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Abstract. Large-scale verification projects pose particular challenges.
Issues include proof exploration, efficiency of the edit-check cycle, and
proof refactoring for documentation and maintainability. We draw on
insights from two large-scale verification projects, L4.verified and Verisoft,
that both used the Isabelle/HOL prover. We identify the main challenges
in large-scale proofs, propose possible solutions, and discuss the Levity
tool, which we developed to automatically move lemmas to appropriate
theories, as an example of the kind of tool required by such proofs.

Keywords: Large-scale proofs, Isabelle/HOL, Interactive theorem proving

1 Introduction

Scale changes everything. Even simple code becomes hard to manage if there is
enough of it. The same holds for mathematical proof—the four-colour theorem
famously had a proof too large for human referees to check [3]. The theorem
was later formalised and proved in the interactive proof assistant Coq [4] by
Gonthier [7,8], removing any doubt about its truth. It took around 60,000 lines
of Coq script. While an impressive result, this was not yet a large-scale proof in
our sense. Verifications another order of magnitude larger pose new challenges.

To gain a sense of scale for proof developments, we analysed the Archive of
Formal Proofs (AFP) [12], a place for authors to submit proof developments in
the Isabelle/HOL proof assistant [14]. The vast majority of the over 100 archive
entries are proofs that accompany a separate publication. Submissions contain
from 3 to 3,938 lemmas per entry, from 145 to 80,917 lines of proof, and from 1
to 151 theory files. The average AFP entry has 340 lemmas shown in 6,000 lines
of proof in 10 theory files. Fig. 1 shows the size distribution of entries ordered by
submission date. The spikes between the majority of small entries are primarily
PhD theses. Beyond the AFP, an average PhD thesis in Isabelle/HOL is about
30,000 lines of proof in our experience.

In recent years, the first proofs on a consistently larger scale have appeared, in
particular the verification of an optimising compiler in the CompCert project [13],
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Fig. 1. Size distribution of AFP entries in lines of proof, sorted by submission date.

the pervasive system-level verification of Verisoft [2], and the operating system
microkernel verification in the L4.verified project [11]. CompCert 1.9.1 measures
101,608 lines with 3,723 lemmas in 143 theory files, the L4.verified repository
currently contains around 390,000 lines with 22,000 lemmas in 500 theories, and
the Verisoft project has published about 500,000 lines with 8,800 lemmas in over
700 theories in its three largest releases (duplicates removed). The L4.verified
proofs take 8 hours to check, the Verisoft proofs an estimated 12 hours.

When scale increases to this order of magnitude, there is a phase change
required in the level of support from the underlying proof assistant. Questions
of knowledge management, team interaction, scalability of the user interface,
performance, and maintenance become more important. In some cases, they can
become more important than the presence of advanced reasoning features.

Large-scale developments concern multiple people over multiple years, with
team members joining and leaving the project. The key difference between a
large-scale proof and a small one, or even a multi-year PhD, is that, in the former,
no single person can understand all details of the proof at any one time.

In this paper, we examine the consequences of this difference against the
background of our combined experience from the L4.verified [11] and Verisoft [1,2]
projects. We determine which main challenges result from the large-scale nature
of these projects for the theorem proving tool, for the proof itself, and for its
management. They range from proof exploration for new project members, over
proof productivity during development, to proof refactoring for maintenance,
and the distribution of a single proof over a whole team in managing the project.
We comment on our experience addressing these challenges and suggest some
solutions. We describe one of these solution in more technical detail: the proof
refactoring tool Levity, developed in L4.verified.

Many of the issues we list also occur for projects of much smaller scale and
their solution would benefit most proof developments. The difference in large-scale
proofs is that they become prohibitively expensive.

While both projects used Isabelle/HOL, we posit that the challenges we
identify are more general. Some of them even are already sufficiently met by
Isabelle/HOL. We include them here because the primary aim of this paper is to
give theorem prover developers a resource for supporting large proofs that is well
founded in practitioner’s experience.



2 Challenges

We divide the description of challenges into four perspectives: a new proof en-
gineer joining the project, an expert proof engineer interacting with colleagues
during main development, the maintenance phase of a project, and the so-
cial/management aspects of a development.

2.1 New proof engineer joins the project

Over the course of a large project, team members come and go, and must be
brought up to speed as quickly as possible. Learning how to use Isabelle was not
an issue, because extensive documentation and local experts in the system were
available. Understanding the subject of the verification, e.g. an OS kernel, was
harder, but many solutions from traditional software development applied.

