Science, pages 80–99,
Tahoe City, USA, Oct. 2001. Springer-Verlag.

[9] P. Caspi, A. Curic, A. Maignan, C. Sofronis,
S. Tripakis, and P. Niebert. From Simulink to
SCADE/Lustre to TTA: a layered approach for
distributed embedded applications. In Proc. 2003
ACM SIGPLAN Conference on Languages,
Compilers, and Tools for Embedded Systems (LCTES
’03), pages 153–162. ACM, ACM Press, 2003.

[10] M. De Wulf, L. Doyen, and J.-F. Raskin. Almost
ASAP semantics: from timed models to timed
implementations. In HSCC 04: Hybrid Systems —
Computation and Control, number 2993 in Lecture
Notes in Computer Science, pages 296–310.
Springer-Verlag, 2004.

[11] F. Maraninchi and Y. Rémond. Argos: an
automaton-based synchronous language. Computer
Languages, 27(1–3):61–92, 2001.

[12] The Mathworks, Natick, MA, U.S.A. Simulink —
Using Simulink, 5.1 edition, Sept. 2003. Release
13SP1.

[13] The Mathworks, Natick, MA, U.S.A. Simulink —
Writing S-Functions, 5.1 edition, Sept. 2003. Release
13SP1.

[14] N. Scaife, C. Sofronis, P. Caspi, S. Tripakis, and
F. Maraninchi. Defining and translating a “safe”
subset of Simulink/Stateflow into Lustre. In
G. Buttazzo and S. Edwards, editors, Proc. 4th ACM
International Conference on Embedded Software
(EMSOFT’04), pages 259 – 268, Pisa, Italy, Sept.
2004. ACM, ACM Press.

[15] J. Sifakis, S. Tripakis, and S. Yovine. Building models
of real-time systems from application software. Proc.
IEEE, 91(1):100–111, Jan. 2003.

[16] S. Tripakis, C. Sofronis, P. Caspi, and A. Curic.
Translating discrete-time Simulink to Lustre. ACM
Trans. Embedded Computing Systems, 4(4):779–818,
Nov. 2005.

[17] M. von der Beeck. A comparison of Statecharts
variants. In H. Langmaack, W. de Roever, and
J. Vytopil, editors, Formal Techniques in Real-Time
and Fault-Tolerant Systems, volume 863 of Lecture
Notes in Computer Science, pages 128–148.
Springer-Verlag, Sept. 1994.

Correction:
Block-based sample times are indeed used when trigger =
sample. They depend on the δout parameter:

δout = τ ∨ δout = 0 [τ, 0]
otherwise [τ, 0] and [τ, δout]

Where a sample time is written [period , offset].
When trigger = event and τ = δout = 0 inherited sam-
ple times are employed, otherwise the situation is more in-
volved. Variable sample times cannot be used because it is
not known a priori when triggering inputs will occur. This
case is implemented using two zero crossing [13] functions:
Z1 = c − δout and Z2 = c − τ .

