
COMP3241/9245: Real-time Systems
Programming in Esterel — Lab 2

last changed: June 24, 2006

This lab consists of a series of programming exercises designed to increase familiarity and
understanding of the Esterel programming language and the synchronous paradigm. The
example considered is a simplified backhoe loader.

The sections marked optional are more difficult and cover additional Esterel features. Stu-
dents who find the other exercises easy (particularly those enrolled in COMP9245) may
find these extra challenges stimulating.

Task 1: Understanding the interface specification

LEGS IN
LEGS OUT

BOOM IN

BOOM OUT

STICK OUT

STICK IN
BUCKET IN

BUCKET OUT

STOP BUTTON
EXTEND BUTTON
RETRACT BUTTON

SECOND

Figure 1: Backhoe Loader input signals

Backhoe loaders are essentially tractors fitted with a loader unit at front, and a backhoe at
rear [1]. The backhoe consists of three segments: the boom, stick and bucket. The driver
is able to swivel his seat and coordinate the segments using joystick controls.

In this lab we will program a prototype sequencing controller to automate some aspects
of backhoe operation. The controller will receive input from the 12 signals shown in
Figure 1. Each segment is fitted with two sensors, one triggered when the segment reaches
its minimum ( � IN) range, the other when at its maximum ( � OUT). The sensors only
produce output when the associated segment is being driven. Similar sensors exist for a
pair of stabilising legs. The cabin is fitted with three buttons, stop, extend, and retract.
A signal is associated with each. The controller also receives a timer input, SECOND, at
regular intervals.

The controller is fitted with the 15 output signals summarised in Figure 2. The segments
are fitted with hydraulic pistons that either push or pull depending on the position of an in-
ternal valve. The controller can position the valve by emitting either a � PUSH or � PULL

1



BOOM PUSH BOOM PULL BOOM DRIVE
STICK PUSH STICK PULL STICK DRIVE
BUCKET PUSH BUCKET PULL BUCKET DRIVE
LEGS EXTEND LEGS RETRACT LEGS STOP
ALARM LAMP(bool) DONE LAMP(bool) CANCEL LAMP(bool)

Figure 2: Backhoe Loader output signals

signal (the effect of simultaneous emission is undefined). Segments move clockwise when
pushed by the hydraulics, and counter-clockwise when pulled. Each segment has a closed-
loop controller that, by default, holds it in fixed position, or, when a � DRIVE signal is
sustained, moves it at constant speed. Motion ceases as soon as a signal becomes absent.
The legs operate differently. The LEGS EXTEND and LEGS RETRACT signals start the
legs moving until they are out or in, respectively. This movement may be cancelled at any
time with the LEGS STOP signal. Three lamps, alarm, done, and cancel, in the cabin are
switched on and off by logical (true/false) signals.

Task 2: Running the backhoe simulation
A simulator and Esterel interface may be found at:
/home/esterel/examples/backhoe

The contents should be copied into your home directory. You will need write permissions
to the directory (chmod u+w .). Typing make in the new directory will compile the
backhoe.strl program, launch xes in animation mode, and display the simulator
window. The Makefile essentially executes the Esterel and C compilers as per the previous
lab, with some additional details for interfacing with the simulation tools.

The upper-half of the simulation window contains the Backhoe Loader and cabin interface
(buttons and indicator lamps). The lower-right corner contains buttons for controlling the
simulation:

continue/pause Simulation time is frozen when paused (red).
disconnect/connect Inputs signals are sent to xes for code animation

when connected (red).
reset Resets the simulation and controlling program.
quit Terminates the simulation.

Additional simulation options are at lower-left. The simulation is paused when first started.

Task 3: Extending the stick, then the bucket
Implement a simple controller (in backhoe.strl) that first extends the stick segment,
and then the bucket segment. The segments must not be in motion simultaneously. The
done lamp should be illuminated when the movements are complete.

Task 4: Retracting the stick and bucket together
Modify the previous program so that (only) after the stick and bucket are fully extended,
pushing the retract button causes both to be retracted simultaneously. The done lamp

2



should not be illuminated while the backhoe is moving, but should come on again as soon
as the motion is complete.

Task 5: Flashing light during movement
Modify the previous program so that the alarm light blinks on and off with a period of two
seconds whenever the backhoe is moving.

Optionally: Break the code into two or three separate modules (within the one file) in
order to make the program more adaptable. The lamp to be flashed should be passed as a
parameter.

Optionally: Use suspend and pre (which may necessitate initializing signal values) to
implement the lamp blinking.

Task 6: Leg Control
Create a copy of the previous file, and start a new program. Allow the three buttons to
control leg movement directly, i.e. pressing extend should start lowering the legs, stop
should stop them, and retract should cause them to lift. The controller should illuminate
the done lamp and halt if/when the legs are fully extended.

Optionally: You can assume that the legs are always raised when the controller starts. It
should now be possible for the operator to raise, stop and lower the legs any number of
times. To avoid strain on the equipment, it is desirable to ensure that the legs are fully
lowered within 10 seconds of the extend button having been pressed for the first time.

Add a watchdog timer in parallel to the leg control loop. If, after 10 seconds have elapsed,
the legs are not fully extended the alarm lamp should be illuminated and the legs should be
completely raised, they should then be held for a further 5 seconds before the alarm lamp
is switched off and normal operation resumes — all operator input is to be ignored during
the alarm period. The watchdog timer can be reset each time the legs are fully extended or
retracted.

Task 7: Dig your own hole
Enhance the previous program. Pressing extend once the legs have been lowered should
result in a series of movements:

1. Raise the stick and bucket.

2. Then, completely lower the boom (into the ground).

3. Then, retract both the stick and bucket.

4. Wait for operator to press retract.

5. Bring the boom back into the starting position.

During the first two steps pushing the retract button should illuminate the cancel lamp and
retract all three segments (simultaneously) to the starting position. The other buttons may

3



be ignored during the retraction sequence. The retract button is to be ignored in steps 3
and 5.

Pressing the stop button at any time should halt all movement. The interrupted motion
should resume when the button is pressed a second time. The alarm lamp should be
illuminated during such interruptions, and the other buttons may be ignored.

The done lamp should only be illuminated when the backhoe is stationary and the con-
troller is waiting for operator input. It should not, however, be illuminated when in the leg
movement mode.

After the backhoe returns to the starting position, the buttons should control the legs again,
as per the previous task. At this stage all of the lamps should be dimmed. The digging
motion may be resumed when the legs are fully lowered, i.e. pressing extend once would
illuminate the done lamp and pressing it again would start the movement sequence.

Optionally: Flash the cancel lamp as the three segments are being retracted.

Optionally: Divide the program into modules, reusing any common behaviours by giving
signals as parameters.

Optionally: The controller is damaging the valve seals by applying the throttle too soon
after the direction has been changed. Have the controller pause for at least three seconds
between changing the valve direction and applying the drive signal so as to increase the
longevity of the prototype equipment. warning: Minimising the delay is quite challenging
(i.e. time consuming) if one considers interactions with the stopping feature, and ‘expec-
tant’ direction changes.

Reflection: Consider the issues/work involved if implementing the same behaviour using
an explicit Finite State Machine or a C program.

References

[1] M. Brain and T. Harris. How caterpillar backhoe loaders work.
http://www.howstuffworks.com/backhoe-loader.html, accessed: Oct. 2005.

4


