
Delays in Esterel

T. Bourke12⋆ and A. Sowmya1

1 NICTA, Locked Bag 6016, Sydney NSW 1466, Australia⋆⋆

2 School of Computer Science and Engineering, The University of New South Wales,
Sydney, NSW 2052, Australia

timothy.bourke@irisa.fr, sowmya@cse.unsw.edu.au

Abstract. The timing details in many embedded applications are insep-
arable from other behavioural aspects. Time is also a resource; a phys-
ical constraint on system design that introduces limitations and costs.
Design and implementation choices are often explored and decided si-
multaneously, complicating both tasks and encouraging platform spe-
cific programs where the meaning of a specification is mixed with the
mechanisms of implementation.

The Esterel programming language is ideal for describing complex re-
active behaviours. But, perhaps surprisingly, timing details cannot be
expressed without making significant implementation choices at early
stages of design. We illustrate this point with an example application
where reactive behaviour and physical time are intertwined.

A simple solution is proposed: add a statement for expressing delays in
physical time. While there are similar statements or library calls in many
programming languages, the novelty of our proposal is that the delay
statements are later replaced with standard Esterel statements when
platform details become available. Delays are thus expressed directly in
terms of physical time, but later implemented as a discrete controller
using existing techniques. This approach is familiar in control system
design where analytical models are constructed in continuous time and
then later discretized to produce implementations.

We present some ideas for performing the translation and outline some
of the remaining challenges and uncertainties.

1 Introduction

Time is an integral behavioural dimension in many embedded systems; timing
details cannot always be treated as requirements to be validated independently
of other design stages. They may rather be so intertwined with other behavioural
aspects as to be inseparable from them.

⋆ Now affiliated with INRIA / IRISA, Rennes and funded by the Synchronics large-
scale initiative action of INRIA.

⋆⋆ NICTA is funded by the Department of Broadband, Communications and the Digi-
tal Economy, and the Australian Research Council, in part through the Australian
Government’s Backing Australia’s Ability initiative.

Time is also a resource; a physical constraint that introduces limitations and
costs. Balancing timing requirements and timing limitations is central to the
design of many embedded systems. Design and implementation choices are often
explored and decided simultaneously, complicating both tasks and encouraging
platform-specific programs which may later be difficult to adapt or to reuse.
Behavioural timing details often become tightly bound with the mechanisms of
their implementation, making them harder to later understand and to modify.

The Esterel language was designed for real-time programming [1, 2]. But,
although the synchronous model of discrete time isolates the logic of programs
from many details of their realisation, timing behaviours still cannot be expressed
without making significant implementation choices at early stages of specifica-
tion and design. Such early choices can make it difficult to strike a balance
between timing requirements and timing constraints. They encourage unneces-
sarily platform-restricted programs.

These perceived limitations of Esterel are specific to certain applications and
quite subtle. They arise when a program must be designed to meet strict and in-
tricate behavioural timing requirements and when the implementation platform
has not yet been chosen; possibly because the minimum platform requirements
cannot be known until after the program has been written. A good example is
to be found in controllers for the microprinters that print cash register dockets
and other transaction logs. This example exhibits two especial characteristics:
it requires complex reactive behaviour in physical time, and its eventual imple-
mentations are on resource-constrained microcontrollers.

One simple solution, for addressing applications like the microprinter con-
troller, is to express delays using a macro statement whose expansion into stan-
dard Esterel is determined by an abstract model of an intended implementation
platform. This allows designers to state delays directly during specification and
then later to tailor programs to the limitations of particular platforms as more
details become available. While program models are often given in discrete time
and implementation models in continuous time [3], the macro statement implies
the opposite approach: the program is stated in continuous time and the imple-
mentation in discrete time. Abstract programs are stated in the same terms used
in descriptions of the physical hardware to be controlled. Concrete programs are
then derived in the form necessary for implementation as a digital system. This
approach is familiar in traditional control system design where analytical models
are constructed in continuous time and then later discretized for implementation.

While the motivations and basic idea behind the macro delay statement
appear sound, the solution presented in this paper is not completely satisfactory.
There remain unresolved questions about the practical utility of the presented
transformations and also about the relation between programs with physical time
delays and the discrete controllers generated from them. Any proposal for the
latter would have to account for the kind of approximations and compromises
usually employed when engineering such systems.

The main body of this paper comprises four sections. In §2, the microprinter
example is presented. It is both a motivating, realistic application and a con-

stepper motor

print head

head position sensor

paper sensor

temperature sensor

paper-feed path

Fig. 1: Physical structure of the microprinter example

crete illustration of the issues under discussion. Extracts from the example are
used throughout §3 to illustrate deficiencies in the standard techniques for ex-
pressing delays in Esterel. It is argued that each of these techniques either forces
engineers to make implementation choices too early in the design process or oth-
erwise adulterates the expression of requirements with the mechanisms of their
realisation. A possible solution is presented in §4 in the form of a macro state-
ment and its expansion to statements of standard Esterel. Some problems and
unfinished aspects of these ideas are discussed in §5.

2 Motivating example: a microprinter controller

Microprinters are electro-mechanical components for producing monochrome im-
ages on paper. They are often used in cash registers for printing receipts. A typ-
ical example is sketched in Figure 1. The actual device, from which the following
details and delay values are taken, is not named due to licensing sensitivities.
Thermal paper is drawn into the printer from a roll (not shown) by a rub-
ber drum that is rotated by a stepper motor. The paper passes under a print
head comprising a row of tens of resistors. Current is applied to the resistors
to generate heat which marks the paper; individual resistors are enabled and
disabled through latched transistors. Images are formed line-by-line by carefully
coordinating the movement of the paper, the contents of the latches, and the
application of current to the resistors. The microprinter has sensors that give
the temperature of the print head, whether it is open or closed, and whether
there is paper under it.

The sequential logic required to interface directly with the microprinter is
intricate. A controller must produce a signal for the stepper motor, retrieve then
serially transmit the next line of pixels, apply current to the resistors, and re-
spond to no-paper and print-head-open events. It must respect the microprinter’s

physical and electrical characteristics. For instance, when the number of active
pixels in a line exceeds a certain threshold, that line must be printed over several
phases to avoid drawing too much current; when paper feeding is temporarily
stalled, the stepper motor must be switched on and off to reduce the average
power needed, and thereby reduce the risk of damaging hardware or circuits.

Furthermore, the relative timing of actions is both important and intricate.
The duration of motor steps changes depending on the number of pixels in the
line being printed, the duration of the previous step, and the operating phase:
starting, feeding, printing, or stopping. The duration of current pulses through
the print head depends on feedback from the temperature sensor, the recent
print history, and the battery level. The lengths of various delays are given in
the microprinter specification in physical time, seconds and milliseconds, not as
counts of a digital clock or multiples of a base period. They are integral to the
behavioural specification and as much a part of the controller requirements as
are the discrete events. It is unnatural to consider the timing constraints and
discrete events in isolation from each other.

Expressing the required sequential logic and timing patterns in software is
only part the problem. A microcontroller must also be chosen and interfaced to
the microprinter, to a power supply, and to the rest of the system. The choice of
microcontroller is critical to implementing, and, as will be seen, usually even to
stating, the timing behaviour. Platform selection may thus occur simultaneously
with initial design. To give one scenario, an engineer might identify the tightest
timing requirements in the specification and then sketch a preliminary imple-
mentation in assembly language from which the minimum required processor
speed can be estimated. A suitable platform could then be chosen allowing the
timing behaviours to be expressed in terms of its characteristics and features.
Porting such programs to different platforms may require considerable efforts.
Detailed verifications must consider combinations of program and platform.

Esterel is intended for applications like the microprinter controller. It is cer-
tainly easier to express the sequential logic in Esterel than in assembler, but it is
still difficult to untangle the application timing details from the implementation
choices and constraints, and this has implications on both design flow and porta-
bility. As the microprinter controller is too complicated to present in full, only a
subcomponent will be considered, namely the one responsible for energizing the
coils of the stepper motor to make it rotate.