However, quickly inducting new proof engineers, even expert ones, into a large-
scale verification remains challenging. Consider the theory graph of L4.verified in
Fig. 2, which shows roughly 500 theories. As mentioned, these contain 22,000
human-stated lemmas. Adding those generated by tools takes the count to 95,000.
In order to perform her first useful proof, a new proof engineer must find a way
through this jungle, identify the theorems and definitions needed, and understand
where they fit in the bigger picture.

At the start of L4.verified, we de-
veloped a find_theorems tool which al-
lows, amongst other features, pattern-
matching against theorems and their
names, filtering rules against the cur-
rent goal, and ranking by most accu-
rate match. It also includes an auto-
solve function to warn users if they
restate an existing lemma; a common
occurrence not only for newcomers.

Both tools were incorporated into
Isabelle/HOL, but our experience
echoed that of Verisoft who found that
Isabelle’s built in lemma search as-
sumes that theories are already loaded.
This is rarely the case in large devel-
opments like ours [...] [1]. Theorems not already loaded are not visible to the
prover. We therefore extended find_theorems with a web interface and combined
it with our nightly regression test. Any team member can search recent global
project builds from their browser. Additionally, we tag Isabelle heaps® with
revision control information and show this along with the results.

Fig. 2. Theory dependencies in L4.verified

3 A heap is a file containing a memory dump of prover data structures. It can be loaded
to avoid reprocessing theory files from scratch. Isabelle’s architecture precludes the
separate compilation of theory files possible in some other provers.



In addition to theorems, provers allow custom syntax definitions, which raises
questions such as what does [z,y.e.z] mean? To a newcomer it may not even
be clear if the syntax is for a type, an abbreviation, or a constant. Answering
such questions requires locating where a symbol is defined. Inspired by Coq,
we developed a locate command which identifies symbol definitions and syntax.
However, the implementation requires explicit knowledge of all definition packages
in Isabelle, which are user-extensible. The recent, more deeply integrated approach
of the Isabelle prover IDE (PIDE) [20] is promising. In general, better prover
IDEs would be beneficial, but designing them for scale is tricky. A short delay in
a small test case could translate to a 30 minute wait at scale.

Ultimately, technology can solve only part of this problem. Good high-level
documentation of key project areas and ideas like an explicit mentor for each
new proof engineer are as important as good prover support.

2.2 Expert proof engineer during main development

For a long-term project member in the middle of proof development, the crucial
issue is productivity. In this section, we highlight related challenges.
Automation. A simple way to improve productivity is automation. Domain-
specific automation is important in any large-scale verification and the underlying
prover should provide a safe extension mechanism. In Isabelle, the LCF ap-
proach [9] enabled both projects to provide their own specialised tactics and
automated proof search without the risk of unsoundness. An example from
Verisoft [2] is a sound, automated verification-condition generator translating
Hoare triples about code in a deep embedded language into proof obligations in
higher-order logic [17]. L4.verified developed between 10 and 20 smaller auto-
mated tactics [6,22], including a tool to automatically state and prove simple
Hoare triples over whole sets of functions.

Non-local change. The usual mode of interactive proof is iterative trial and
error: edit the proof, let the prover process it, inspect the resulting proof goals,
and either continue or go back and edit further. Verification productivity hinges
on this edit-check cycle being short. For local changes, this is usually the case.
However, proof development is not always local: an earlier definition may need
improvement, or a proof engineer would like to build on a colleague’s result.
Re-checking everything between a change and the previous point of focus can
take several hours if the distance between the points is large enough.

In addition, changes are often speculative; the proof engineer should be able
to tell quickly whether a change helps the problem at hand, and how much
of the existing proof it breaks. For the former, Isabelle provides support for
interactively skipping proof content. For the latter, L4.verified implemented a
proof cache that determines if a lemma remains provable, albeit not if the current
proof script will still work. The cache works by keeping track of theorem and
definition statements and dependencies. A theorem remains provable if none of
its dependencies changed, even though global context may have. The cache omits
the proof for such theorems using Isabelle’s existing skipping mechanism, but
replays all others. However, even just scanning definitions and lemma statements



without proof can still take tens of minutes. Both questions could be answered
concurrently: while the proof engineer turns attention to the previous focus
without delay, skipping over intermediate proofs, the prover could automatically
replay these proofs and mark broken ones in the background.