A sample trace of the motor control signals is presented in Figure 2. There
are three outputs: Enable, Coil1, and Coil2. The Enable signal is asserted to allow
current into the stepper motor coils. The Coil1 and Coil2 signals determine the
direction of current in each of two coils within the stepper motor. At the lowest
level, the coils must be energized according to the pattern of steps in the bottom
half of Figure 2. At a higher level, the length of each step and whether current
should flow or not is determined by the length of the previous step and whether
the motor paper must be held in place for one reason or another. The latter
condition will be represented by an input signal Hold, which, it can be assumed,
will be emitted by other system components as required. When printing, each

Step Step Step Step Step Step Hold
Hold

Hold
Hold

Hold
Hold

Step Step Step Step

Enable

1.667ms 2.4ms

0.05ms 0.3ms

Coil1

Coil2

Fig. 2: Typical microprinter motor control signals

1 module P r i n t S t e p s :
2 i n pu t Hold ;
3 output Step , Enable : boo lean ;
4
5 s i g n a l LongStep i n
6 l oop
7 emit Step ;
8 p r e s en t LongStep
9 then % de l a y 2 .4ms

10 e l s e % de l a y 1 .667ms
11 end p r e s en t ;
12
13 p r e s en t Hold then
14 t r ap S t a l l i n g i n
15 l oop
16 emit Enable (f a l s e) ;
17 % de l a y 0 .05ms ;
18 p r e s en t Hold e l s e
19 e x i t S t a l l i n g
20 end ;
21
22 emit Enable (t r ue) ;
23 % de l a y 0 .3ms ;
24 p r e s en t Hold
25 e l s e e x i t S t a l l i n g
26 end
27 end loop
28 | |
29 % de l a y 0 .733ms ;
30 s u s t a i n LongStep
31 end t r ap
32 end p r e s en t
33 end loop
34 end s i g n a l
35 end module

(a) PrintSteps module

1 module Steppe r :
2 i n pu t Step ;
3 output
4 Co i l 1 := f a l s e : boo lean ;
5 Co i l 2 := f a l s e : boo lean ;
6
7 l oop
8 awa i t Step ;
9 emit Co i l 1 (t r ue) ;

10
11 awa i t Step ;
12 emit Co i l 2 (t r ue) ;
13
14 awa i t Step ;
15 emit Co i l 1 (f a l s e) ;
16
17 awa i t Step
18 emit Co i l 2 (f a l s e)
19 end loop
20
21 end module

(b) Stepper module

Fig. 3: Stepper motor controller in Esterel

step is normally energized for 1.667ms, but if the motor is held for more than
0.733ms in one step then the next step must be energized for 2.4ms. The coil
directions are not changed while the motor is being held in place. Since this
requires less energy, the coil current must be repeatedly switched off for 0.05ms
and on for 0.3ms until movement restarts. This ‘chopping’ reduces the risk of
overheating. Other complications relating to starting the motor, stopping it, and
feeding paper when not printing will be ignored.

Thanks to the synchronous semantics of Esterel, the motor control logic is
readily expressed as two concurrent modules: PrintSteps and Stepper. They are
both shown in Figure 3. The PrintSteps module emits a Step signal when the coil
energisation pattern is to change. The Stepper module responds simultaneously
to each emission of Step by changing the direction of current in one of the coils.
Other concurrent components for sequencing feed and print cycles, clocking data
into the print head, and handling exceptional conditions can readily be imagined.
For the most part, the domain specific constructs of Esterel give a convenient and
natural specification that can be simulated, analyzed and compiled into software
or hardware. There is, however, a problem.

How should the various delays in Stepper be stated? At present, they are
given as comments in terms of timing constants from the specification, but the
resulting program is neither correct nor executable. Several standard techniques
for expressing the delay are evaluated in the next section, but it turns out that
none of them are ideal. Just as in the assembly language scenario, each technique
requires early decisions about the eventual implementation platform, or confuses
specifications of delay with their implementation.

3 Expressing delays in Esterel

Timing delays can be expressed variously in Esterel. Several standard techniques
from the literature are reviewed in this section. It will be argued that all of
them constrain eventual implementations, at least if naively compiled, and that
several of them either emphasize mechanism over effect or interact imperfectly
with other constructs.

3.1 Pause statements

In the modern semantics of Esterel [4, 5], pause is the only non-instantaneous
statement. Its meaning in the discrete semantics is clear: it delays execution until
the next reaction. The complication for expressing quantitative delays is that the
time of the next reaction depends on the execution mode and parameters.

In the event-driven execution mode, the physical duration of a pause depends
on external stimuli. For a set of inputs {i1, . . . , in}, a pause statement could
be replaced with: await [i1 or . . . or in]. Although, the replacement would have
to be adjusted were other inputs added; if, for instance, other modules were
placed in parallel. Any relation between abstract delays and physical delays
must account for times of input occurrence, which is not feasible in general. In

event-driven systems, unadorned pause statements alone are not suitable for
specifying precise physical delays.

In the sample-driven execution mode, a pause statement specifies a precise
physical delay: the length of one execution cycle. There is thus a direct, though
implicit, relation between the discrete semantics of a program and its physi-
cal behaviour. In applications where behaviour in physical time is important,
modules could be specified together with their intended execution period. It is
not clear, however, how modules with different execution periods would be com-
posed. Furthermore, designers would be forced to choose a period before writing
a program. An implementation choice must be made before even beginning a
precise specification!

Deciding on an execution period involves compromises between the appli-
cation requirements and the execution platform. The timing requirements of
the microprinter controller example can be summarized by the list of delays:
2.400ms, 1.667ms, 0.050ms, 0.300ms, and 0.733ms. A designer could decide to
round 1.667ms down to 1.650ms and 0.733ms down to 0.750ms before choosing
0.05ms, the greatest common divisor and, in this case, also the smallest delay,
as the execution period. The first part of the program could then be written:

present LongStep
then await 48 t i c k
e l s e await 32 t i c k
end present .

This technique is effective but not ideal. The program has strayed from the
original specification. If the execution period is changed – for instance, a different
microcontroller is used, or a faster module is put in parallel – the program must
be rewritten. The original delay values are obscured and the execution period
is implicit. Moreover, a complete list of delays may only become clear as the
program is written: the specification and important details of the implementation
must be decided in tandem. A fixed execution period limits potential platforms,
since the whole program must run at the speed required for the smallest delay,
even though in this case the next smallest delay is an order of magnitude greater.
There is little scope for the sort of optimisations often applied to embedded
controllers; for example, a timer-interrupt-driven routine for motor chopping
that permits the rest of the program to be executed less frequently.

3.2 Timing inputs

Counting specific signals instead of reactions is a partial remedy for some of
the limitations of pause statements: the event being counted is stated explicitly,
and it need not be present at every reaction. Executing signal counting pro-
grams more frequently does not change the fundamental relation between their
behaviour and the occurrence of external events, although the order of external
events may be discerned more finely and the actual discrete traces may vary.

Additional information is still required to relate a signal counting statement
to a physical time delay. Rather than assign an execution period to a program

TMS TMS TMS TMS

HMS HMS

await 5 HMS; emit Enable(true); await 3 TMS; emit Enable(false);

await 5 HMS; emit Enable(true); await 30 HMS; emit Enable(false);

Fig. 4: Granularity of timing inputs

or module, as for pause statements, certain timing inputs are distinguished and
assigned fixed delay values. The delay values are usually relative to the initial
reaction or to system startup. Timing inputs must be provided by the interface or
run-time layer at regular intervals. They are invariably given suggestive names,
for example SECOND or MSEC.

Returning to the microprinter, a controller program could commence with
declarations of two timing inputs, TMS for ‘tenths of milliseconds’ and HMS for
‘hundredths of milliseconds’:

input TMS, % ms/10
HMS; % ms/100

r e l a t i o n TMS => HMS; .