Placing lemmas. As argued, proof development is non-linear. Frequently, gen-
eral lemmas about higher-level concepts are required in a specialised main proof.
Once proven, the question arises where to put such a more general lemma in a
collection of hundreds of theory files. The answer is often not obvious, so Verisoft
developed the Gravity tool [2] that gives advice based on theorem dependencies.
But even if proof engineers have a reasonable idea where to put a lemma, long
edit-check cycles will inhibit them from placing it at the correct position, leading
to a significant risk of duplication and making it hard to build on results from
other team members. L4.verified addressed the question of lemma movement
with the Levity tool that we describe in Sec. 3.

Avoiding duplication. It is already hard to avoid duplication in a small project
but it becomes a considerable challenge in large-scale proofs. Clearly, proving the
same fact multiple times is wasteful. Despite theorem search and related features,
duplication still occurred. Even harder than spotting exact duplication is avoiding
similar formulations of the same concept. These will often only be recognised in
later proof reviews. Once recognised, eliminating duplication can still cause large
overhead. In these cases, it would be beneficial if lemmas or definitions could be
marked with a deprecation tag or a comment that becomes visible at the use
point, not the definition point. A further aspect is generalisation. Often lemmas
are proved with constants where variables could instead have been used, which
again leads to duplication. Trivial generalisation could be automated.

Proof and specification patterns. In software development, design patterns
have been recognised as a good way to make standard solutions to common
problems available to teams in a consistent way. An observation in both projects
was that proof engineers tended to reinvent solutions to common problems
such as monadic specifications in slightly different ways. Worse, re-invention
happened even within the project. It is too simplistic to attribute this to a lack
of documentation and communication alone. In software development, sets of
standard solutions are expected to be available in the literature and are expected
to be used. In proof and specification development, this is not yet the case. A
stronger community-wide emphasis on well-documented proof and specification
patterns could alleviate this problem.

Name spaces. Names of lemmas, definitions, and types, syntax of constants,
and other notational aspects are a precious resource that should be managed
carefully in large projects. Many programming languages provide name space
facilities, provers like Isabelle provide some mechanisms such as locales, but have
mostly not been designed with large-scale developments in mind. The challenge
is of the same quality but harder for provers than for programming languages:
there exists a larger number of contexts, syntax and notation is usually much
more flexible in provers (as it should be), and it is less clear which default
policies are good. For instance, names of definitions and their syntax should



be tightly controlled to define interfaces. On the other hand facts and lemmas
should be easily searchable and accessible by default. At other times, the interface
really is a key set of lemmas whereas definitions and notation matters less. Any
such mechanism must come with high flexibility and low overhead. For instance,
Mizar’s [15] requirement of explicit import lists would make large-scale program
verification practically infeasible. On the other hand Isabelle’s global name space
pollutes very quickly and requires the use of conventions in larger developments.
Proof style. Isabelle supports two styles of reasoning that can be mixed freely:
the imperative style, which consists of sequential proof scripts, and the more
declarative style of the Isar language [19], which aims at human-readable proofs.

The greater potential for readability ostensibly is an advantage of Isar. How-
ever, achieving actual readability comes with the additional cost of restructuring
and polishing. Neither of the projects were prepared to invest that effort. Instead,
both styles were used in both projects, and we did not observe a clear benefit
of either style. During maintenance, Isar proofs tend to be more modular and
robust with respect to changes in automation. However, by that same declarative
nature they also contain frequent explicit property statements which lead to more
updates when definitions change.

The usually beneficial modular nature of Isar had a surprising side-effect:
proof engineers inlined specialised facts within large sub-proofs. Though that is
often a good idea, it also often turned out that such facts were more generally
useful than initially thought, but by inlining, they were hidden from theorem
search tools. Since the main mechanism for intermediate facts in the imperative
style is a new global lemma statement, this occurred less frequently there.

Our recommendation is to mix pragmatically, and use the style most appro-
priate for the experience of the proof engineer and sub-proof at hand.