Longer delays would be specified in terms of TMS:

present LongStep
then await 24 TMS
e l s e await 17 TMS

end present .

and shorter ones in terms of HMS:

loop

emit Enab le (f a l s e) ;
await 5 HMS;
emit Enab le (true) ;
await 30 HMS

end loop .

Timing inputs are employed in several examples [6,7]. They fit superbly with
the idea of multiform time and the abstract synchronous model. They work well
with other Esterel constructs like suspend and abort.

There are, however, at least three disadvantages to counting timing inputs.
First, although the relation between timing inputs and physical time seems in-
tuitive, there are some subtleties related to granularity and relativity. Second,
although signal counting programs are relatively unaffected by changes to ex-
ecution mode and period, the choice of signal granularity is effectively an im-
plementation choice and trading accuracy for economy afterward may not be
trivial. Third, the structure of the state space of signal counting programs may
be difficult for debugging and model checking tools to exploit.

Regarding granularity and relativity, a signal counting statement synchro-
nizes with timing inputs foremost and creates a delay in physical time only as a
byproduct. Timing inputs are not relative to the commencement or termination
of statements within a program. For instance, consider these changes to signal
granularity in the motor chopping loop:

loop

emit Enab le (f a l s e) ;
await 5 HMS;
emit Enab le (true) ;
await 3 TMS % ⇐ was 30 HMS

end loop .

The two fragments are not equivalent but one might naively expect that replac-
ing await 30 HMS with await 3 TMS would preserve the physical time delays.
This is not so, as evidenced by Figure 4. The statement await 3 TMS always
gives a logical delay of 3 TMS events but, in principle, the associated delay in
milliseconds could be anywhere in the interval (0.2, 0.3]. The precise delay de-
pends on when the statement receives control and thus on the system execution
period and, in the event-driven mode, when other inputs occur. Consider, for
instance, this statement:

await I ;
await immediate 2 S .

The start of the second await depends on when the I signal occurs. It effects a
delay greater than one second but strictly less than two seconds, that is, a delay
in the interval [1, 2) – assuming that S has a period of one second.

Does it really matter? After all, engineering involves tolerances: perfect mea-
surements are never possible. The point is, rather, to delay such decisions for as
long as possible; to model in ideal terms and then only later to make and evaluate
various compromises. Fixing timing inputs at an early stage in the specification
either renounces accuracy too soon, perhaps even before the ramifications can be
properly understood, or risks imposing unnecessarily strict demands on eventual
implementations.

There is another conflict between abstract specifications and concrete imple-
mentations. In applications like the microprinter controller, data sheets and ab-
stract designs describe physical models as functions of an ideal t in seconds. But
oscillation and execution periods in implementation platforms are often deter-
mined by characteristics of the application and hardware. Moreover, the timing
inputs in early stages of a design may be in multiples of seconds, but those in
later versions may differ. Discretization is ultimately an issue of implementation.

Naturally, the standard tools for simulation and verification can handle pro-
grams that count timing inputs. But they do not usually exploit the specific
structure of these programs: the long chains of counting transitions. When de-
bugging, for instance, it may be necessary to cycle through long runs of timing
events before anything interesting happens, unlike in tools like Uppaal [8] where
timed traces can be explored symbolically.

3.3 External timers

One-shot timers are commonly used in embedded programs to implement delays
and timeouts. The same idea is readily expressed in Esterel, as demonstrated by
several published examples [9–11].

Such programs initiate a delay by emitting an event that starts a timer, for
instance emit START_TIMER. The event may be parameterised by the required
number of ticks, for instance emit START_TIMER(100). The program then waits
for an event that indicates timer expiry, for instance await TIMER.

Timers need not necessarily be provided by an implementation platform.
They may themselves be implemented in Esterel, as, for example, in the POLIS
seatbelt alarm controller [12, §1.3.2] where a timer module counts timing inputs.
The POLIS approach is special because the two modules may be executed on
different asynchronous processes, each with a different execution period. The
timer module may even later be refined to a hardware timer.

There are several advantages to using timers. They give relative rather than
absolute delays. They separate, at least to some degree, issues of behavioural
delay from those of program execution. Timers can, for instance, run at a finer
granularity than the rest of the program; though any benefit is lost if the ratio
between the timer and execution periods is too great. They are perhaps most
appropriate for event-driven implementations where reactions can be triggered
by timer interrupts.

There are four main disadvantages to using timers: a sacrifice of program
concision and clarity, an early introduction of implementation detail, an imper-
fect interaction with other Esterel constructs, and a lack of support in simulation
and analysis tools.

The loss of concision and clarity is evident in this fragment of the microprinter
controller example, now expressed with timers:

loop

emit Enab le (f a l s e) ;
emit START_HMSTIMER01(5) ; await HMSTIMER01 ;
emit Enab le (true) ;
emit START_HMSTIMER01(3 0) ; await HMSTIMER01

end loop .

Not only are two instructions required to express each delay, but the emphasis
has shifted from meaning to mechanism. Nothing prevents the emission that
starts the delay being placed apart from the statement that detects its end. This
may sometimes be an advantage, but it surely also complicates potential analysis
and compilation techniques.

Timers introduce implementation details. Each has a granularity and a max-
imum value. Timers must be allocated and named. An implementation platform
must either provide enough timers, or provide extra routines for queuing and
managing timer requests. Care must be taken when interfacing timers to en-
sure that they react appropriately with other Esterel statements. Consider this
program fragment for example:

(TMS is present at each reaction)

O OSOTP P P P P P P P P P P

Fig. 5: Effect of suspend on delays

abort

emit START_TIMER(1 0) ; await TIMER; emit O1
when I ;
emit START_TIMER(2 0) ; await TIMER ; emit O2 .

Assume that it is executed in the event-driven mode and that it has been waiting
at the first await TIMER statement for almost 10 units when the I input triggers
a reaction. The I input will abort the first delay and start the second one. But
if the timer expires while the reaction is being processed it may set an interrupt
flag or other latch, and, if the latch is not properly cleared by the interface layer,
the second delay may be terminated prematurely in the next reaction. Such bad
interactions with abortion can be avoided, but only with care.

Interactions with the suspend statement, are not as easily solved. The prob-
lem is that timers essentially sit apart from the lexical scope of the statements
that start and await them. Two examples will illustrate the issues.

First, indefinite delays are easily introduced when timers are combined with
suspension, as in this program fragment:

suspend

emit START_TIMER(1 0) ; await TIMER; emit O1
when HOLD.

If the HOLD and TIMER signals occur simultaneously, the suspend prevents
termination of the await, and, if the timer is not restarted elsewhere, the O1
signal will never be emitted. One alternative to accepting this behaviour is to
declare a conflict relation between the two signals:

r e l a t i o n TIMER # HOLD;

But this really only shifts the burden to the interface layer.

The second example compares the effect of suspension on a delay expressed
with an external timer and one expressed by counting timer inputs:

emit O;
suspend

emit START_TMSTIMER01(2 0) ; await TMSTIMER01; emit OT
| |

await 20 TMS; emit OS
when P .

Suppose the P signal indicates when a certain button is held. A run of the system
with the button held for 0.1ms is shown in Figure 5. The signal OT is emitted
when the timer in the top branch expires. This emission is completely unaffected

by the suspension because the timer is external to the program, even though the
statements that trigger and wait for it are within the scope of the suspend. In
contrast, the emission of the signal OS, which occurs after counting the timing
inputs, is delayed by the length of the suspension, modulo sampling effects. The
latter behaviour is the more powerful but it is not easy to achieve outside the
Esterel kernel.

As far as the semantics of Esterel are concerned there is nothing special about
the emit and await statements that comprise a timer delay. This means that
standard simulation and analysis tools will not usually exploit the implied timing
constraints. To verify quantitative timing properties or to eliminate spurious
counter-examples, the timers themselves would have to be modelled or otherwise
taken into account.

3.4 External intervals

Esterel is extended to CRP (Communicating Reactive Processes) [13] through
the addition of an exec statement, which starts an asynchronous process and
waits until it terminates. This gives another way to implement external timers,
for instance:

loop

emit Enab le (f a l s e) ;
exec HMSTIMER01 (5) ;
emit Enab le (true) ;
exec HMSTIMER01 (3 0) ;

end loop .

The HMSTIMER01 process is assumed to sleep for the given number of hun-
dredths of milliseconds and then terminate.

There are three main advantages over the timers described in the previous
subsection. The delay is expressed as a single statement, which makes programs
easier to read and simpler to analyze. The semantics of exec precisely defines
its interaction with abort. The semantics also accounts for issues of naming and
reincarnation.

Otherwise, timers expressed with exec have similar disadvantages to those
expressed with emit and await. Their use involves the early introduction of im-
plementation detail: timer names, quantities, granularities, and maximum values.
They do not interact well with suspension, which was introduced contempora-
neously [14], and there are similar issues with simulation and analysis tools.

3.5 Quantitative watchdogs

The Argos language defines a temporized state macro for expressing timeouts;
delays are stated by pairing an integer value with a signal name. Physical time
delays can be expressed by counting timing inputs as previously described. There
is an earlier proposal for temporized Argos programs [15] where delays are written
without an explicit signal name; timeout states are labelled with an integer

constant between square brackets and they have a single timeout transition that
is identified by a square box:

[5] �

Two interpretations are defined for temporized Argos programs [15]. In the
discrete-time semantics, the timeout notation is just a macro that counts a spe-
cial input event and an Argos program is interpreted as a BMM (Boolean Mealy
Machine). In the continuous-time semantics, an Argos program is interpreted as
a timed automaton1 where the timeout notation is mapped to clocks, location
invariants, and transition guards in a natural way. The separation of discrete and
delay transitions in timed automata is also adopted for the discrete semantics:
the special time input cannot occur synchronously with other inputs. There are
implicit conflict relations.

Temporized Argos overcomes some of the limitations of counting timing in-
puts. Namely, quantitative timing properties can be verified by special-purpose
tools, in this case Kronos [17], and there are fewer obstacles to creating simula-
tion and debugging tools that take advantage of the timing parameters.

There are, however, at least three deficiencies. First, there are relatively mi-
nor issues surrounding the precision of timeout constants and the unit of mea-
surement that applies in a given program. Second, the interaction of timeout
states and suspension, or, in the case of Argos, with inhibition, is problematic.
Third, there is no support for analyzing or making compromises for particular
implementation platforms. There is only one discrete transformation and it does
not allow for changes to the timing input granularity. The separation of timing
inputs from other inputs, however, does allow timers to be treated separately.
They could in principle run at a higher resolution than the rest of the program.

Essentially, in temporized Argos, statements that count timing inputs are
treated as continuous-time delays. This paper suggests an inverse approach: to
specify delays in continuous time and then to implement them using standard
synchronous language techniques.

4 An alternative

It has been argued that none of the existing techniques for expressing timing
behaviour are ideal for programming systems like the microprinter controller.
In this section, several characteristics of an ideal programming language are
identified, before an extension to Esterel that aims to meet them is proposed.

The extension has three parts: a macro statement that allows exact delays
to be specified in the program text, a language for describing abstract details of
implementation platforms, and a syntactic transformation that expands macros
into standard Esterel statements suited to a particular platform. The extension
is called Esterel+delay.

1 Technically, a timed graph [16].

The desired characteristics of a language for expressing the timing behaviour
of applications like the microprinter controller are summarised in §4.1. The ex-
tension to Esterel that attempts to realise them is presented in §4.2. Some related
approaches are discussed in §4.3.

4.1 Desired characteristics

Esterel is ideal for specifying the discrete behaviour of applications like the mi-
croprinter controller, but, arguably, the specification of behaviour in physical
time could be improved. Specifically, three characteristics are desired. First, it
should be possible, at least in the early stages of design, to program in terms
of physical time. Second, expressions of delay should not unduly bias the mech-
anisms with which they are eventually realised. Third, it should be possible to
program initially in ideal terms and then later to make the inevitable compro-
mises for implementations on specific platforms.

While digital implementations are inevitably discrete, early designs usually
involve continuous models of the controller and plant; even if such models are
incomplete or implicit. Engineers think about potential solutions as physical
delays and movements orchestrated by discrete modes and steps. Delays are
presented in specification sheets and described in design documents in physical
time units. The details of discretization and realisation are worked out later
when or after choosing an implementation platform.

All of the techniques described in §3 immediately require or assume informa-
tion about the timing behaviour of eventual implementation platforms. It would
be better if controllers could be specified, simulated, and analyzed well before
making such implementation choices. In fact, the controller specifications them-
selves should guide choices: hardware or software, minimum processor speed, the
number and resolution of timers, and similar.

An ideal language for applications like the microprinter controller would not
only allow abstract descriptions of discrete behaviour in physical time, but would
also facilitate the inevitable choices and compromises required to implement such
programs on constrained platforms. A program should act as a reference against
which possible implementations may be evaluated. Especially since perfect preci-
sion is not possible: quantitative specifications are given with explicit or implicit
error tolerances, and accuracy may be compromised to better meet other con-
straints and requirements.

4.2 Esterel+delay

The program of Figure 3 is already an excellent specification. It expresses the
desired behaviours in the same terms as the physical model, as described by the
datasheet, and without making too many assumptions about their implemen-
tation. Rather than immediately replace the timing comments with any of the
constructions in §§3.1–3.4, it may be better to maintain those details for as long
as possible, and only later, when platform details are known, to replace them
with more concrete mechanisms, as automatically as possible.

The statement for expressing exact delays is written:

delay e

where e is an expression that evaluates statically to a rational number which is
interpreted as a duration in seconds. The expression may contain units, which
are macros for multiplication by a suitable constant:

x h = x ∗ 3600 x ms = x ∗ 10E−3
x m = x ∗ 60 x us = x ∗ 10E−6
x s = x ∗ 1 x ns = x ∗ 10E−9

Uncommenting the delay statements in the program of Figure 3 gives a valid
Esterel+delay program.

Insisting on the evaluation of delay expressions at compile time simplifies
transformation and analysis but excludes some potential programs. Similar state-
ments in Esterel, namely repeat e and hence also await e s, are less restrictive;
they may contain integer expressions that are evaluated at run time. The delay

statement is different because the accompanying expression gives a rational value
that is used in the calculation of execution parameters, which, in turn, deter-
mine how closely the value will actually be approximated. The restriction to
static delay expressions does not preclude conditional or variable delays, but it
becomes mandatory to state all possibilities explicitly. For example, step length
in the microprinter controller is determined dynamically, but there are only two
possible values, those at lines 9 and 10 of Figure 3a.

At first glance the distinguished role of physical time in delay statements may
seem to violate the doctrine of multiform time [18, §3.10]. But, on the contrary,
there is no dispute that a discrete controller perceives nothing but sequences of
events and that it may as well count metres or heartbeats as seconds. Rather the
approach proposed by Esterel+delay is to program at a slightly more abstract
level that acknowledges the dual aspects of time as a behavioural dimension and
as a computation resource. Whether it is of any utility to regard other dimensions
similarly is a question left open.

The second part of Esterel+delay is a language for describing implementa-
tion platforms. Given extra platform details, an Esterel+delay program can be
transformed into an Esterel program without delay statements, which can then
be compiled using standard tools and techniques.

An implementation will be described by a platform statement that provides
the abstract parameters necessary to approximate ideal delays. Three types of
platform statement will be considered: one for sample-driven executions and two
for event-driven executions.

Platform statements for sample-driven implementations simply state the ex-
ecution period in seconds, but the concrete syntax also allows multiplying units,
identically to those of delay statements, for example:

sample 1 .4ms

Relating event-driven implementations to physical time is more complicated.
Two types of platform statement are proposed. The first provides the list of the
types of timers available on a platform. Each type of timer is described by four

〈implstmt〉 → sample 〈ratexpr〉 | event [〈events〉]
〈events〉 → 〈signals〉 | 〈timertys〉
〈signals〉 → 〈signal〉 | 〈signal〉 , 〈signals〉
〈signal〉 → 〈name〉 = 〈ratexpr〉
〈timertys〉 → 〈timerty〉 | 〈timerty〉 , 〈timertys〉
〈timerty〉 → (〈ratexpr〉 , 〈intexpr〉 , 〈intexpr〉 , 〈intexpr〉)

where 〈ratexpr〉 and 〈intexpr〉 denote expressions that evaluate, respec-
tively, to rational numbers and integers.