2.3 Proof maintenance

As in software development, proof maintenance does not often get up-front
attention. Fig. 3 gives an outline of proof activity over time on one L4.verified
module: a main development period, multiple cleanups and bursts of activity, and
a long maintenance phase, characterised by low levels of activity, starting well
before the project’s end. Over time, maintenance becomes the dominant activity.
Refactoring. A large part of maintenance involves refactoring existing proofs:
renaming constants, types, and lemmas; reformulating definitions or properties for
more consistency; moving lemmas; disentangling dependencies; removing duplica-
tion. Such refactorings are in part necessitated by failures to avoid duplication
during development. This is inevitable in large multi-year projects.

We have already mentioned proof refactoring tools above. Such tools are
becoming popular in programming environments, but even there they are often
imperfectly implemented. Current theorem proving systems offer no native sup-
port for even simple refactorings such as renaming or lemma movement. While in
programming languages strict semantics preservation is paramount, it is less of
an issue for proof assistants: the theorem prover will complain if the new proof
breaks. In practice, time overhead is more important. Refactorings are typically
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Fig. 3. Lines of proof over time in one L4.verified module.
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Fig. 4. Number of team members working on one L4.verified module over time.

non-local and can easily lead to edit-check cycles of multiple hours. This can
be mitigated to a degree by reliably automating refactorings in offline nightly
batch runs. Proof refactoring is an open, technically challenging research area,
important for large-scale proof. Even simple renaming requires a deep semantic
connection to the prover. Again, approaches like the PIDE [20] are promising,
but create their own challenges in scaling to hundreds of large theories.
Debugging and performance. A frequent maintenance issue is proofs breaking
after an update elsewhere in the project. In large proofs not written for readability,
finding and repairing the cause of the breakage is challenging. Conventions for
maintainable use of automated tactics help, but are not sufficient. We have found
it useful to provide single-step versions of our automated tactics to help users
pinpoint where proof searches go in unexpected directions. Extending this to a
general design principle for all tactics would increase maintenance productivity,
as well as helping beginners to understand what is happening under the hood.
The same single-stepping analysis could be used to improve performance of proofs
where automated methods run for too long. The right trade-off is important.
For instance, Isabelle provides a tracing facility for term rewriting, but it easily
overwhelms the user with information.

Context. Mathematical proof depends on context, i.e. a series of global assump-
tions and definitions under which one proves statements. Isabelle in particular has
fine-grained context management that both projects could benefit from. However,



proof context in Isabelle also determines which facts automated reasoners may
use. On one hand, the concept of a background context has low mental overhead
for the user if set up correctly. On the other hand, it introduces an extra-logical
dependency on proof scripts. The same script might not work in a different
position where the same facts are known, because the background context for
automated tactics may differ. This makes it hard to move lemmas. Provers such
as HOL4 [18] name such tactic contexts explicitly. This is not ideal either, since
remembering their names within hundreds of theory files can be overwhelming.
The Isabelle sledgehammer tool [5] provides an interesting solution: it searches
in the global context, but explicitly indicates which facts were used in the proof,
so that the proof now only depends on explicitly named entities. In theory this
approach could be adopted for all proof search tools, making them context in-
dependent while possibly improving replay performance by reducing search. It
would also answer a question frequently asked by new users: which lemmas did
automated method x use?

2.4 Social and management aspects

Since proofs at the L4.verified and Verisoft scale are necessarily a team effort,
social and management aspects play an important role. In this section, we
concentrate on aspects that are either specific to proofs, or would not commonly
be associated with proof development.

The main challenge is managing a team of proof engineers in a way which
enables them to concurrently work towards the same overall proof goal with
minimal overhead and duplication of work.

Discipline. In our experience, self-discipline alone is not sufficient for enforcing
conventions and rules, be it for lemma naming, definitions, commit messages, or
documentation. While self-discipline is a passable short-term (months) measure,
adherence to conventions will deteriorate without incentive, explicit policing,
or mechanical tests, especially as team members join and leave. We found that
within the same group, this effect is stronger for proof development than for code.
We speculate that two factors play a role: firstly, proof engineers get used to the
theorem prover mechanically checking their work with immediate feedback for
right and wrong; and secondly, theorem proving involves many concepts which
need names. Given many similar concepts, labelling each lemma or definition with
a useful name is surprisingly hard: it can take longer to think about a lemma’s
name than it takes to prove it. An effective renaming tool would allow the
rectification of poor naming decisions and retroactive enforcement of conventions.
The pragmatic prover. An interesting challenge in managing a large-scale
verification is striking the right balance between doing the work and developing
tools to automate it. Duplication is a similar challenge. While duplication and
proofs by copy and paste lead to obvious overhead, avoiding it can be arbitrarily
hard. Both projects spent resources on increasing proof automation. In our expe-
rience, the views of the pragmatic programmer [10] are often directly applicable
to proof: avoid duplication by automation wherever useful. Semi-regular reviews



looking for automation opportunities can make a team significantly more produc-
tive. Semi-regular, informal code and proof reviews in general showed the same
advantages as in usual software development of increased quality and cohesion
within the team. In L4.verified, they were conducted mostly early in the project
and in the later maintenance phase when new members joined the team. We
should probably have held them more frequently.