Fig. 6: Concrete syntax of platform statements

parameters: the physical time period of each tick, the minimum number of ticks
possible, the maximum number of ticks possible, and the number of such timers
available. For example:

event [(1ms , 10 , 65535 , 2) , (0 . 1 s , 1 , 255 , 1)]

This platform statement describes a system with three timers. Two of them have
a tick resolution of 0.001 seconds for countdowns from between 10 and 65535
ticks inclusive. The other has a tick resolution of 0.1 seconds for countdowns
from between 1 and 255 ticks inclusive. The second type of platform statement
is a list of input signal names together with the periods of their occurrence in
physical time, for example:

event [SEC=1, OSC=90.0422ns]

Such statements clarify assumptions that are at best implicit in the signal names.
Other platform statements for event-driven implementations can be imag-

ined, for instance, platforms that provide both regularly occurring inputs and
timers. Or regularly occurring inputs with offsets relative to system startup as
well as periods; like the discrete sample time pairs of Simulink. These possibilities
are not pursued because their practical utility is unclear and the two proposed
platform statements provide challenge enough.

The concrete syntax for platform statements is summarised in Figure 6. The
abstract definitions are similar in form. (In the following, Q≥0 is the set of non-
negative rationals, Q>0 is the set of strictly positive rationals, N is the set of
natural numbers, and N>0 is the set of natural numbers excluding zero.)

Definition 1. A timer type is a tuple (τt, l, u, n) ∈ Q>0× N × N × N>0, where

0 < l ≤ u.

In a timer type (τt, l, u, n), τt is the tick resolution in seconds, l and u are,
respectively, the inclusive minimum and maximum values that the timer can
provide, and n is the number of such timers that are available.

Definition 2. Given a set of signal names S, a timing input is a pair (s, τs) ∈
S × Q>0.

In a timing input (s, τs), s is the name of a signal and τs is its period of occurrence
in seconds, relative to system startup.

Definition 3. Given a set of signal names S, a platform statement is an ele-

ment of the set

P = Q>0 + T + A,

where T is the set of finite sets of timer inputs, and A is the set of finite sets of

timing inputs where (s, τs1
), (s, τs2

) ∈ A =⇒ τs1
= τs2

.

A timer statement is either a single, non-zero rational number that represents
the sample period of a sample-driven implementation, or a finite set of timer
inputs, or a finite set of timing inputs without duplicates.

The following three subsections describe the transformation of Esterel+delay
programs into Esterel programs for each type of platform statement.

Sample-driven implementations. A platform statement of the form τ ∈ Q>0

specifies a sample-driven implementation with an execution period of τ seconds.
In this case, each delay e statement is essentially replaced by an await n tick
statement, where n is chosen to effect the delay specified by the expression e for
the given execution period τ . Three variations are proposed for approximating
delays that are not multiples of the given execution period.

The transformations described in this section and the following two only
replace the delay statements in Esterel+delay programs. The common part of
their individual definitions is formalised in an obvious way.

Definition 4. The carrier function C(p) is defined for every Esterel statement p:

C(nothing) = nothing

C(emit s) = emit s

C(pause) = pause

C(present s then p else q end) = present s then C(p) else C(q) end

C(suspend p when s end) = suspend C(p) when s end

C(p ; q) = C(p) ; C(q)

C(loop p end) = loop C(p) end

C(p || q) = C(p) || C(q)

C(trap T in p end) = trap T in C(p) end

C(exit T) = exit T

C(signal s in p end) = signal s in C(p) end

The carrier function and the identity function coincide for the subset of Es-
terel+delay without delay statements.

A program may contain a delay d that is not an exact multiple of the given
execution period τ . An implementation can either underapproximate by waiting

for l ticks, or overapproximate by waiting for u ticks, where

l = max

(⌊

d

τ

⌋

, 1

)

(1)

u =

⌈

d

τ

⌉

(2)

The underapproximation l is not allowed to be zero because the replacement
statement, await l tick, would then be instantaneous, which would drastically
alter the meaning of the program and could introduce causality problems. Es-
terel+delay programs must always stop at delay statements.

When a delay is repeated, for instance if it occurs within a loop, choosing
only one of the approximations gives a program whose actual timing behaviour
drifts steadily from the ideal timing behaviour. Such cumulative errors are prob-
lematic in certain applications, for example in programs that sample bits asyn-
chronously. One possibility is to track the cumulative drift and, at each iteration,
to choose whichever of the two approximations minimises it. This approach is
only applicable when l · τ < d.

Some simple calculations show that approximations can be chosen at runtime
using only operations on integers and a small amount of constant memory. The
difference between a specified delay d and its underapproximation is equal to d−
l · τ . Since both d and τ are rationals, this difference can be written as a ratio
of two positive integers:

ln

ld
= d − l · τ , (3)

where the subscripts n and d stand for ‘numerator’ and ‘denominator’ respec-
tively. And similarly for the overapproximation:

un

ud

= u · τ − d. (4)

When a single, iterated delay d statement is approximated by m executions of
an await l tick statement and n executions of an await u tick statement, the
cumulative drift will be

c = m ·
ln

ld
− n ·

un

ud

, (5)

which can be scaled to an integer by multiplying by ld · ud, giving

c · ld · ud = m · ln · ud − n · un · ld. (6)

It can be tracked by an integer variable which is increased whenever the under-
approximation is applied by

dl = ln · ud, (7)

and decreased whenever the overapproximation is applied by

du = un · ld. (8)

Any drift due to the approximations is mitigated by making local choices that
minimise a tracking variable. This technique is most suitable for delay statements
within loops whose values are midway between the lower and upper approxima-
tions at a given execution period, that is for d near l + τ

2
.

The three variations are combined in the translation function for sample-
driven platform statements. It is assumed that each delay statement is annotated
with one of {under, over, avg} that specify one of the approximations to apply; the
annotation will be written as a subscript of the delay statement. The means of
making these annotations is immaterial. This extra information can be provided
by any convenient means. Annotations could, for instance, be given as per-delay
pragmas, or they could be specified globally for an entire program.

Definition 5. The sample-driven transformation Tτ (p) maps an Esterel+delay

statement p to an Esterel statement. It extends the carrier function to the delay

statement.

if d = n · τ ,

Tτ (delayapprox d) = await n tick ,

otherwise,

Tτ (delayunder d) = await l tick , and

Tτ (delayover d) = await u tick ,

and, when d · τ ≥ 1,

Tτ (delayavg d) = i f abs (d i f f + dl) <= abs (d i f f − du)
then d i f f = d i f f + dl ;

await l t i c k
e l s e d i f f = d i f f − du ;

await u t i c k
end i f ,

where the values of l and u for a given d and τ are as previously defined, and

the variable name diff is unique within the module and declared as an integer

variable.

As the avg translations introduce new variables they should be performed be-
fore any other source-code transformations, such as loop unrolling, which might
otherwise affect the timing behaviour of the resulting system. This brittleness is
an unfortunate side-effect of distinguishing the multiple dynamic occurrences of
delays that are identified statically.

Event-driven with timers. A platform statement of the form T ∈ T specifies
an event-driven implementation where T is a set of tuples (τt, l, u, n) describing
available timers. The timers may be provided by hardware or an interface layer.
The technique of §3.3 is applied: each delay e statement is replaced by an emit

statement that starts an assigned timer and an await statement that waits for
it to expire.

The transformation must allocate timers, from the multiset given by the
platform statement, to delay statements while minimising differences between
required and actual delays. No single timer may be assigned to two simultaneous
delays and all delays must be supported if possible. Issues of signal naming and
aborted delays require care but do not present any fundamental problems.