The state of the proof. In a large-scale project it is easy to lose view of which
parts of the proof currently work, which are under development, and which are
broken. A nightly and/or continuous regression test can generate and display
this information easily, as long as the prover provides a scriptable batch mode.

Concurrent proof. A key technical challenge in large-scale formal verification
is efficient and useful distribution of proof sub-tasks to team members. Fig. 4
shows the number of L4.verified team members contributing per month to the
module mentioned in Fig. 3. Up to six people worked on the same proof during
development and maintenance. Ideally this is achieved by a compositional calculus
that allows clean, small interfaces between sub-tasks, which are defined once
and remain stable. In reality, this is rarely the case. Full compositionality often
comes with a high price in other aspects of complexity, while interfaces are
rarely small or stable. Nevertheless, work towards a common theorem could be
distributed effectively in L4.verified by compositionality under side-conditions.
Team members could work towards the same property on different parts of the
system, or on different properties of the same part. They did not need detailed
knowledge about the other properties or parts of the system [6]. When these side-
conditions changed, effectively communicating them entailed an overhead. Such
overhead is inevitable when for instance an invariant is discovered incrementally
by the entire team. The faster the discovery, the smaller the overhead.

Distributing a proof over a team creates another management issue: avoiding
that the separate pieces drift apart. An easy way of addressing this is to state
the final top-level theorem first, and to use a continuous regression test to check
that the parts still fit. Continuous integration avoids unpleasant surprises at the
end of the project, such as discovering that an overly weak statement in one
sub-proof requires significant rework in another. Note that proof interfaces do
not always have to fit together perfectly. Software patterns like adapters and
bridges can be applied to proofs, and, with suitable conversion lemmas, notions
in one formalism can often be transferred into another. As always, there is a
trade-off: the more bridging, the higher the overhead and the harder the proof
becomes to maintain.

Active community. An active developer and user community around the
main verification system is crucial. The absence of good documentation, online
discussion, and fixes for problems could turn small annoyances into major show-
stoppers. Active development also has a price, however. For instance, new proof
assistant releases will not be fully backwards compatible—it would be detrimental
if they were. Updating the proof base to the next prover release can add significant
overhead. With one or two prover releases a year, a four-year project may confront
a significant update 4-8 times. The L4.verified project invested in an update



roughly once a year. Verisoft decided to stay with the 2005 Isabelle version, but
set aside budget for back-porting important features of new releases. The latter
approach works well for projects with a definite termination date. The former is
more appropriate if the project goes into a longer maintenance period. A similar
problem occurs in improving project- and domain-specific automation.
Libraries. Proof libraries play a role in any large-scale verification. The tech-
nical side of library development is handled well by mature theorem proving
systems. Both projects made use of existing libraries and contributed back to
the community. However, internal libraries are less polished and can become
hard to manage. This occurs when the library is not explicitly maintained and
serves only to accumulate roughly related lemmas. Sometimes this is appropriate,
but producing a coherent and re-usable library requires a different approach.
Good libraries do not emerge automatically, since library development takes
significant effort and is usually not a key goal of the project. Verisoft members
introduced the idea of a librarian [2], a person responsible for the consistency and
maintenance of a particular library, allowing other team members to contribute
lemmas as needed. While this alone is not sufficient to achieve a well-designed
library, it does yield a much higher degree of usefulness and re-use. If possible,
team leaders should set aside explicit budget for library and tool development.
For both projects, the decision to do so resulted in increased productivity.
Intellectual property. Intellectual property (IP) is not a usual aspect of formal
proof, be it copyright and licenses, patents, or non-disclosure agreements. Larger
projects with an industrial focus are likely to involve such agreements, which may
constrain the proof. For instance, an agreement may require that proof scripts
related to a particular artefact be a partner’s property, but not general libraries
and tools. Classifying and separating each lemma according to IP agreements
during development would be detrimental to the project. In L4.verified, automated
analysis of theorem and definition dependencies identified proof parts specific to
certain code artefacts, which were isolated with semi-automated refactoring.

3 Tool support for moving lemmas

In this section, we describe the design of a tool we developed to solve the lemma
placement issue introduced in Sec. 2.2. The tool is called Levity, it was named for
the idea that lemmas should float upward through a theory dependency graph to
the position that maximises the potential for their reuse.

The fact that we developed a tool for cutting-and-pasting lemmas attests to
one of the practical differences between small verification projects and larger
ones. In a large development, reprocessing intervening files after moving a lemma
to a new theory file may take tens of minutes or even hours; a loss of time
and a distraction. For this reason, proof engineers in the L4.verified project
resorted to adding comments before certain lemmas, like (* FIXME: move *)
or (x FIXME: move to TheoryLib_H #), with the hope of those lemmas being
moved afterward. It turns out that moving lemmas involves more than just
placing them after the other lemmas that they themselves require. A broader



notion of theory context is required. For instance, lemmas can be marked with
[simp], at or after their declaration, to add them to the global set of lemmas
that are automatically applied by the simplification method.

We think that a description of the design of Levity and the problems we
encountered will be instructive for developers of other tools that manipulate
interactive proof texts.

3.1 Design and implementation choices

Our first idea for implementing Levity was to use a scripting language and lots
of regular expressions, but we finally decided to use Standard ML and to exploit
APIs within Isabelle. This allowed us (a) to rely on the existing parsing routines,
which is especially important since Isabelle has an extensible syntax, (b) to easily
access the prover’s state accumulated as theories are processed, and (c¢) to readily
‘replay’ lemmas so as to validate moves. The main disadvantage of this approach
is that the APIs within Isabelle evolve rapidly. This not only necessitates regular
maintenance, but poses the continual risk of obsolescence: a key feature used
today may not be available tomorrow!

The second major design decision was to incorporate Levity into the nightly
build process. Large proof developments are similar to large software developments.
Proof engineers check-out the source tree to their terminals, state lemmas, prove,
and commit changes back to the repository. Nightly regression tests check the
entire proof development for errors. Levity is run directly after (successful)
regression tests because an up-to-date heap is required for the extraction of
lemma dependencies and the validation of lemma moves. We found that a second
build is required after Levity runs and before committing any changes to the
repository to ensure that the modified development builds without error. Having
to run two full and lengthy builds is problematic because, as mentioned in Sec. 2,
several hours may elapse from check-out to commit, and, especially in an active
development, there may be intervening commits which necessitate merging, and,
at least in principle, further test builds.

In the original design, we intended that Levity run regularly and with minimal
manual intervention, automatically shifting lemmas to the most appropriate
theory file during the night in readiness for the next day’s proving, but it may in
fact have been better to introduce some executive supervision. The destination
theories chosen by Levity are optimal in terms of potential reuse, that is Levity
moves lemmas upward as far as possible in the theory dependency graph, but
they are not always the most natural; for instance, it is usually better to group
related lemmas regardless of their dependencies. While the possibility of stating
an explicit destination, or even a list of explicit destinations, in ‘fix me’ comments
helps, it may have been even better to provide a summary of planned moves and
to allow certain of them to be rejected or modified.

In the remainder of this section, we discuss the four main technical aspects of
the Levity implementation: working with the theorem prover parser, calculating
where lemmas can be moved, replaying proofs, and working with theory contexts.
Although the technical details are specific to the Isabelle theorem prover and the



task of moving lemmas, other tools for manipulating proof developments likely
also need to manipulate the text of theories, interact with a theorem prover, and
handle theory contexts.

Parsing. Levity processes theories one-by-one from their source files. In processing
a file, it first calls the lexer routines within Isabelle to produce a list of tokens.
Working with lists of tokens is much less error prone than working directly with
text and avoids many of the complications of working with the sophisticated
and extensible Isabelle/Isar syntax (any syntactically correct theory file can be
processed). This is only possible because rather than filter out comments and
whitespace, as is standard practice, the lexer returns them as tokens.