The allocation of timers to delays can be simplified by forming a static over
approximation of the original Esterel+delay program.

Definition 6. A delay term is formed from constants in Q≥0, and the two bi-

nary operators ; and ‖.

Definition 7. The delay abstraction function D maps an Esterel+delay pro-

gram, where delay expressions have been evaluated, to a delay term:

D(nothing) = 0

D(emit s) = 0

D(pause) = 0

D(delay d) = d

D(present s then p else q end) = D′(p, q, ;)

D(suspend p when s end) = D(p)

D(p ; q) = D′(p, q, ;)

D(loop p end) = D(p)

D(p || q) = D′(p, q, ‖)

D(trap t in p end) = D(p)

D(exit t) = 0

D(signal s in p end) = D(p)

where:

D′(p, q,⊗) =











D(q) if D(p) = 0

D(p) if D(q) = 0

D(p)⊗D(q) otherwise.

When a program p does not contain any delay statements, the delay abstraction
function D(p) gives the result 0. Otherwise, a delay term represents a binary tree
with two types of internal nodes and leaves in Q>0. The constraints expressed

by a delay term are conservative, they do not consider the reachable state-space
of the program. A more accurate, but inevitably more expensive, analysis would
permit a finer expression of constraints.

As an example, the delay term for the microprinter controller program of Fig-
ure 3a is: (0.0024; 0.001667); ((0.00005; 0.0003) ‖ 0.000733). Note that the delays
in the branches of the present statement are combined with ‘;’ in the delay term;
all that matters is that they do not occur simultaneously.

The platform statement T ∈ T is a set of timer types. For the purposes
of timer allocation, it may be considered a multiset of timer triples (τt, l, u). A
certain number of timers are necessary to implement a given delay term, even
before the closeness of their approximations is considered.

Definition 8. The timer count function Tn gives the number of timers required

for a delay term:

Tn(0) = 0

Tn(d) = 1

Tn(d1 ; d2) = max(Cn(d1), Cn(d2))

Tn(d1 ‖ d2) = Cn(d1) + Cn(d2)

Two functions are introduced to evaluate the suitability of a particular timer
for a particular delay.

Definition 9. The timer match function Tm maps a delay d and timer (τt, l, u)
to a rational number:

Tm(d, (τt, l, u)) = min(max(l,

⌊

d

τt

⌋

), u)

The timer match function gives the closest delay to the ideal delay that is achiev-
able by the timer. The possibility of implementing a delay with multiple suc-
cessive timer invocations is not considered here, but it could be effected by a
‘splitting transformation’ on delay terms that breaks delays bigger than a given
constant up into sequences of smaller delays.

Definition 10. The timer delta function Tδ maps a delay d and a timer (τt, l, u)
to a positive rational number:

Tδ(d, (τt, l, u)) = | d − Tm(d, (τt, l, u)) |

The timer delta function measures the suitability of a timer for meeting a delay.
Given a delay term d and a multiset of timers T such that |T | ≥ Tn(d), the

clock assignment problem is to pair each delay in d with a timer from T such
that no single timer is assigned to both subterms of any ‖ operator. An optimal
assignment is one that minimizes Tdelta for each pairing.

The clock assignment problem may be solved automatically with standard
constraint solving techniques. But since it is likely that engineers would prefer to

make some or all of the allocations manually, compilers should provide pragmas
for naming delays, and the platform statement should be extended so that timers
can be associated with the names. These pragmas would further constrain the
set of possible solutions.

In the definition of the transformation with allocated timers, it is assumed
that each delay d statement is identified by a distinct index i ∈ I, with which
it is annotated, delayi d.

Definition 11. Given an Esterel+delay program p where each delay statement

is indexed from a set I, and an allocation of timers represented by two func-

tions, timera from I to the name of a timer and valuea from I to an integer, the

timer-allocated transformation Ta(p) extends the carrier function to the delay

statement:

Tτ (delayi d) = emit start(timera(i))(valuea(i)) ; await finish(timera(i)) ,

where start gives the name of the integer-valued output signal that triggers a

timer, and finish gives the name of the pure input signal emitted by a timer

upon expiry.

An implementation must manage timers properly when corresponding await

statements are aborted. Two possibilities must be considered. First, a running
timer could be aborted and then, in the same reaction, a new countdown could be
requested. The interface layer should clear any latches for a timer after it has been
restarted. Second, multiple timer requests could be made and aborted within the
same reaction. Consider, for example, this fragment where two consecutive delay
statements have been transformed to emit/await pairs that share a timer:

weak abort

emit T1 (1 0 0) ; await T1
when S ;
emit T1 (8 0) ; await T1 .

When the signal S is present, T1 is emitted twice in a single reaction. Special
combine functions are required to ensure that only the last request is honoured.2

Such functions must normally be associative and commutative. An exception
can be made for allocations against a delay term because timers are only reused
for delays in sequence, provided that the compiler respects the sequencing of
microsteps.

Issues of abortion and timer management are addressed better by the tech-
nique of §3.4, where each delay e statement would be replaced by an exec state-
ment that starts an assigned timer and awaits its completion. Unfortunately, the
exec statement is not always supported by compilers.

The transformation with timers gives Esterel programs that suffer the inad-
equate interaction of suspension and delay described in §4.2. Compilers should
emit a warning for programs where delay statements are subject to suspension.

2 It is unimportant if it is also aborted instantaneously because then there would be no
statement awaiting the timeout, which would either be later reallocated or ignored.

de la y 3 ;
emit O1 ;
l oop

emit O2 ;
de la y 2 ;
emit O3 ;
de la y 5

end loop

+0
+3

+3
+3
+5
+5
+10

+10
+10
+12
+12
+17

+17
+17
+19
+19
+24

· · ·
· · ·
· · ·
· · ·
· · ·

[·, 0]

[7, 3]

[7, 5]

Fig. 7: Phase relationships in an Esterel+delay program

Event-driven with timing inputs. A platform statement of the form A ∈ A
where A is a set of timing input pairs (s, τs) specifies an event-driven imple-
mentation where each signal s occurs regularly with a period of τs relative to
system startup. Delays are implemented by counting these timing inputs using
the technique described in §3.2.

For a delay d, and a signal s with period τs, the statement await n s gives a
physical-time delay t that satisfies (n− 1) · τ < t ≤ n · τ .3 While there is again a
choice between lower and upper approximations of the delay, that is between the
values l and u given in equations 1 and 2, the n−1 multiplier in the lower bound
for t means that the upper approximation is the safer choice; since u = l + 1.

The lower approximation may, however, sometimes be more suitable than the
upper approximation, depending on the start time of a particular delay state-
ment relative to the period of a given timing input. It is sometimes possible to
statically determine the ‘phase relationships’ between delay statements, relative
to system startup. An example is presented in Figure 7. Each statement has
been labelled with its offset, in ideal time, from system startup. Multiple offsets
are given for statements within the loop. In this example, the delay statements
can be assigned a fixed period and offset. The first delay has no period, since
it is only executed once, and a zero offset. The second and third both have a
period of 7, the total delay of the loop body. Their offsets are determined by
delays before the loop is entered and also by those within the loop itself.

Phase relationships cannot be determined following pause statements or
within suspend statements when they depend on the presence or absence of
inputs whose timing characteristics are not known or not predictable. It would
be possible to provide extra information about inputs, like timing offsets for
instance, and to include timing inputs that do not occur regularly but may nev-
ertheless only occur at certain times. It would also be possible to propagate
known information about emitted signals to other parts of a program; for in-
stance, that a certain signal is always emitted with a certain period and offset.
It is not clear, however, how useful all of this would be in practice.

Determining phase relationships for the present, trap, and parallel constructs
is difficult in general. An analysis could insist that both branches in a present

3 The reason for the open lower bound of (n − 1) · τ is explained in §3.2.

or parallel construct have the same final offset and period, and similarly for each
exit within a trap as well as for the trap body itself, but, again, it is not clear
whether this would be especially useful.