Levity processes each file sequentially, maintaining a list of tokens to remain
in that file, namely those not marked for movement and those that could not be
moved, and a list of tokens yet to be processed. It shifts tokens from the latter
onto the former until it finds a ‘fix me’ comment followed by a lemma. As far as
concerns parsing, two further details are important. First, a lemma’s name and
attributes must be extracted. There are already functions within Isabelle to do
this, but we found that they were not general enough to be called directly and
we thus had to duplicate and modify them within our tool. Such duplications
make a tool harder to maintain as the underlying theorem prover evolves and
may engender errors that type checking cannot detect. Second, the last token
in the move must be identified. This is slightly more difficult than it may seem
as the keywords that terminate a proof (like done, ged, and sorry) may also
terminate sub proofs. And, furthermore, the extent of a definition depends on
the syntax defined by a particular package which may be defined externally to
the main theorem prover. Since, in any case, we simultaneously replay potential
moves to check for problems, we use feedback from Isabelle to find the token that
ends a proof or definition.

The tokens comprising a successful move are appended to a list maintained
for the destination theory. Levity always appends lemmas to the end of a theory
file. Inserting them between other lemmas would effectively require having to
replay all theory files, both to detect the gaps between declarations and also to
test moves in context. This would require more bookkeeping and take longer to
run, but it would have the advantage of testing an entire build in a single pass.
The tokens comprising failed moves are appended to the list of unmoved tokens.

Finally, theory files are remade from the lists of associated tokens, which works
marvellously as Isabelle’s command lexing and printing routines are mutually
inverse.

Calculating lemma destinations. Before trying to move a lemma, Levity calculates
the lemmas, and thereby theories, on which the proof depends. They are used to
validate explicit destinations, and, when none are given, to choose the destination.

For calculating lists of lemma dependencies, we modified a tool developed
within the Verisoft project, called Gravity [2], to handle sets of lemmas, to
account for earlier moves, and to handle lemmas accessed by index. This tool



works through a proof term—the low-level steps that construct a new lemma
from existing lemmas, axioms and rules—to construct a dependency graph.
The calculation of destination theories in Gravity takes dependencies on
lemmas into account, but not dependencies on constant definitions. Although
not usually a problem in practice, as most proofs will invoke theorems about
constants in the lemma statement, detecting such problems is difficult because
constants moved before their definitions are interpreted as free variables.

Controlling Isabelle. When moving a lemma, respecting its dependencies is not
enough. Besides the set of theorems, proofs also depend on several other elements
of the theory context; for example, syntax declarations, abbreviations, and the
sets of theorems applied by proof methods like simplification. Rather than try to
determine all such dependencies in advance, we decided to simply try replaying
lemmas in new contexts. The tool effectively replicates the actions of a proof
engineer who, after copying-and-pasting a proof, must test it interactively.

Levity replays lemmas by parsing tokens, using Isabelle library routines,
into commands which are applied through Isar, the Isabelle theory language.
Isar operates as a state machine with three main modes: toplevel, theory, and
proof [19, Fig. 3.1]. For each move, Levity initially executes a command to
put Isar into theory mode, the first command drawn from the list of tokens
being replayed should then cause a transition into the proof mode; if it does
not, the move fails. Subsequent commands are then passed one-by-one to Isar,
while monitoring the state for errors and the end of a proof. We use a time-out
mechanism to interrupt long running proof steps to recover from divergences in
automatic tools due to differences in the original and proposed theory contexts.

Lemmas are replayed at the end of destination theories, but theories cannot be
extended after they have been closed, so Levity creates a new ‘testing’ theory for
each replay. Each testing theory only depends on either the proposed destination
theory, or on the last successful testing theory for that destination (to account
for previous moves). In general, it is necessary to import, directly or transitively,
the testing theories of all required lemmas that have also been moved.

Theory context. Interactive theorem proving inevitably involves the notion of
context or state. At any point in a theory, there are the set of existing lemmas
and definitions, syntax definitions, abbreviations, and sets of lemmas used by
proof methods. Furthermore, Isabelle also has locales for fine-grained context
management; lemmas stated within a locale may use its constants, assumptions,
definitions, and syntax. Levity does not resolve all problems related to theory
context, but it does address some aspects of locales and proof method sets.

To handle locales in Levity, the tokens being processed from a source file are
fed through a filter that tracks the commands that open and close contexts* and
maintains a stack of active declarations. An alternative would be to replay all
commands through Isabelle and then to query the context directly. This would
be more reliable but also slower. In any case, given this contextual information,

4 Namely, context, locale, class, instantiation, overloading, and end.



Levity knows when a lemma is being moved from within a locale and it inserts
tokens into the lemma declaration to re-establish the target context. The context
stack also enables Levity to form fully-qualified lemma names.