An optimal choice of timing input also depends on phase relationships. With-
out this information, the timing input with the smallest granularity is the best
choice because it provides the smallest range for the delay in physical time and
the most accurate accounting in the presence of suspension. The selection of a
timing input for a given delay may, moreover, affect the phase relationships and
hence influence the selection of timing inputs for other delays. It is not clear how
best to address this complication.

The most basic transformation always uses the finest timing input and takes
the upper approximation.

Definition 12. Given a platform statement A, the timing-input transforma-
tion TA(p) extends the carrier function to the delay statement:

Tτ (delay d) = await n s ,

where (s, ts) is chosen from A to minimise τs, and n =
⌈

d

τs

⌉

.

More work is required to determine the usefulness and practicability of more
sophisticated approaches.

4.3 Comparison to related work

The literature contains an abundance of proposals for modelling and implement-
ing real-time systems. In particular, there are several techniques for implement-
ing or otherwise discretizing timed automata, like, for instance, the AASAP (Al-
most As Soon As Possible) semantics [19]. The focus of this section is, however,
on the incorporation of continuous time elements into synchronous languages.
Five approaches are especially relevant: the TAXYS methodology, temporized
Argos (as described in §3.5), two extensions to the Quartz language [20,21], and
a proposal for validating the real-time constraints of Esterel programs [22].

The proposal for Esterel+delay is influenced by the TAXYS [3, 23] method-
ology for building real-time systems with Esterel, but there are important differ-
ences. In TAXYS, application logic is specified in logical time and implementa-
tions are modelled in continuous time. A satisfaction relation is defined to judge
the correctness of the latter against that of the former. It has been argued in this
chapter, however, that applications like the microprinter controller are specified
most naturally in terms of continuous time and only later transformed to dis-
crete controllers in logical time. The timing annotations of TAXYS express the
execution characteristics of a program on a specific platform, and also aspects of
its environment, whereas the delay statements of Esterel+delay express desired
application behaviours; platform limitations are stated separately. The platform
models of Esterel+delay are more abstract and less ambitious than those of
TAXYS, where an asynchronous platform with dynamic scheduling is adopted.

The relationship between ideal and executable models is more rigorously defined
in TAXYS than it is in Esterel+delay.

The temporized version of Argos [15] has both discrete-time and continuous-
time semantics. The latter is derived from the former by treating discrete delays,
expressed in terms of a distinguished timing input, as delays in terms of a con-
tinuous clock. The continuous-time semantics is motivated by and exploited for
the automatic verification of quantitative properties. The direction of transla-
tion is reversed in Esterel+delay: continuous-time programs are translated into
discrete-time programs. The motivation is different too: Esterel+delay aims to
support both natural descriptions of certain types of programs and the adjust-
ments required for implementation platform limitations. This latter issue is not
addressed by temporized Argos.

Quartz is an Esterel-like language for which real-time verification [21] and
hybrid systems extensions [20] have been proposed.

Quartz programs can be translated into timed Kripke structures to verify
quantitative properties [21]. Delays are expressed by pause statements. An ab-
straction statement is added to ignore intermediate polling states; for instance,
await n is not expanded into a sequence of n pause statements, but rather treated
as a timed transition labelled with n. Quartz is intended for abstract designs
prior to the consideration of implementation details. The translation is based on
logical time since physical time. . . depends on the hardware chosen for the real-

ization [21, §1]. The proposal for Esterel+delay suggests a different possibility.

The hyperQuartz language [20] is an extension of Quartz for modelling hybrid
systems. Continuous execution intervals are expressed as lower and upper timing
bounds on pause statements. The length of an interval may depend on an ex-
pression over a global time parameter and other continuous signals. Pure signals
are piece-wise continuous over an interval, but hybrid variables evolve according
to differential equations. It is not clear how multiple constraints are resolved to
produce practical implementations. The timing limitations and characteristics
of implementations are not discussed. The focus is modelling not programming.

In another proposal [22] for validating the real-time behaviour of Esterel
programs,4 locations and blocks of statements are annotated with markers to
which timing constraints, that are stated separately, may then refer. For exam-
ple [22, §4.1], this program fragment contains one pair of annotations:

%# block_1_begin
Y := 100 ;
emit S1 (Y) ;
Y := Y + 100 ;
X := 7 ;
emit S2 (Y)
%# block_1_end .

Timing constraints can then be stated relative to an external clock, for example:

t ime (block_1_end) − t ime (block_1_begin) ≤ 4 u n i t s .

4 The paper allows the exec statement but not the suspend statement.

A program is analyzed by replacing the marker annotations with ‘ghost sig-
nals’, which are observable after compilation to an automaton. The proposed
design flow involves two steps. Logical correctness is first established under an
assumption of perfect synchrony, then the timing analysis establishes that the
constraints are met. There are several differences between this approach and that
of Esterel+delay. In Esterel+delay, application timing details are stated within
a program in physical time, that is as rational multiples of seconds, rather than
as separate annotations in uncertain, discrete units. Platform timing constraints
are given separately in Esterel+delay in terms of abstract execution models,
whereas in the approach with annotations the form of eventual implementations
is unclear, besides that they may be asynchronous and that their signal emis-
sions may take time; no mention is even made of the standard event-driven and
sample-driven execution schemes. The timing details of Esterel+delay programs
are stated in terms of physical time and later translated into discrete time for
implementation. In the approach with annotations, as with other approaches,
programs are designed in discrete-time and then validated in physical time.

Many other programming languages allow delays to be specified in terms of
physical time – whether by special keywords, or by calls to library functions
with either runtime or operating system support. It seems fair to state, however,
that in most cases the menaing of these statements is approximate or subject to
various special clauses and uncertainties. It is by no means certain how to derive
discrete controller implementations with precise behaviour, nor how to describe
or judge compromises between ideal behaviour and its approximations on specific
platforms. The translation of Esterel+delay to Esterel is distinguished in this
regard; it is possible in large part due to the synchronous and precise nature of
the latter language.

5 Unfinished work

The proposed delay statement and its interpretation relative to an abstract plat-
form seem to be the right solution for designing and specifying applications like
the microprinter controller. But, while the syntactic transformation addresses
many issues well and takes advantage of existing tools and technology, it is not
completely satisfactory. There are two issues: a lack of tool support and a certain
semantic shallowness.

The lack of tool support may be the easier of the two to remedy. There
seem to be no obstacles to implementing the transformations described in §4,
although the analysis of phase relationships does require further investigation.
Ideally, Esterel+delay would be supported by a simulation tool that combines
features of Xes and Esterel Studio with those of Uppaal; rather than requiring
repeated clicking through intervals, timing behaviours would be presented and
manipulated symbolically. Esterel+delay programs might also be embedded into
Simulink; delay statements would then be linked to the t parameter of a model.

The semantic issues are more difficult to address. Ideally, the discrete and
continuous elements of Esterel+delay could be better integrated with one an-

Esterel+delay
specification

Esterel prog.

. .
.

Esterel prog.

Impl.Impl.

Impl.

⊒

+ platform

+ platform co
m

p
ileco

m
p
ile

Impl.

. .
.

Impl.

Esterel+delay
specification

Fig. 8: Esterel+delay: artifacts and relations

other. But, in fact, there is no certainty that this is even possible. At least not
without sacrificing some of the essential character and balance of Esterel, or
without resorting to intricate formalisations.

A semantic treatment should address the comparison of Esterel+delay pro-
grams with the implementations generated from them. The basic idea is de-
picted in Figure 8. An Esterel+delay program can be transformed, given differ-
ent platform statements and parameters, into different Esterel programs, which
can themselves be compiled and executed. A refinement relation could be de-
fined between an original program and its final implementations; much like the
correctness property of TAXYS, although in this case, solely in continuous time.

Any such relation would have to allow some ‘fuzziness’ in the timing be-
haviour of implementations. The relative closeness of implementations to the
original specification could be used to evaluate alternative implementation plat-
forms. A maximum allowable divergence could be factored into verifications of
properties against the specification, the results of which would then also apply
to a range of implementations. The quantitative relations defined in some recent
approaches [24] may offer insights. An alternative approach would be to use a
precise relation, but to ‘blur’ the Esterel+delay specification before applying it.

The equivalence of Esterel programs would normally be based on comparisons
of discrete sequences. For Esterel+delay programs, the physical time between
inputs and outputs, or between one output and another, may be more significant
than the number of reactions between them – especially when nothing happens
in the intervening reactions or when they simply count down reactions or inputs.

6 Summary

It is argued in this paper that while Esterel is ideal for applications with complex
sequential behaviour, there is no completely adequate way to express behaviours
in physical time. The strengths and weaknesses of Esterel are well demonstrated

by the microprinter controller example. The solution proposed is to allow the
direct expression of delays in terms of physical time, and then to transform
the stated delays according to the limitations of particular implementation plat-
forms. The proposal differs from several others by recommending the expression
of abstract designs in physical time with a later transformation to a discrete-
time program; similarly to the usual approach for designing and implementing
feedback controllers.

The proposal is simple and, it seems, practical, but further work is required
to develop a rigorous semantic model for Esterel+delay, and also to define rela-
tions between specifications and implementations that account for inaccuracies
introduced during translation to specific implementation platforms. Ideally, such
a semantic model would assist in the definition of static analysis techniques for
transforming Esterel+delay programs, and also provide a satisfactory explana-
tion for Esterel constructs that embody an element of duration, like suspend

and sustain. Ultimately, however, it is not clear whether it is possible to adapt a
discrete, synchronous language in this way without sacrificing simplicity, clarity,
and practicability.

7 Acknowledgements

S. Ramesh of GM Research Labs in Bangalore, India gave useful feedback on an
early draft of this paper. The ideas were discussed with, and reviewed by Peter
Gammie and Leonid Ryzhyk, both of who had valuable insights. The anony-
mous reviewers for EMSOFT 2007 offered accurate, encouraging, and insightful
comments.

References

1. Berry, G., Moisan, S., Rigault, J.P.: Esterel: Towards a synchronous and seman-
tically sound high level language for real time applications. In: Proceedings of
4th IEEE Real-Time Systems Symposium (RTSS 1983), Arlington, Virginia, USA,
IEEE Computer Society (December 1983) 30–37

2. Berry, G.: Real time programming: Special purpose or general purpose languages.
In Ritter, G., ed.: Proceedings of 11th International Federation for Information Pro-
cessing (IFIP) World Computer Congress, San Francisco, USA (August–September
1989) 11–17

3. Sifakis, J., Tripakis, S., Yovine, S.: Building models of real-time systems from
application software. Proceedings of IEEE 91(1) (January 2003) 100–111

4. Berry, G.: The Constructive Semantics of Pure Esterel. Draft book, 3 edn. ftp://
ftp-sop.inria.fr/meije/esterel/papers/constructiveness3.ps (July 1999)

5. Potop-Butucaru, D., Edwards, S.A., Berry, G.: Compiling Esterel. Springer-Verlag
(2007)

6. Berry, G.: Programming a digital watch in Esterel v3. Rapport de recherche 1032,
Institut National de Recherche en Informatique en Automatique (INRIA), Sophia
Antipolis (May 1989)

7. Berry, G., Gonthier, G.: Incremental development of an HDLC protocol in Esterel.
Rapport de recherche 1031, Institut National de Recherche en Informatique en
Automatique (INRIA), Sophia Antipolis (May 1989)

8. Behrmann, G., David, A., Larsen, K.G., Håkansson, J., Pettersson, P., Yi, W.,
Hendriks, M.: Uppaal 4.0. In: 3rd International Conference on Quantitative Eval-
uation of Systems, Riverside, California, USA, IEEE Computer Society (September
2006) 125–126

9. Castelluccia, C., Dabbous, W., O’Malley, S.: Generating efficient protocol code
from an abstract specification. ACM SIGCOMM Computer Communication Re-
view 26(4) (October 1996) 60–72

10. Jagadeesan, L.J., Puchol, C., Olnhausen, J.E.V.: A formal approach to reactive
systems software: A telecommunications application in Esterel. In: Proceedings of
Workshop on Industrial-Strength Formal Specification Techniques, Florida, USA,
IEEE (April 1995) 132–145

11. Murakami, G.J., Sethi, R.: Parallelism as a structuring technique: Call processing
using the Esterel language. In van Leeuwen, J., ed.: Proceedings of 12th Inter-
national Federation for Information Processing (IFIP) World Computer Congress.
Number 92 in Information Processing, Madrid, Spain (1992) 10–16

12. Balarin, F., Chiodo, M., Giusto, P., Hsieh, H., Jurecska, A., Lavagno, L., Passerone,
C., Sangiovanni-Vincentelli, A., Sentovich, E., Suzuki, K., Tabbara, B.: Hardware-
Software Co-design of Embedded Systems: The POLIS Approach. The Kluwer
International Series in Engineering and Computer Science. Kluwer Academic Pub-
lishers (1997)

13. Berry, G., Ramesh, S., Shyamasundar, R.K.: Communicating reactive processes.
In: Proceedings of 20th ACM SIGPLAN-SIGACT Symposium on Principles Of
Programming Languages (POPL 1993), ACM Press (1993) 85–98

14. Berry, G.: Preemption in concurrent systems. In Shyamasundar, R.K., ed.: Foun-
dations of Software Technology and Theoretical Computer Science. Volume 761 of
Lecture Notes in Computer Science., Bombay, India, Springer-Verlag (December
1993)

15. Jourdan, M., Maraninchi, F., Olivero, A.: Verifying quantitative real-time proper-
ties of synchronous programs. In Courcoubetis, C., ed.: 5th International Confer-
ence on Computer Aided Verification. Volume 697 of Lecture Notes in Computer
Science., Elounda, Greece, Springer-Verlag (June/July 1993) 347–358

16. Alur, R., Courcoubetis, C., Dill, D.: Model-checking for real-time systems. In:
Proceedings of 5th Annual IEEE Symposium on on Logic in Computer Science
(LICS ’90), IEEE Computer Society (June 1990) 414–425

17. Yovine, S.: Kronos: A verification tool for real-time systems. International Journal
of Software Tools for Technology Transfer 1(1–2) (December 1997) 123–133

18. Berry, G.: The Esterel v5 Language Primer. Ecole des Mines and INRIA. 5.92
edn. (June 2000)

19. De Wulf, M., Doyen, L., Raskin, J.F.: Almost ASAP semantics: from timed models
to timed implementations. In: HSCC 04: Hybrid Systems—Computation and Con-
trol. Number 2993 in Lecture Notes in Computer Science, Springer-Verlag (2004)
296–310

20. Baldamus, M., Stauner, T.: Modifying Esterel concepts to model hybrid systems.
Electronic Notes in Theoretical Computer Science 65(5) (July 2002) 819–833

21. Logothetis, G., Schneider, K.: Extending synchronous languages for generating
abstract real-time models. In: Proceedings of Design, Automation and Test in
Europe (DATE’02), Paris, IEEE Computer Society (March 2002) 795–803

22. Shyamasundar, R., Aghav, J.: Validating real-time constraints in embedded sys-
tems. In: 8th Pacific Rim International Symposium on Dependable Computing
(PRDC 2001), Seoul, Korea, IEEE Computer Society (December 2001) 347–355

23. Bertin, V., Closse, E., Poize, M., Pulou, J., Sifakis, J., Venier, P., Weil, D., Yovine,
S.: Taxys = Esterel + Kronos: A tool for verifying real-time properties of embed-
ded systems. In: Proceedings of 40th IEEE Conference on Decision and Control,
Orlando, Florida, USA, IEEE (December 2001) 2875–2880

24. Bohnenkamp, H., Stoelinga, M.: Quantitative testing. In: Proceedings of 8th ACM
International Conference on Embedded Software (EMSOFT’08), Atlanta, Georgia
USA, ACM, ACM Press (October 2008) 227–236