As mentioned earlier, lemmas may be marked with attributes, like [simp], to
add them to proof method sets. Moving attributes with a lemma may interfere
with subsequent applications of methods in other proofs. To avoid this, Levity
parses attributes, strips certain of them, and inserts them as declarations at the
original location. In general, such declarations, whether inserted by Levity or
manually, should be tracked and considered when moving other lemmas. Consider,
for example, lemmas /; and l5, both marked for movement, /; having the simp
attribute, and l5 involving a simplification that implicitly uses [;. Moving [ leaves
the simp attribute in place. But now, moving ls may fail as the simplification
step no longer implicitly uses [;.

3.2 Experience and related work

We ran Levity several times against the main L4.verified project development
during its final months. The results were encouraging, but several problems
and limitations inhibited its permanent introduction into our build process.
Besides the challenges of long build times, our biggest problems were unexpected
dependencies and changes to libraries within Isabelle.

By unexpected dependencies, we mean that some lemmas became ‘stuck’ at
seemingly inappropriate theories, and that other dependent lemmas then became
queued after them.® Levity logs lemma dependencies before moving lemmas,
which helps to understand why destinations were chosen, but then it is too late to
do anything. When a lemma is not moved as far as expected due to dependencies
on related lemmas, it is not uncommon that those related lemma should also have
been marked for movement. Ideally then, some kind of manual review should
be incorporated into the process; perhaps gathering information at night while
performing approved moves, then requesting new approvals during the day.

Levity relies on internal Isabelle routines for parsing, analysing lemma depen-
dencies, and interacting with Isar. When we went to prepare a public release for
the latest version of Isabelle, we found that the interfaces to these routines had
changed considerably from the version used in the L4.verified project, and, in
fact, several essential features were no longer available. Careful compromise is
needed between the evolution of a theorem prover’s design and the availability
of up-to-date third-party tools (and books and tutorials); both being important
factors in the success of large verification projects.

Our inability to upgrade the ML version of Levity led to a rewrite [16] using
the new PIDE interface to Isabelle [20]. This approach should make the tool
more robust to changes within Isabelle. But we cannot yet comment on the
efficacy of this tool against a large proof development like the L4.verified project:
in particular, on its integration into nightly regression tests, and the effect of

5 When a lemma move fails, other dependent lemmas are not moved either.



asynchronous recalculations while making automatic changes to large proofs.
Development continues on this new version.

Whiteside et al. [21] address the subject of proof refactoring formally and in
some generality. In particular, they define a minimal proof language, its formal
semantics, and a notion of statement preservation. They then propose several
types of refactoring, including renaming and moving lemmas (the latter defined as
a sequence of ‘swap’ operations), define some of them and their preconditions in
detail, and reason about their correctness. They explicitly do not cover all aspects
of a practical implementation, and, in contrast to Isar, their proof language does
not include proof method sets and attributes, definitions, locales, or imported
theory dependencies. Nevertheless, we find such a formal approach a promising
way to understand and validate refactoring tools like Levity; not just to show
that they preserve correctness but also that they do not introduce build failures.

4 Summary

We have described challenges that are new or amplified when formal verification
reaches the scale of multi-person, multi-year projects. We draw on the experience
from two of the largest such projects: Verisoft and L4.verified. Many of these
challenges arise from the inability of any single human to fully understand all
proof aspects. Without a mechanical proof checker, such proofs would be infeasible
and meaningless. For some challenges, we have sketched solutions, and for one,
we have shown in more detail how it can be addressed by tool support.

The three most important lessons learnt from our verification experience are:
First, proof automation is crucial because it decreases cognitive load, allowing
humans to focus on conceptually hard problems. It also decreases the length of
proof scripts, reducing maintenance costs. To achieve this, prover extensibility is
critical and needs to allow for custom automation while maintaining correctness.
Second, introspective tools such as find_theorems gain importance for productivity
because effective information retrieval is necessary in an otherwise overwhelming
fact base. Third, proof production at large scale hinges on an acceptably short edit-
check cycle; any tool or technique that shortens this cycle increases productivity,
even if temporarily sacrificing soundness.
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